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Abstr act   Simulations or mathematical analysis of a real-world logistic network 
require a model. In this context two challenges occur for modelling: First, the 
model should represent the real-world logistic network in an accurate way. Sec-
ond, it should foster simulations or analytical analysis to be conducted in a reason-
able time. A large size is often a drawback of many models. In the case of logistic 
networks this drawback can be overcome by reducing the number of locations and 
transportation links of the graph model. In this paper we present an approach to 
model reduction of a logistic network based on ranking. The rank of a given loca-
tion states the importance of the location for the whole network. In order to calcu-
late the importance of a location we introduce an adaptation of the PageRank algo-
rithm for logistic networks. The information about the rank and the structural 
relations between the locations are used for our approach to model reduction. De-
pending on the structural relation between locations we suggest three different ap-
proaches to obtain a model of lower size.  

1 Introduction 

Performance and competitiveness of a large-scale logistic network depend on 
the capability of the network to meet the expectations of the customers [1]. This 
capability is strongly connected to an effective management of the material flow 
within the network. The material flow is subject to the complex and often global 
structure of the network as well as to the dynamics of production and transporta-
tion processes [2]. In order to support the management, a better understanding of 
the dynamics related to the material flow and their consequences for the perform-
ance of the logistic network is required. In the literature several methods exist to 
analyse the material flow.  
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Three different methods can be utilized for the investigation of the material 
flow of a logistic network [3]. First, the material flow of the real-world network 
can be measured. Second, simulations can be carried out in order to analyse 
changes in the structure and dynamics of the logistic network for different scenar-
ios. Third, mathematical methods can be applied in order to obtain a more precise 
understanding of the involved processes. Both, simulation and mathematical 
methods require usually a model of the real-world logistic network.  

Model development faces two major challenges. First, the model should exhibit 
almost the same properties compared to the real-world logistic network and sec-
ond, it should be tailored to the applied methods in order to enable consolidated 
findings. The size of a model is often crucial for a successful application of a cer-
tain analysis method. A model of lower size facilitates simulations or the applica-
tion of mathematical methods. Since, logistic networks often consist of a large 
number of locations and transportation connections between them a representative 
model of lower size is desired. 

Our approach to model reduction is based on a ranking scheme of the locations 
that takes the material flows within the network and the structure of the connec-
tions between the locations into account. For this purpose the PageRank algorithm 
[4], which has been a core component of Google Internet search engine in its early 
days, is used. The original ranking algorithm is extended by the results of a mate-
rial flow analysis. A material flow analysis provides valuable information about 
the importance of the connections between the locations by analysing the quanti-
ties of material flow between the locations [5]. These quantities can be incorpo-
rated into the ranking algorithm in order to enhance the ranking. The adapted 
ranking algorithm provides in terms of its application to a logistic network a rea-
sonable ranking [6], [7]. In order to derive a model of lower size we propose to fo-
cus on locations with a low importance for the network. According to their con-
nections to other locations of the network we investigate three different 
approaches for model reduction. These approaches involve the exclusion and ag-
gregation of individual locations as well as the exclusion of subparts of the net-
work. The paper shows that by applying these approaches for model reduction 
representative models can be derived.  

The outline of the paper is as follows. In section 2 our proposed adaptation of 
the PageRank algorithm to logistic networks is presented. Three different ap-
proaches to model reduction based on the structural properties of the locations are 
introduced in section 3 and illustrated by examples. Section 4 summarise the find-
ings of this paper and provides an outlook to future research.  

2 Adaptation of the PageRank algorithm to logistic networks 

Before we introduce a notion of importance rank of a logistic location in a net-
work we describe the network itself as a model. 
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We model a logistic network as a directed graph in the following way. Let the 
logistic locations be numbered by 1,…,n and each of them be a node of this graph. 
There is an edge from node i to node j if there is a material, information or mone-
tary flow from the ith to jth location. In our approach only the aggregated quantity 
of a material flow between the locations over a certain period of time is consid-
ered. Let aij be a number quantifying this flow. In particular, if there is no flow 
from location i to location j then aij=0. The matrix A=( aij)i,j=1,…,n describes the in-
terconnection structure and the flows of a given network and is called weighted 
adjacency matrix of the graph. For example the network in Figure 1 has the fol-
lowing weighted adjacency matrix:  
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 Fig.1. Weighted directed graph of a logistic network. 
The numbers in the circles are the numbers of nodes 
and the numbers near the edges are their weights. 

