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Abstract In this paper we analyze a given production network in view of stability,
which means boundedness of the state of the network over time. By a mathematical
point of view we will model the system by differential equations. This results in the
derivation of conditions for which the production network is stable.

1 Introduction

Production and supply networks or other modern logistic structures are typical ex-
amples of complex systems with a nonlinear and sometimes chaotic behavior. Their
dynamics subject to many different perturbations due to changes on market, changes
in customer behavior, information and transport congestions, unreliable elements of
the network etc.

One approach to handle such complex systems is to shift from centralized to
decentralized or autonomous control, i.e. to allow the entities of a network to make
their own decisions based on some given rules and the available local information.
However a system emerging in this way may be not effective in performance or
become unstable. Hence it is worth to investigate its behavior in advance.

Mathematical methods can help to handle these complex systems. In particular
mathematical modelling and analysis provide helpful tools for investigation of such
objects and can be used for design, optimization and control of such networks and
for deeper understanding of their dynamical properties.
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One of the main properties that a logistic systems should satisfy is stability. In
particular cases this property means that the number of the unsatisfied orders or/and
amount of workload to be processed by a machine remain bounded over time in
spite of disturbances. Obviously this property is decisive for the performance and
vitality of a network.

In this paper we propose a model for a production logistic scenario comprising
several autonomous production plants connected through transport routs. This net-
work is modelled by ordinary autonomous differential equations. We show how its
stability can by analyzed with help of small gain theorems recently developed for
general type of dynamic networks. Explicit conditions of the production rates will be
derived by application of mathematical systems theory of interconnected systems.

In Section 2 we describe the given production network with its parameters and
model it mathematically by differential equations. A mathematical background is
given in Section 3, which is used in Section 4 to derive stability conditions of the
production network. In Section 5 some simulation results and their interpretations
are given. Conclusions and outlines can be found in Section 6.

2 Model description

In this section we describe the given production network, which we are going to
analyze in view of stability. We model the system with help of differential equations.

The production network in Figure 1 consists of six different production locations.
The state of each production location is denoted by xi(t)∈R+ for i = 1, . . . ,6, where
t ∈R+ can be interpreted as time and R+ denotes all positive real values. In the rest
of this paper we write subsystem i for the i-th production location and interpret
the state of the i-th subsystem as the number of unsatisfied orders within the i-th
production location. All six subsystems form the production network, which we
name simply (whole) system. The arrows in Figure 1 describe the material flow.
We will describe the production network by the information flow. Subsystem six
gets some orders of its product from the customers, denoting by d(t) ∈ R+. While
processing the orders, subsystem six sends orders for components, which they need
for production to subsystems four and five. These two subsystems send orders for
components, which they need for production to subsystems two and three. Their

Fig. 1 The production network
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orders will be sent to subsystem one, which gets instantly its raw material from an
external source.

The orders from subsystem one to subsystem six can be interpreted as a payment
or the demand for its production of subsystem one of the final product of the given
production network from subsystem six.

We suppose all subsystems are autonomously controlled, it means that the change
of the actual production rate at time t can be interpreted as the ability to vary the
production rate of the production location. For example this could be varying work
times of the workers, transportation times of the products or the number of used
machines for production. The actual production rate of each subsystem at time t is
given by

f̃i (xi(t)) := αi (1− exp(−xi(t))) , i = 1, . . . ,6,

where αi ∈ R+ is the (constant) maximum production rate of subsystem i. f̃i con-
verges to αi, if the state of subsystem xi(t) is large and f̃i tends to zero, if the state
of subsystem xi(t) tends to zero. This means, if there are many orders, the actual
production rate is near to the maximum production rate and if there are no orders
nothing will be produced.

With this considerations we can model the system presented in Figure 1 by differ-
ential equations for each subsystem, which are nothing but a description of changes
of the state xi(t) of subsystem i along time t ∈ R+:

ẋ1(t) = c21 f̃2(x2(t))+ c31 f̃3(x3(t))− f̃1(x1(t)),

ẋ2(t) = c42 f̃4(x4(t))+ c52 f̃5(x5(t))− f̃2(x2(t)),

ẋ3(t) = c43 f̃4(x4(t))+ c53 f̃5(x5(t))− f̃3(x3(t)),

ẋ4(t) = c64 f̃6(x6(t))− f̃4(x4(t)),

ẋ5(t) = c65 f̃6(x6(t))− f̃5(x5(t)),

ẋ6(t) = d(t)+ c16 f̃1(x1(t))− f̃6(x6(t)),

(1)

where the constants c ji ∈ R+ can be interpreted as the number of orders of compo-
nents from subsystem j to subsystem i.

