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Abstract— In this paper we consider several interconnected
ISS systems supplied with ISS Lyapunov functions defined in
the dissipative form. Our aim is to construct an ISS Lyapunov
function for the interconnection. We provide a condition of a
small gain type under which this construction is possible and
describe a method of an explicit construction of such an ISS
Lyapunov function.

I. INTRODUCTION
Interconnections of nonlinear systems appear in many app-

lications such as logistic problems, biologic systems, power
networks and others. Stability analysis of these systems is
an important issue for their performance and control. Such
interconnections can be studied in different frameworks such
as passivity, dissipativity [21], [7], [15], [17], input-to-state
stability (ISS) [18] and others. Since we consider systems
with inputs we will use the notion of ISS for our purposes.
There are several equivalent ways to define this property.
Originally [18] it was defined in terms of a bound for
the trajectories of a system, where the bound depends on
the initial condition and the input function. This property
can be equivalently stated in terms of an ISS-Lyapunov
function. The latter formulation can again be defined in two
essentially equivalent ways: in the so-called implication form
and with the help of a dissipation inequality and a supply
rate, see [19] for details and discussions of the different ISS
formulations. In this paper we concentrate on the dissipative
ISS formulation it is our aim to derive a small gain result
for general interconnected systems in this framework. This
complements recent results in [4], [6], where small gain
results have been achieved in the trajectory formulation
as well as for the implication form of the ISS Lyapunov
formulation.
Considering the ISS property of the interconnections of

two ISS systems, the pioneering papers used the definition
in terms of trajectories [13] and Lyapunov functions with
the definition in the implication form [12]. These results
were recently extended to the case of interconnections of
n systems, see [4], [6], [14], [5]. A small gain theorem
for two systems with ISS-Lyapunov functions satisfying

S. Dashkovskiy is supported by the German Research Foundation (DFG)
as part of the Collaborative Research Center 637 “Autonomous Coopera-
ting Logistic Processes”. H.Ito is supported in part by Grant-in-Aid for
Scientific Research of JSPS under grant 19560446. F. Wirth is supported
by Volkswagen-Stiftung under grant I/82683-684.
S. Dashkovskiy is with the Department of Mathematics

and Computer Science, University of Bremen, Germany
dsn@math.uni-bremen.de
H. Ito is with the Department of Systems Design and Informatics, Kyushu

Institute of Technology, Japan hiroshi@ces.kyutech.ac.jp
F. Wirth is with the Institute of Mathematics, University of Würzburg,

Germany wirth@mathematik.uni-wuerzburg.de

the dissipative inequality was obtained in [8]. It is worth
noting that this definition has the advantage that it unifies
the definition of ISS and integral ISS (iISS) systems. The
latter set of systems is larger and contains the ISS systems
as a subset. The small gain theorem for two iISS systems
was proved in [9], [11]. Moreover the construction of the
corresponding Lyapunov function is given in a smooth way
in contrast to the constructions given in [12] and [6], [5].
In this note, we consider n ISS systems with given ISS-

Lyapunov functions defined by dissipative inequalities. It is
of interest 1) to obtain a corresponding small gain theorem
in the dissipation formulation and 2) to construct an ISS-
Lyapunov function. Here we will make an essential step
in this direction. Namely, for general ISS systems, this
paper achieves 1) by constructing Lipschitz continuous ISS-
Lyapunov function for the interconnection of n systems. A
smooth construction is shown under stronger assumptions.
For a special class of dissipation inequalities, the construc-
tion is given under essentially weaker assumptions.
The paper is organized as follows. The ensuing section

introduces the necessary notations and gives a precise state-
ment of the problem. Section III explains the main idea of our
approach in the simpler case of linear supply rate functions.
In this case the result follows from an application of the
Perron-Frobenius theorem. The idea for the proof of the main
results follows a similar pattern. Their discussion are given
in Section IV for the nonlinear case. We draw conclusions
and outline directions of future work in Section V.

II. PROBLEM STATEMENT

We use the following notation. (· )T denotes the transposi-
tion of a vector. For any vectors a, b ∈ R

n the relation a ≥ b
is defined by ai ≥ bi for all i = 1, . . . , n. The relations
>,≤, < for vectors are defined in the same manner. That is,
we are using the partial order on R

n induced by the positive
orthant R

n
+. The negation of a ≥ b is denoted by a �≥ b

and this means that there exists an i ∈ {1, . . . , n} such that
ai < bi. By a · b we denote the scalar product of two vectors
and by A◦B we denote the composition of operators A and
B. To use standard formulations of input-to-state stability,
we recall, that a function α is said to be of class K if
α is continuous, α(0) = 0 and α is strictly increasing, if
in addition it is unbounded, we say it is of class K∞ . A
continuous function α : [0,∞) → [0,∞) is called positive
definite if α(x) = 0 if and only if x = 0.
Consider a finite set of interconnected systems with state

x =
(
xT

1 , . . . , xT
n

)T , where xi ∈ R
Ni , i = 1, . . . , n and

N :=
∑

Ni. For i = 1, . . . , n the dynamics of the i-th
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subsystem is given by

