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Abstract: To cope with increasing internal and external dynamics of production networks, a decentralized
and flexible autonomous control approach seems to be promising. This paper presents a dynamic model of
a production network with geographically dispersed facilities and fixed transport schedules. It investigates
the influence of local autonomous control methods on integrated production and transport processes and
shows that the application of autonomous control may improve the handling of internal and external

dynamics.
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1. INTRODUCTION

Manufacturing companies are more and more challenged
by increasing market dynamics: During the recent years,
customers increasingly demand highly customized
products, stipulated delivery times are decreasing and the
adherence to delivery dates becomes critical.
Manufacturing enterprises have to adapt to these changes
rapidly. To sustain competiveness companies concentrate
more on their core competences on one hand. On the
other hand they have to establish close cooperation in
order to fulfil the whole demand of their customers.
Different cooperation concepts, like virtual enterprises
(Martinez et al. 2001, Camarinha-Matos 2003) or
production networks (Wiendahl et al. 2002) have been
developed to enable companies to react promptly to
dynamic changes. Production networks focus on
integrated planning of geographical dispersed and
company spanning processes as well as the planning of
usage of common resources. In a network of geographic
dispersed production plants, additional tasks and
challenges for production planning and control (PPC)
arise, e.g. the assignment of orders to plants. Under highly
dynamic and complex conditions current PPC methods
cannot cope with disturbances or unforeseen events in an
appropriate manner (Kim et al. 2004). A promising
approach to this problem is the introduction of
autonomous control strategies. Autonomous control
enables decentralized coordination and decision making
of intelligent logistical objects within a logistic system.
Implementation of autonomous control may increase the
robustness of a logistic system against external and
internal disturbances by influencing the behaviour of the
system in a positive manner. Furthermore, it has been
shown that autonomous control methods can help to
improve the logistics performance of production systems
(Scholz-Reiter et al. 2005).

Due to the high level of complexity of a production
network the implementation of autonomous control
strategies seems to be an appropriate approach to
increase the flexibility and robustness. This paper
investigates a production network scenario with varying
production control and transport strategies and shows
that the application of autonomous control strategies
improves the handling of external and internal
disturbances.

2. AUTONOMOUS CONTROL IN
MANUFACTURING

The collaborative research centre 637 “Autonomous
cooperating Logistic Processes: A Paradigm Shift and its
Limitations”, which is founded by German research
foundation, gives the following wide definition of
autonomous control: “Autonomous control describes
processes of decentralized decision-making in
heterarchical structures. It presumes interacting elements
in non-deterministic systems, which possess the
capability and possibility to render decisions
independently. The objective of autonomous control is
the achievement of increased robustness and positive
emergence of the total system due to distributed and
flexible coping with dynamics and complexity.” (Windt et
al. 2007). Thus, the idea of autonomous cooperating
logistic processes is to generate decentralized planning
and control methods, which allow intelligent logistic
objects to route themselves through a logistical network
according to their own objectives (Windt et al. 2005). In
this respect, intelligent logistical objects are physical
objects (e.g. machines, parts, etc.), as well as immaterial
objects like production orders. By interacting with other
intelligent objects, they are able to gather information
about the current local system states and to use this
information for decentralized decision making (Windt
2006).



First approaches of autonomous control of production
logistics have been developed: These models prove that
autonomous control methods can improve the ability of a
logistic system to handle dynamics as well as the logistic
performance of the system (Armbruster et al. 2006;
Scholz-Reiter et al. 2007a).

As far as production networks are concerned, a first
autonomous control approach was formulated: This
approach investigates the material flow between two
plants using autonomous control methods within a
production network (Scholz-Reiter et al. 2007b).

3. PRODUCTION NETWORKS

Production networks are cross-company cooperation
between geographically dispersed facilities, which aim on
the mutual use of common resources and integrated
planning value added processes (Wiendahl et al. 2002).

According to this definition, new task and challenges
appear in production networks: enterprises within a
production network are forced to generate concepts for
tasks like the choice of new partners, design of the
network, product development and production planning
and control (Sydow 2006). PPC in production networks
has to deal with additional tasks as well: Due to the high
flexibility of these networks complex interdependencies
between production processes in different plants can
occur, e.g. allocation problems for parts, which can be
process in different plants or planning of transports and
transport capacity (Sauer 2006; Alvarez 2007). Thus, a
shift from pure core tasks of PPC to an integrated
planning of synchronisation within the network, including
planning of sales, inventory, and resources is necessary
(Wiendahl et al. 2002).

Uncertainty of lead times and nervousness of schedules
are already issues for single plants, but these issues are
even more important for production networks. Thus, new
approaches dealing with the complexity and dynamic of
production networks are necessary (Erengiinc et al. 1999;
Nof et al. 2006). Especially integrated solutions, which
cover local as well as production plant spanning logistic
activities, seem to be promising for production networks.