 
The following types of matrices will be used in this paper: 
A matrix A is called column-normalized if for all i=1,…,n 
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A matrix A is column-stochastic if 1
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It is called primitive if there exists a positive integer k such that the matrix Ak 
has only positive elements. 

We call an adjacency matrix A irreducible if the corresponding graph is 
strongly connected, i.e., for every nodes i and j of the graph there exists a se-
quence of directed edges connecting i to j. Note that any primitive matrix is irre-
ducible.  

Now we are ready to introduce the notion of importance of logistic locations in 
a network. In the sequel we call it rank of a node or location. We say that the rank 
of a certain location depends on the network structure, its position within the net-
work and flows in this network. As the weighted adjacency matrix of a network 
contains the information about its structure and flows between its nodes we use it 
to define the importance of the nodes. To define the rank of logistic locations we 
use the idea of the PageRank [5], which was originally designed for the ranking 
web pages in the Internet. This idea and the algorithm for its calculation can be 
adapted in the following way to logistic networks. We say that the rank of a loca-
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tion i depends on the flows aij, from this node to other locations j=1,…,n as well 
as ranks of these locations The more important locations receive material from a 
given location the more important it is. In comparison with the original PageRank   
locations do not share their rank equally between their suppliers but rather propor-
tionally to the flows from their suppliers described by aij . I.e., the proportions ija~  

are
∑
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a~  . Such proportions were proposed in [9] as a modification of 

PageRank. Thus the rank NRi of the node i should be calculated by 
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However we introduce a parameter α, 0<α≤1 and for a given graph with n nodes 
we define the rank NRi of a location i by 
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i.e., the rank of location i is the sum of the proportion of ranks that locations j con-
tribute and a small positive term, where n is usually a large number. Note that for 
α=1 equation (2) coincides with (1). Thus the value 1-α, is usually taken close to 
zero in order to preserve the information about the real structure of the network. It 
is interpreted as a probability that a location supplies material to locations with 
which it has no direct link (partnership). This positive term is important for the ex-
istence and uniqueness of a solution of (2). 

Now we see that the ranks NRi can be calculated by solving the linear system 
of algebraic equations (2). However this problem can be nontrivial in the case of 
large number of nodes n. To solve equation (2) we transform it into an eigenvalue 
problem that can be solved numerically [7]. The needed transformation steps are:  
1. Column-normalization:  

otherwise. 0, and 0 ,~ ),(
1

1

=≠=== ∑
∑ =

=

ij
n

k
T
kjijn

k kj

ij
ijij Haifa

a

a
HHH   (3) 

2. Make the matrix stochastic: 

otherwise. ,0b  and 0H  ,1b , )1,,1(, i
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3. Making the matrix primitive:
n

ESG
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Let p=(p1,…,pn)T be a normalized and nonnegative vector. Multiplying the right 
side of matrix G by vector p we obtain the right-hand side of equation (2) with 
NRj= pj and the problem (2) is equivalent to the problem of finding the right-
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eigenvector p=Gp of G that corresponds to the eigenvalue 1. Since the matrix G is 
stochastic and irreducible the Perron-Frobenius theorem guarantees that 1 is an ei-
genvalue of G and all other eigenvalues have absolute value less then 1, i.e., 1 is 
the spectral radius of G [8]. Since G is primitive and hence irreducible from the 
Perron-Frobenius theorem in [8] it follows that the corresponding eigenvector is 
unique up to a scalar factor.   

Applying our method to the network given in Figure 1 with α=0.9 we obtain 
the following ranks which are given in Table 1. In parentheses we number the lo-
cations by their importance. 
     The group of the most important locations is highlighted in dark grey. Light 
grey is used for the group of locations with average importance and white is used 

for the background of the group of the least important 
locations. We see that in this example the most impor-
tant location is location 2. This can be explained by the 
reason that it delivers large amounts of material to 
other locations. Location 6 delivers material to only 
one location with an average rank and therefore has the 
lowest rank and hence it is the least important location.  
 
 

    Table 1. Ranks of the original  
    network in Fig.1. 