By definition of fi(x,d) := ẋi(t), i = 1, . . . ,6, x := (x1, . . . ,x6)
T and f (x,u) :=

( f1(x,d), . . . , f6(x,d))T we can write the whole system as

ẋ(t) = f (x(t),d(t)) , t ∈ R+. (2)

Now the question arises, under which conditions the subsystems are stable, which
means that the states of all subsystems will not increase to infinity. In other words,
under which conditions all states of the subsystems and therefor the whole system
are bounded, which means stability of the production network ?
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3 Mathematical background

For the investigation of the stability of system (1) and (2) respectively we will need
some mathematical results. We present a stability property and a tool how to check,
if the system has the stability property.

We consider nonlinear dynamical systems of the form

ẋ(t) = f (x(t),u(t)), (3)

where t ∈ R+ is the time, ẋ(t) the derivate of the state x(t) ∈ RN with initial value
x0, input u(t) ∈ Rm, which is an essentially bounded measureable function and
f : RN+m → RN nonlinear. To have existence and uniqueness of a solution of (3),
function f has to be continuous and locally Lipschitz in x uniformly in u. The solu-
tion is denoted by x(t;x0,u) or x(t) in short.

To describe the given production network we generalize (3) and consider n ∈ N
interconnected systems. These are in general nonlinear dynamical systems of the
form

ẋi(t) = fi (x1(t), . . . ,xn(t),ui(t)) , i = 1, . . . ,n (4)

where t ∈R+; xi(t) ∈RNi , ui(t) ∈RMi , which are essentially bounded measureable
functions, fi : R∑ j N j+Mi → RNi , i = 1, . . . ,n, where fi has to be continuous and
locally Lipschitz in x =

(
xT

1 , . . . ,xT
n
)T uniformly in ui. We consider x j as input and

ui as external input of the i-th subsystem i, j = 1, . . . ,n i 6= j. The solution is denoted
by x(t;x0

i ,x j : j 6= i,ui) or x(t) in short.
If we define N := ∑

n
i=1 Ni, m := ∑

n
i=1 Mi, x := (xT

1 , . . . , xT
n )T , u := (uT

1 , . . . ,uT
n )T

and f := ( f T
1 , . . . , f T

n )T , then (4) becomes

ẋ(t) = f (x(t),u(t)), t ∈ R+. (5)

We denote the standard euclidian norm in Rn by ‖·‖ and the essential supremum
norm on essentially bounded functions u in R+ by ‖u‖

∞
. We will need some classes

of functions to define the stability property, which we want to use. A function f :
Rn→R+ is said to be positive definite, if f (0) = 0 and f (x) > 0, ∀x ∈Rn holds. A
class K function γ : R+→R+ is continuous, γ(0) = 0 and strictly increasing. If it is
additionally unbounded then it is of class K∞. We call a function β : R+×R+→R+
of class K L if β is continuous, β (·, t) ∈K and β (r, ·) strictly decreasing with
limt→∞ β (r, t) = 0, ∀t,r ≥ 0.

Now we define LISS and ISS respectively for each subsystem of (4). For system
(3) the definition of LISS and ISS respectively can be found for example in [3] and
[7] respectively.

Definition 1. The i-th subsystem of (4) is called LISS, if there exist constants ρi >
0, ρu

i > 0, γi j, γi ∈K∞ and βi ∈K L , such that for all initial values
∥∥x0

i

∥∥≤ ρi and
all inputs ‖ui‖∞

≤ ρu
i the inequality
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(
t,x0

i ,x j : j 6= i,ui
)∥∥≤max

{
βi
(∥∥x0

i
∥∥ , t
)
,max

j 6=i
γi j
(∥∥x j

∥∥
∞

)
,γi (‖ui‖∞

)
}

(6)

is satisfied ∀ t ∈ R+. γi j and γi are called (nonlinear) gains.