This paper presents a simulation model of a production
network to analyse the behaviour and dynamics of
multiple coupled plants. It investigates both, the effect of
autonomous control strategies on the dynamics of
production networks and the behaviour of autonomously
controlled production networks with respect to external
and internal dynamics.

4. PRODUCTION NETWORK SCENARIO

A production network with jxk different production
plants is considered, which is partitioned in j stages with
k production plants per stage. Every plant in this network
consists of a shop floor with m production stages and n
production lines of buffers and machines (Fig. 1), which

are able to process a various set of jobs. The plants are
connected via transport systems (Fig 1). After being
processed in a plant the semi-finished products are
buffered, until an order for transportation is generated
and a truck carries them to the next plant for further
processing. The transport orders are generated in fix time
intervals, i.e. the transport interval (TI).
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Fig. 1. Production network with jxk plants

To analyse this scenario a discrete event model has been
developed. In order to deal with the complexity the
considered model is reduced to six production plants,
which are collocated in four stages. Each plant comprises
a shop floor with 3x3 machines. On the first and on the
last stage of the production network, there is only one
plant. On stages two and three there are two parallel
plants, which are able to perform the same operations.
The plants are even distributed as far as the geographical
distance is concerned: between a plant and its successors
the distance is assumed to be 140 km (Table 1).

Table 1: distance matrix [km]

To plant

Plant Py Py Py Py, P3, Py
Py - 140 140
P, - 140 140
Py - 140 140
Py : 140
Ps, - 140
Py -

The velocity of a truck is assumed to be 70 km/h. Thus,
transports take 2 h. There are no capacity limitations
among the trucks.

Jobs running through this production network have to
start in the plant at stage one and have to pass all other
stages once. There are three types of jobs (Type A, Type B
and Type C) with different processing times at each
production line on the shop floor level. Table 2 shows the
different processing times for each product type on every
production line of every plant.



Table 2: Processing times of all job types and lines

Plant Pyi; Py Pa1; Pao, P31, Py

Type \ Line 1 2 3 1 2 3
Type A 2:00 | 3:00 | 2:30 | 4:00 | 5:00 | 4:30
Type B 2:30 | 2:00 | 3:00 | 4:30 | 4:00 | 5:00
Type C 3:00 | 2:30 | 2:00 | 5:00 | 4:30 | 4:00

New jobs arrive at plant P1; with a variable arrival rate.
To model demand fluctuations this arrival rate of new
jobs is set as a sine function (1). The simulation time is 30
days. The arrival rates of each job type have a phase shift
@ of 1/3 respectively 2/3 of a period.

At) = 4, + @ - sin(t + @) (1)

The mean arrival rate is set to An=0.4 1/h. Due to this
arrival rate in average every 2:24 h a new part of each
type enters the production network. The intensity of
these seasonal fluctuations is determined by the
amplitude o of the sine function, which can be varied in
several simulation runs (between 0.15-0.24 1/h). A
similar approach for modelling a shop floor, i.e. a single
plant, can be found in (Scholz-Reiter et al. 2005).

5. PLANNING AND CONTROL METHODS

For benchmarking one conventional planning method and
two different autonomous control strategies were
implemented: a centralized planning method (CP), the
queue length estimator (QLE) and a pheromone based
(PHE) method.

CP assigns the jobs on the shop floor level according to
the machines with the shortest processing times for this
type of job. This assignment is predetermined. Thus this
type of planning can be seen as a conventional planning
method.

QLE is based on the comparison of buffer levels of each
production line. Intelligent parts using this method have
the objective to reduce their throughput time (TPT). To
meet this objective the parts may choose a line for
processing. Parts finished at a certain machine are able to
compare the buffer levels of the next production stage.
They choose the line with minimal workload. For a
further description of QLE see (Scholz-Reiter et al. 2005).

The second autonomous control strategy is the
pheromone based approach PHE. It is based on the idea to
imitate the process, how ants mark possible routes to
food sources. Ants leave pheromone marks between the
nest and food sources. Other ants can detect those
pheromones and will follow the tail with the highest
concentration of pheromone (Parunak 1997). To transfer
this process to the production scenario parts leave
information about their TPT at a machine. Parts entering
a stage of the shop floor compare this artificial
pheromone concentration by computing average TPT
data of the last five orders and choose a line. Thus the
pheromone concentration depends on queue times and

processing times of previous jobs. To model the
evaporation process of natural pheromones a moving
average of TPT is used. Similar approaches for modelling
pheromone based autonomous control methods can be
found in (Peeters et al. 2001; Armbruster et al. 2006).

Parts, which finished processing in the Plants P11 P21 and
P22, have two possible successor plants for further
processing (Table 1). Outgoing semi-finished products
are sent to successor plants in an alternating order.