Σi : ẋi = fi(x1, . . . , xn, u), (1)

where x ∈ R
N , u ∈ R

M , fi : R
N+M → R

Ni . For
each i we assume unique existence of solutions and forward
completeness of Σi in the following sense. If we interpret the
variables xj , j �= i, and u as unrestricted inputs, then system
(1) is assumed to have a unique solution defined on [0,∞)
for any given initial condition xi(0) ∈ R

Ni and any L∞-
inputs xj : [0,∞) → R

Nj , j �= i, and u : [0,∞) → R
M .

This can be guaranteed for instance by suitable Lipschitz
conditions on the fi. It will be no restriction to assume that
all systems have the same (augmented) external input u. This
interconnection can be depicted as a network or a graph, see
Figure 1.

Fig. 1. An interconnection Σ

We write the interconnection of the subsystems (1) as

Σ : ẋ = f(x, u), f : R
N+M → R

N (2)

where x = (xT
1 , . . . , xT

n )T is the state of the overall system
and f = (fT

1 , . . . , fT
n )T is defined correspondingly.

We assume that each of the subsystems in (1) satisfies an
ISS condition in the dissipative formulation, i.e., there are
Lyapunov functions Vi : R

Ni → R+ and functions αi, γiu ∈
K∞ and γij ∈ K∞ ∪ {0}, i, j = 1, . . . , n such that

V̇i(xi) ≤ −αi(Vi(xi)) +
∑
i �=j

γij(V (xj)) + γiu(‖u‖) (3)

for all xi ∈ R
Ni , i = 1, . . . , n and all u ∈ R

M .
The right hand side in (3) consisting of the functions

αi, γiu and γij is called the supply rate of the dissipation
inequality. In the sequel we will always assume that γii ≡ 0.
We will also assume that the Lyapunov functions Vi as well
as the functions αi are continuously differentiable, which
poses no real restriction.
As in one of our constructions we end up with a locally

Lipschitz continuous Lyapunov function for the whole sy-
stem (2), we note that in case that the Vi are only locally

Lipschitz continuous, then it is sufficient to let (3) hold
almost everywhere to characterize input-to-state stability.
Note that if in (3) we only require that αi is an element

of the larger set of positive definite functions, then the i-
th system is integral input-to-state stable (iISS) [20]. The
set of iISS systems is essentially larger than the set of ISS
systems. In particular in the iISS framework results of a small
gain type and a corresponding Lyapunov construction were
developed in [9], [11].
The aim of this paper is to find conditions on the data

of the dissipation formulation that guarantee ISS of the
interconnected system (2) and to provide a construction of an
ISS-Lyapunov function for the interconnection under these
conditions. We will also discuss how iISS-results may be
obtained in this way for a special class of systems.

III. THE LINEAR CASE

We begin by studying the linear case, because here the
conditions are much easier to analyze and it gives an idea
how the general procedure should work, even though for
practical applications the linearity assumption is very often
much too restrictive.
We assume that the ISS-Lyapunov formulation is given

in a linear form. Here linear means, that the K∞ -functions
αi, γiu ∈ K∞ and γij ∈ K∞ ∪{0} i, j = 1, . . . , n are linear.
Thus let αi > 0, γij ∈ [0,∞) be positive resp. nonnegative
numbers which represent the corresponding linear functions.
Define the matrices

A := diag (α1, . . . , αn) , Γ := (γij)i,j=1,...,n (4)

and the vectors

V̇vec(x) :=
(
V̇1(x1) . . . V̇n(xn)

)T
, (5)

Vvec(x) :=
(
V1(x1) . . . Vn(xn)

)T
.

Then the inequalities (3) can be compactly written as

V̇vec(x) ≤ (−A + Γ)Vvec(x) + γu(‖u‖)
with the obvious definition of γu. In the previous equation
≤ is to be interpreted componentwise as defined in the
preliminaries.
We note that (−A + Γ) is a Metzler matrix, thus a

matrix for which Perron-Frobenius type results are available.
An overall Lyapunov function may be defined using the
following lemma

Lemma III.1 Consider the matrices A and Γ defined in (4).
There exists a vector μ ∈ R

n
+, μ > 0 such that

μT (−A + Γ) < 0 (6)

if and only if the following spectral radius condition holds

r(A−1Γ) < 1. (7)

Proof: Note that A = AT as it is of diagonal form
and A is invertible, because in (3) the functions αi ∈ K∞ ,
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i = 1, . . . , n. Define η := Aμ, so that μT = ηT A−1. Then
μT (−A + Γ) < 0 is equivalent to

0 > ηT A−1(−A + Γ) = ηT (−I + A−1Γ) .