Note that, if ρi,ρ
u
i = ∞ then the i-th subsystem is (global) ISS (see [1]). LISS

and ISS respectively means that the norm of the trajectories of each subsystem is
bounded.

Furthermore we define the gain matrix Γ := (γi j), i, j = 1, . . . ,n, γii = 0, which
defines a map Γ : Rn

+ → Rn
+ by

Γ (s) :=
(

max
j

γ1 j(s j), . . . ,max
j

γn j(s j)
)T

, s ∈ Rn
+. (7)

Previous investigations of two interconnected systems established a small gain con-
dition (see [5] and [6]). In [1] an ISS small gain theorem for general networks was
proved, where the small gain condition is of the form

Γ (s) 6≥ s, ∀ s ∈ Rn
+\{0} . (8)

Notation 6≥ means that there is at least one component i ∈ {1, . . . ,n} such that
Γ (s)i < si. Here we note a local version of the small gain condition.

Definition 2. Γ satisfies the local small gain condition (LSGC) on [0,w∗], provided
that

Γ (w∗) < w∗ and Γ (s) 6≥ s, ∀s ∈ [0,w∗] , s 6= 0. (9)

Further informations of (9) can be found in [3]. We note the local version of the
small gain theorem:

Theorem 1. All subsystems of (4) satisfy (6). Suppose Γ satisfies LSGC. Then there
exist constants ρ, ρu > 0, β ∈K L and γ ∈K∞, such that the whole system (5) is
LISS.

The proof can be found in [3], Theorem 4.2.
An important tool to verify LISS and ISS respectively of a system of the form

(4) are Lyapunov functions. For systems of the form (3) one can find the definition
of Lyapunov functions for example in [6] and [3].

Definition 3. A smooth function Vi : RNi → R+ is called LISS Lyapunov function
of the i-th subsystem of system (4), if it satisfies the following two conditions:
There exist functions ψ1i, ψ2i ∈K∞ such that

ψ1i (‖xi‖)≤Vi(xi)≤ ψ2i (‖xi‖) , ∀ xi ∈ RNi (10)

and there exists χi j, χi ∈K∞, a positive function µi and constants ρi, ρu
i > 0 such

Vi(xi)≥max
{

max
j

χi j (Vj(x j)) ,χi (‖ui‖)
}
⇒ ∇Vi(xi) · fi(x,u)≤−µi (Vi(xi))(11)
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for all xi ∈ RNi ,
∥∥x0

i

∥∥ ≤ ρi, ui ∈Mi , ‖ui‖∞
≤ ρu

i , χii = 0. Functions χi j are called
LISS Lyapunov gains.

Note that, if ρi,ρ
u
i = ∞ then the LISS Lyapunov function of the i-th subsystem

becomes an ISS Lyapunov function of the i-th subsystem (see [4]).
Condition (10) implies that Vi is proper, positive definite and bounded from be-

low and above. The second condition (11) of a Lyapunov function is important and
means that if Vi(xi) ≥ max

{
max j χi j (Vj(x j)) ,χi (‖ui‖)

}
holds true, then the total

derivate of Vi along the trajectories is negative. This can be interpreted as the trajec-
tory is bounded from above. As long as Vi(xi)≥max

{
max j χi j (Vj(x j)) ,χi (‖ui‖)

}
is not true we cannot say anything about the behavior of the trajectory.

To check if a the whole system of the form (5) has the LISS or ISS property one
has to find a LISS Lyapunov function or ISS Lyapunov function respectively for
each subsystem of the form (4). If there exists a LISS or ISS Lyapunov function for
the subsystem then it has the LISS or ISS property respectively. Furthermore, if the
LISS Lyapunov gains or ISS Lyapunov gains satisfy the small gain condition, then
the whole system of the form (5) is LISS or ISS respectively (see [2], [3] or [4]).

With this mathematical theory we are able to derive conditions for which the sub-
systems and the whole system are stable. This will be presented in the next section.