6. SIMULATION AND RESULTS

Several simulation runs have been set up in order to
analyse the impact of external and internal disturbances
on this production network. External changes are
implemented by means of varying the amplitude a.
System internal changes are modelled by variations of TI.
The benchmarks of the logistic performance are based on
the comparison of total TPT. In this context, total TPT
represents the time, which is spent by the respective
product to pass the whole production network starting at
plant P11 and ending at plant P4;. Mean total TPT is used
in section 6.1 to compare the impact of internal and
external changes for all three control methods. The
Section 6.2 focuses on analysis of the dynamics, which is
cause by the three control methods. Therefore the
standard deviation of total TPT and TPT of single plants is
used.

6.1 Impact of external and internal disturbances

Fig. 2 shows the mean total TPT of the production
network for CP. It is plotted against the TI. Each dot
represents a simulation run with an associated transport
interval and an amplitude a= 0.15, 0.18, 0.21 and 0.24
respectively.
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Fig. 2. Mean TPT against TI for CP

Fig. 2 shows an increasing trend of mean total TPT for
larger TIs. The TI rises in equidistant steps of 0:30 hours
in every simulation run. It can be noticed, that the
increase of mean TPT is bigger than the increase of TI. On
the other hand it can be observed, that the increase of
mean TPT is on average 2.68 h. This implies that
increasing TIs causes dynamic effects inside the network.
The bigger the TIs the more semi-finished products have



to be stored in the outgoing buffers of every plant and
trucks have to carry more parts to the next plant. This
causes a transitional overload to the successor plant. To
analyse this effect in depth, Fig. 3 exemplary shows the
TPT of product type A for the plant P2; for TI = 4 h and TI
=12 h with «a=0.21/h.
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Fig.3.CP: TPTfor TI=4hand TI=12h

According to Fig. 3 TPT for TI = 4 h is obviously smaller
than for TI = 12 h indicating a smaller workload in the
first case. This effect can be found at each plant.
Increasing TI leads to a rising total TPT for two reasons:
The first is intrinsically in TI: Due to the rising TI the TPT
has to rise as well. Secondly, an increasing TI leads to a
temporary overload of the successor plant and causes
higher TPT.

Additionally, Fig. 2 shows that the mean total TPT
increases stepwise with increasing values of a. In this
respect autonomous control strategies can perform
better: Fig. 4 presents the mean total TPT for QLE.
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Fig. 4. QLE method: mean throughput times against TI

The impact of varying a is significantly smaller than for
the preplanned scenario (Fig. 2). The maximum
difference between mean total TPT in Fig. 4 can be found
at TI = 32:30 h and o = 0.15 1/h respectively a = 0.24
1/h: 3:25 h or 1.72 %. In the CP scenario (Fig. 2) this
difference is 33:13 h, a deviation of 20.8 % respectively.
Notice that the curves in Fig. 4 are almost overlapping in
sharp contrast to the curves in Fig. 2.

Furthermore Fig. 4 shows a quasi-linear trend for mean
TPT. As already mentioned: Mean total TPT is depending
on TI This effect occurs in case of QLE as well (Fig. 4):

high values of Tl lead to a temporary overload as well. But
when comparing QLE to CP, it can be noticed that mean
total TPT in Fig. 4 is on average 20:08h (14.84%) lower
for each amplitude a. Thus, it can be concluded that the
autonomous control strategy QLE can handle temporary
overload situations far better than conventional control
methods.

The second autonomous control strategy, i.e. PHE,
performs slightly different. Compared to CP (Fig. 2) the
absolute values of mean total TPT are also smaller for all
amplitudes up to a TI of 35 h (Fig. 5). Compared to QLE
(Fig. 4) the mean TPT of PHE is slightly bigger. When
analysing the effects of market dynamics, one can see that
the influence of increasing the amplitude of the arrival
rate a is smaller than in conventional planed case: Here
the maximum span between a = 0.15 and o = 0.24 is
30:38h, a difference of 15.21 %.
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Fig. 5. PHE method: mean TPT against TI

For small values of TI the behaviour of PHE can fairly be
compared to the behaviour of QLE. For bigger values of T,
say TI > 19 h, a turning point can be observed (Fig. 4 and
Fig. 5). Starting from this point, the PHE method
influences the dynamic behaviour of the global system in
significantly different than the QLE method. In contrast to
the QLE method (Fig. 4) the different curves for the PHE
method (Fig. 5) start to diverge for TIs bigger than 19 h.
This effect can be explained as follows: For TI > 19 h the
impact of varying the amplitude o becomes more
important for the PHE. As already stated, increasing TI
leads to temporary overload situations. The PHE method
can not cope with the amount of parts entering the plant
for TI>19 h as good as below this value.