3 Approaches for network model reduction 

For the analysis of large logistic networks the reduction of the size of their 
model is often needed. Our main idea for reduction of a model is to exclude or ag-
gregate the nodes of the lowest ranks, i.e., the less important locations. We pro-
pose three different rules how to do this. These rules are chosen in a way to con-
serve the main structure of the network. In the following we describe these rules 
and show their implementation on some simple examples. In these examples we 
will observe the changes of the ranks and especially of the order of the nodes by 
their ranks.  
1. Exclusion of low-ranked locations connected to only one location 

Locations with low rank connected to only one location do not describe the ma-
jor structure of the network. Thus such locations are excluded from the graph as 
well as their links. 

Example 1: Consider the location 6 in Figure 1 that is the least important loca-
tion and is connected only to the location 1. Applying the given rule it is excluded 
from the graph. The reduced model is shown in the Figure 2. The ranks of loca-

Location Rank 
1 0.1040 (5) 
2 0.2455 (1) 
3 0.2016 (3) 
4 0.2056 (2) 
5 0.1778 (4) 
6 0.0655 (6) 
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tions of the reduced graph are given in Table 2. Note that the ranks of the loca-
tions in the reduced model have the same order as in the original network. 

 

 
 

 
 

Location Rank 
1 0.1039 (5) 
2 0.2707 (1) 
3 0.2202 (2) 
4 0.2171 (3) 
5 0.1882 (4) 

Fig. 2. Reduced network Table 2. Ranks of the reduced network. 

 
2. Aggr egation of low-ranked locations 

Locations with low ranks appearing in a parallel or sequential connection in the 
network are aggregated and considered as one location. The weights of incoming 
and outgoing links of the aggregated location are defined as the sums of the corre-
sponding weights of the former individual links. In this case the information about 
the original material flow through these locations is kept in the reduced network. 
In [10] a theoretical analysis of similar rules is presented but it was applied to the 
original PageRank algorithm without weighted edges of the considered graph.  

To illustrate this rule consider the following two examples. 
Example 2 (parallel connection): Figure 3a illustrates a logistic network, which 
consists of only one customer (location 1), who orders products from four OEM’s 
(locations 2-5). The OEM’s are connected to one supplier (location 6).  

 
 

Fig.3a. Original network. Fig.3b. Reduced network. 
Locations 3, 4 and 5 have low ranks, see Table 3a, and are connected in a paral-

lel way to the same locations 1 and 6. Hence, they are aggregated to one location 
called ‘3-5’ and a reduced model with 4 locations is obtained, see Figure 3b. The 
new incoming link to ‘3-5’ corresponds to the sum of the former three individual 
incoming links. The same applies to the outgoing links. Note that the order of the 
locations by their ranks in the reduced model remains unchanged, cf. the Tables 3a 
and 3b. 
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Location Rank 
1 0.0911 (6) 
2 0.1456 (2) 
3 0.0953 (5) 
4 0.0974 (4) 
5 0.1037 (3) 
6 0.4668 (1) 

 

Location Rank 
1 0.1375 (4) 
2 0.2196 (2) 

3-5 0.1723 (3) 
6 0.4706 (1) 

Table 3a. Ranks of the original network. Table 3b. Ranks of the reduced network. 
      Example 3 (sequential connection): In the network in Figure 4a the locations 2 
and 4 have low ranks and they are connected sequentially. Thus they are aggre-
gated to one location that is denoted by ‘2,4’. The weight of the incoming link is 
the weight of the former incoming link of location 4 and the weight of the outgo-
ing link is the weight of the former outgoing link of location 2. Table 4b shows 
that the ranks in the reduced graph have the same order as in the original graph.  

We see that in the last three examples the second rule of model reduction does 
not change the order of importance between the unchanged locations.  

  
Fig. 4a. Original network. Fig. 4b. Reduced network. 

 

Location Rank 
1 0.2828 (2) 
2 0.1051 (5) 
3 0.1952 (3) 
4 0.1194 (4) 
5 0.2975 (1) 

 

Location Rank 
1 0.3202 (2) 

2,4 0.1226 (4) 
3 0.2247 (3) 
5 0.3326 (1) 

Table 4a. Ranks of the original network. Table 4b. Ranks of the reduced network. 
3. Exclusion of sub-networks of low-ranked locations connected to only 

one impor tant location 
A sub-network of locations that have low ranks is excluded from the graph if it 

is connected to one important location only. The material flows between the re-
maining locations are kept unchanged and therefore the main structure of the 
original network is preserved.  