4 Stability of the model

In this section we investigate all six subsystems of (1) to check if they have the
LISS or ISS property respectively. Therefor we will choose a Lyapunov function
candidate for each subsystem and check if conditions (10) and (11) are satisfied.

Remark 1. All subsystems of (1) are nonnegative, since for xi = 0 and no input the
term fi(xi) is zero, i = 1, . . . ,n.

We choose the Lyapunov function candidate Vi(xi) = xi for all six subsystems. Vi
satisfies condition (10).

For the investigation of the first subsystem we define

χ j1(x j) :=− ln
(

1− c21α2 + c31α3

(1− ε j1)α1
(1− exp(−x j))

)
≤ x1 = V1(x1),

j = 2,3, 1 > ε j1 > 0, which implies

c j1α j (1− exp(−x j))≤
c j1α j

c21α2 + c31α3
(1− ε j1)α1 (1− exp(−x1)) .

To guarantee that χ j1 is proper we claim

c21α2 + c31α3 < α1(1− ε j1) < α1. (12)

With this considerations it follows
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∇V1(x1(t))( f1(x1(t), . . . ,x6(t),d(t))
= c21α2(1− exp(−x2))+ c31α3(1− exp(−x3))−α1(1− exp(−x1))

≤
(

(1− ε21)α1c21α2

c21α2 + c31α3
+

(1− ε31)α1c31α3

c21α2 + c31α3
−α1

)
(1− exp(−x1))

≤ −ε1α1(1− exp(−x1)) =−µ1(V1(x1(t)))

where ε1 := min{ε21,ε31} and µ1(r) := ε1α1 (1− exp(−r)) is a positive definite
function.

For simplication one can choose ε j1, j = 2,3 close to 0. The reason of the
introduction of the constant value ε j1 is to guarantee that µ1 is positive definite.
V1 satisfies condition (11) and is the ISS Lyapunov function of the first subsys-
tem from which we know that the first subsystem has the ISS property for all
x j ∈ R+, j = 1,2,3, if condition (12) holds.

For subsystems two to five we do similar calculations and get the gains

χ j2(x j) :=− ln
(

1− c42α4 + c52α5

(1− ε j2)α2
(1− exp(−x j))

)
, 1 > ε j2 > 0, j = 4,5,

χ j3(x j) :=− ln
(

1− c43α4 + c53α5

(1− ε j3)α3
(1− exp(−x j))

)
, 1 > ε j3 > 0, j = 4,5,

χ6 j(x6) :=− ln
(

1−
c6 jα6

(1− ε6 j)α j
(1− exp(−x6))

)
, 1 > ε6 j > 0, j = 4,5

and conditions

α2 > c42α4 + c52α5, α3 > c43α4 + c53α5, α4 > c64α6, α5 > c65α6 (13)

for which the subsystems two to five have the ISS property.
For the sixth subsystem from

χ6 (d(t)) := − ln
(

1− d(t)(‖d‖
∞

+ c16α1)
‖d‖

∞
(1− εd6)α6

)
≤ x6 = V6(x6), (14)

χ16(x1) := − ln
(

1− ‖d‖∞
+ c16α1

(1− ε16)α6
(1− exp(−x1))

)
≤ x6 = V6(x6),

with 0 < ε16,εd6 < 1 we get

∇V6(x6(t)) f6(x1(t), . . . ,x6(t),d(t))
= d(t)−α6 (1− exp(−x6(t)))+ c16α1 (1− exp(−x1(t)))
≤ −ε6α6 (1− exp(−x6(t))) = µ6(V6(x6(t))),

where ε6 := min{ε16,εd6} and µ6(r) := ε6α6 (1− exp(−r)) is positive definite, be-
cause to guarantee that χ6 and χ16 are proper we claim

α6 > ‖d‖
∞

+ c16α1. (15)
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Function χ6 as defined in (14) is ∈K , but we can find a continuation of χ6 such
that the composed function is K∞.

Hence V6 satisfies condition (11) and we know that subsystem six has the LISS
property for all x0

6 ∈ R+ and ‖d‖
∞

< α6− c16α1 =: ρu.
The gain matrix is of the form

Γ =


0 0 0 0 0 χ16

χ21 0 0 0 0 0
χ31 0 0 0 0 0
0 χ42 χ43 0 0 0
0 χ52 χ53 0 0 0
0 0 0 χ64 χ65 0

 .