6.2 Impact of control methods

To sum up the results of the simulations so far: An
autonomously controlled production network seem to be
able to react more robust on both, market fluctuations
(changes of the arrival rate) and internal disturbances
(i.e. variations of TI) than conventional and centralised
planning methods. The standard deviation (STD) of TPT
is an instrument to measure the robustness of logistic
systems, i.e. the dynamic behaviour regarding internal or
external changes. Fig. 6 presents the standard deviation of



mean total TPT for the three methods and an amplitude o
= 0.18 1/h. The difference in STD of the CP and QLE
method is 58.1 %, respectively 36.96 % compared the
PHE method.
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Fig. 6. STD against TI for all methods (a = 0.18 1/h)

Furthermore, Fig. 6 shows an increasing trend of STD for
all three methods. Up to a TI of 13:30 h the autonomous
control methods have a comparable STD. Beyond this
point the STD of PHE method increases faster then the
one of QLE. At a TI of 19 h the curve for STD of PHE starts
to alternate, confirming that the performance changes
suddenly at this point. In comparison to the curves of the
other methods the QLE methods shows also an increasing
trend, but no alternating behaviour for a rising TI.

The results presented above show that autonomous
control methods may cause sudden changes of total
system behaviour under certain conditions introducing
an intrinsic dynamic behaviour or even chaos. Especially
the results concerning the PHE method show that
dynamic factors, i.e. increasing TI, may change the
behaviour of the global system rapidly hence make it
unpredictable. On the other hand, autonomous control
methods may improve the performance of the global
system and the robustness of a production network
regarding external and internal changes. To understand
these effects a more detailed view on the single plants of
the production network is necessary.

Fig. 7 and Fig. 8 present TPT for product type A of each
single plant (P21; P22;P31;P32) in a simulation run with TI =
9 hand a = 0.15 1/h for the CP and the QLE method.

plant

Fig. 7. CP: TPT for parallel plants against simulation time

When incorporating CP all plants show phases with
temporary overloads (Fig. 7). In these overload situations
the TPT rises constantly, until the inventory can be
processed. The point in time when a certain plant reaches
its maximum TPT differs from plant to plant. For example
plant P,, reaches its maximum of TPT = 44:30 h at day
13. On the other hand plant P3; has its maximum value of
TPT (31:30h) at day 11. Fig. 7 reveals that every CP plant
reacts in a different way. Additionally, the absolute values
of maximum TPT differ: The difference between plant P,
and plant P3; is 12:30 h or 28.4 %. There is no
harmonisation between parallel plants when CP is
implemented.

Fig. 8 presents the TPT for the QLE method. In contrast to
Fig. 7 the curves in Fig. 8 are significantly smoother. The
distribution peaks of TPT are spread over the whole
simulation time and maximum peaks are much lower
than for the CP method (Fig. 7). The difference between
highest and lowest maximum value of a plant is 1:28 h,
which is a difference of only 7.5 %. Curves in Fig. 8 are
more balanced than the curves in Fig. 7: The autonomous
control method QLE can harmonise the behaviour of
parallel plants.

Fig. 8. QLE method: TPT for parallel plant against
simulation time

Table 3 summarizes these results. It presents the mean
TPT and the STD for the three methods. This data was
recorded in a simulation run with a = 0.15 1/h and TI =
9h.

Table 3: Performance for different control methods

CP [h] QLE [h] PHE [h]
Plant | Mean | STD | Mean | STD | Mean | STD
Py 8:23 3:18 6:52 0:53 8:39 0:55
Py 15:08 | 3:01 | 13:56 | 2:02 | 14:20 | 2:18
Py 22:43 | 7:32 | 14:51 | 2:11 | 14:54 | 2:27
Ps3; 16:31 | 4:40 | 13:52 | 1:45 | 14:43 | 2:10
Ps, 17:52 | 4:52 | 13:51 | 1:48 | 14:33 | 1:54
Py 8:48 2:12 9:31 2:34 | 10:22 | 2:43

Table 3 shows that the standard deviation of TPT of both
autonomous control methods is averagely lower than of
conventionally planned method. Thus, successor plants



get smoothed and uniform inputs, which leads to a
uniform performance of this plant. In conventionally
planned scenarios the mean TPT values vary within the
plants, thereby affecting the successor plants.

7. SUMMARY AND OUTLOOK

Autonomous control methods can lead to an
improvement of the logistic performance of production
networks and enable the system to adapt to external and
internal dynamics. It was shown that autonomous control
can smooth out the output of single plants and harmonize
the behaviour of parallel plants. This encourages further
research in this area. Especially the effects of system size,
pull-strategies for transport and the introduction of
multimodal transport are promising topics for future
analysis. Furthermore, the design of new autonomous
control strategies, which lead to a desired behaviour of a
given logistic system opens up new areas of research
concerning the performance and the synchronisation of
production networks.
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