We illustrate this rule by the following example. 
Example 4: The logistic network in Figure 5 contains three locations with high 

ranks. There are three groups of low rank locations. Each of them has connections 
to one of the high rank nodes only. By the third rule all three groups are excluded 
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to obtain the reduced graph, see Figure 6, which consists of 3 locations. The order 
of the three most important locations is again unchanged, cf. Table 6.  

Note that each of the rules defined above can be applied simultaneously to dif-
ferent nodes. Thus the network can be significantly reduced to the desired size. 
The next example illustrates the application of all three rules to one network. 

 

 

Location Rank Location Rank 
1 0.2946 (01) 10 0.0319 (04) 
2 0.2189 (03) 11 0.0165 (11) 
3 0.2525 (02) 12 0.0088 (15) 
4 0.0123 (14) 13 0.0088 (15) 
5 0.0135 (13) 14 0.0162 (12) 
6 0.0188 (08) 15 0.0169 (09) 
7 0.0088 (15) 16 0.0231 (05) 
8 0.0190 (07) 17 0.0168 (10) 
9 0.0226 (06) - - 

Fig.5. Network with 3 sub-networks. Table 5. Ranks of the original network. 

 

 

Location Rank 
1 0.3890 (1) 
2 0.2832 (3) 
3 0.3278 (2) 

Fig. 6. Reduced network. Table 6. Ranks of the reduced network. 
Example 5: The graph in Figure 7 consists of 33 locations. Their ranks are 

shown in Table 7. The most important locations are locations 2, 5 and 14. Loca-
tions 1, 3, 6, 8, 27, 28 will be treated as average rank nodes. The rest of the nodes 
are identified as low rank locations. 

Locations 22, 29, 30, 31, 32, 33 are deleted by applying the rule from Section 
3.1. The locations 4, 7, 12 are aggregated using the rule of Section 3.2 for sequen-
tial connection and locations 9-11 are aggregated using the rule for parallel con-
nections from Section 3.2. Sub-network of nodes 13, 15-21 and sub-network of 
nodes 23-26 are excluded according to the rule from Section 3.3. The reduced 
model consists of 11 locations and is shown in Figure 8. The corresponding ranks 
of the locations are given in Table 8. Locations 2 and 5 are still the most important 
ones. However the rank of location 14 is of the order of the average rank nodes. 
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Location Rank Location Rank 
1 0.0567 (04) 18 0.0066 (23) 
2 0.1847 (02) 19 0.0087 (22) 
3 0.0401 (06) 20 0.0140 (17) 
4 0.0230 (10) 21 0.0066 (23) 
5 0.1969 (01) 22 0.0066 (23) 
6 0.0327 (08) 23 0.0066 (23) 
7 0.0193 (12) 24 0.0122 (19) 
8 0.0296 (09) 25 0.0189 (13) 
9 0.0142 (16) 26 0.0145 (15) 
10 0.0099 (21) 27 0.0416 (05) 
11 0.0066 (23) 28 0.0346 (07) 
12 0.0149 (14) 29 0.0066 (23) 
13 0.0066 (23) 30 0.0066 (23) 
14 0.1077 (03) 31 0.0109 (20) 
15 0.0145 (15) 32 0.0066 (23) 
16 0.0218 (11) 33 0.0066 (23) 
17 0.0128 (18) - - 

Fig.7. Complex network with 33 locations. Table 7. Ranks of the original network. 

 

 

Location Rank Location Rank 
1 0.0762 (06) 14 0.0975 (03) 
2 0.2262 (02) 8 0.0320 (09) 
3 0.0607 (07) 9-11 0.0301 (10) 

4,7,12 0.0212 (11) 27 0.0937 (05) 
5 0.2336 (01) 28 0.0943 (04) 
6 0.0345 (08) - - 

Fig.8. Reduced network with 11 locations. Table 8. Ranks of the reduced network. 

5 Conclusions and future research 

We have proposed three rules for the reduction of the size of the model of a 
given large-scale logistic network. For this purpose a method for identifying the 
nodes to be excluded or aggregated was developed that takes the structure of the 
network and material flows between its locations into account. This method ex-
tends the idea of the well known Page Rank algorithm. Examples given in this pa-
per illustrate how this reduction rules can be applied to obtain reasonable models 
of lower size to describe large logistic networks.  

The observed numerical results raise theoretical questions related to the stabil-
ity of the order of ranks with respect to the application of the proposed reduction 
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rules. These questions have to be investigated analytically and are a matter of the 
further research. The development of further reduction rules and analysis of their 
properties are also planed for the future work.  
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