With exp(−r) < 1, r > 0 ⇔ (1−a)exp(−r) < (1−a), 0 < a < 1 ⇔ exp(−r) <
1−a+aexp(−r) ⇔ − ln(1−a+aexp(−r)) < r it follows

χ16 ◦χ64 ◦χ42 ◦χ21(r)

= − ln
(

1− ‖d‖∞
+ c16α1

(1− ε16)α6

c64α6

(1− ε64)α4

c42α4 + c52α5

(1− ε42)α2

c21α2 + c31α3

(1− ε21)α1
(1− exp(−r))

)
< r, r > 0.

By similar calculations is holds

χ16 ◦χ64 ◦χ42 ◦χ21(r) < r, χ16 ◦χ64 ◦χ43 ◦χ31(r) < r,

χ16 ◦χ65 ◦χ52 ◦χ21(r) < r, χ16 ◦χ65 ◦χ53 ◦χ31(r) < r,
(16)

for r > 0. (16) is equivalent to the compliance of the small gain condition, if condi-
tions (12), (13) and (15) are satisfied.

We conclude that all subsystems are LISS or ISS respectively and we can apply
Theorem 1 such that the whole system is LISS for all x0 ∈ R6

+ and ‖d‖
∞

< ρu with
additional conditions (12), (13) and (15).

In the next section we make simulations to illustrate the derived results of this
section.

5 Simulation results

To demonstrate the results of the previous section, we simulate all subsystems with
Matlab.

At first we will choose values for the parameters c ji:

c16 =
1

10000
, c21 = 4, c31 = 3, c42 = 4c43 = 9, c52 = 6, c53 = 2, c64 = 8, c65 = 4.

Consider constant orders d ≡ 20. Then conditions (12), (13) and (15) become
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Fig. 2 Number of orders, if stability condi-
tions are satisfied

Fig. 3 Number of orders, if stability condi-
tions are not satisfied

α1 > 4α2 +3α3, α2 > 4α4 +6α5, α3 > 9α4 +2α5,

α4 > 8α6, α5 > 4α6, α6 > 20+0.0001α1.

By solving this system of linear inequalities we get the condition

α := (α1,α2,α3,α4,α5,α6)
T > (9731.55, 1174.5, 1677.86, 167.79, 83.9, 20.98)T

With the choice α = (9750, 1180, 1680, 169, 85, 21)T and x0 = (1,1,1,1,1,1)T

the simulation results are presented in Figure 2, where the number of orders of each
subsystem for time t are displayed. We can see, that all subsystems are bounded.

Now we choose the maximum production rates only a bit smaller:

α = (9730, 1174, 1677, 167, 83, 20.9)T

The simulation results are displayed in Figure 3. We can see that the trajectories of
the subsystems one to three are bounded, but the trajectories of the subsystems four
to six are unbounded, which means that the whole system is not stable.

Fig. 4 Simulation results for x1 to x5 with
d(t) = 20 · (sin(t)+1)

Fig. 5 Simulation results for x6 with d(t) =
20 · (sin(t)+1)
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By further simulations of the system we discover that for other inputs where
‖d‖

∞
< ρu is not satisfied, the system is also stable.

We consider all values c ji as before, choose the maximum production rates α =
(9750, 1180, 1680, 169, 85, 21)T such that conditions (12) and (13) are satisfied
and replace d by d(t) = 20 · (sin(t)+1). So it is ‖d‖

∞
= 40 > ρu, but by simulation

results, which are presented in Figures 4 and 5, all subsystems and therefor the
whole system are stable.

By mathematical theory used in this paper it is not possible to cover all inputs
for which the system is stable, in particular oscillating inputs. This is an actual
mathematical problem to find the domain of stability as large as possible.

6 Conclusions and outline

In this paper we have described a model for networks of autonomous production
plants. This model was investigated on stability. In particular necessary condition
for its stable behavior were provided. This paper illustrates a general approach for
modelling and analysis of autonomous logistic systems.

For validation of the provided methods a comparison of the obtained results with
simulations provided by discrete event simulation is of interest and is planned for
the future research.
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