If r(A−1Γ) < 1, then by the Perron-Frobenius theorem
there exists a vector η > 0 such that

ηT (A−1Γ) < ηT

or equivalently ηT (−I + A−1Γ) < 0, as desired.
Conversely, if r(A−1Γ) ≥ 1 then there exists a vector

z ≥ 0, z �= 0 such that

(A−1Γ − I)z ≥ z .

We now fix such a vector z. So for any η > 0 we have

ηT (A−1Γ − I)z ≥ ηT z ≥ 0

so that it cannot hold that ηT (−I + A−1Γ) < 0.
We now assume that r(A−1Γ) < 1 and choose a vector

μ ∈ R
n
+, μ > 0 such that (6) holds. Consider the following

candidate for an ISS-Lyapunov function

V (x) := μT Vvec(x) =
n∑

i=1

μiVi(xi). (8)

Then we have

V̇ (x) = μT V̇vec(x) ≤ μT (−A + Γ)Vvec(x) + μT γu(‖u‖)

and defining 0 > L := μT (−A + Γ) we obtain

V̇ (x) ≤ LVvec(x) + μT γu(‖u‖) ≤ −lV (x) + μT γu(‖u‖)

for a positive number defined by l := −max
i

Li

μi
. Note that if

Γ is irreducible, then μ > 0 may be chosen as an eigenvector
of (−A + Γ) corresponding to the largest eigenvalue and in
this case l is this largest eigenvalue.
Of course, the last equation is the desired dissipative

ISS condition and in (8) we have obtained a smooth ISS-
Lyapunov function for the interconnection. We have thus
proved the following result.

Proposition III.2 Consider a network of the form (1), (2)
where each of the subsystems satisfies an ISS condition of
the form (3) where all the functions occurring in the right
hand side are linear. If for the matrices A, Γ defined in (4)
we have

r(A−1Γ) < 1 ,

then the interconnected system (2) is ISS with a dissipative
ISS Lyapunov function given by (8).

In the next section we will see how this idea can be used in
the general nonlinear case.

IV. MAIN RESULTS
Unfortunately, there is no immediate extension of the

previous construction to the nonlinear case. For example
the matrices A and Γ contain nonlinear functions instead
of numbers and the notions of eigenvalue and spectral radius
are no longer available. The construction problem of an ISS-
Lyapunov function becomes essentially more difficult. Here
we will provide a nonsmooth construction for the nonlinear
case. In some applications smoothness of a Lyapunov func-
tion can be important in implementation. We will also show
a smooth construction for a special case.
We consider the interconnected system (2) and assume that

the subsystems (1) are ISS with the ISS-Lyapunov functions
Vi satisfying (3) where the supply rate functions can be
nonlinear.
First let us note that the condition (7) can be equivalently

formulated as r(ΓA−1) < 1 or written as

ΓA−1s �≥ s, ∀s ∈ R
n
+ \ {0}.

The last condition makes sense also for nonlinear operators
defined below.
The data we are working with is defined in (3). We assume

from now on that the matrix

Γ := (γij)i,j=1,..,n ∈ (K∞ ∪ {0})n×n

is irreducible and similarly to the linear case we define the
following map on R

n
+

Γ(s) =
( n∑

j=1

γ1j(sj), . . . ,
n∑

j=1

γnj(sj)
)T

, s ∈ R
n
+ (9)

and a diagonal operator acting on s ∈ R
n
+ by

A(s) :=
(
α1(s1) . . . αn(sn)

)T
. (10)

With this notation inequalities (3) can be written in a vector
form

V̇vec ≤ (−A + Γ)(Vvec(x)) + γu(||u||) (11)

with γu defined in the obvious way.
We now reformulate the small gain conditions that were

introduced in [4], [6], [16] to make them suitable for our
case. The nonrobust version of the small gain condition is
given by

Γ ◦ A−1(s) �≥ s , ∀s ∈ R
n
+ \ {0} . (12)

It has been shown, that this condition is not quite sufficient
to obtain the desired stability result. Thus the condition we
now want to impose is the robust small gain condition which
requires that for some D = diag (id + β1, . . . , id + βn),
βi ∈ K∞ we have

D ◦ Γ ◦ A−1(s) �≥ s , ∀s ∈ R
n
+ \ {0} . (13)

To compare this with the linear case, note that in the linear
case both (12) and (13) are equivalent to r(ΓA−1) < 1 which
is in turn equivalent to the condition r(A−1Γ) < 1. In this
sense this is a natural generalization of the linear small gain
condition.
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One of the central results of [6], [16], [5] is that in
the case that Γ is irreducible and (13) holds there exists
a continuously differentiable path σ : R+ → R

n
+ such that

σ(0) = 0, σ is strictly increasing and unbounded in every
component and so that

D ◦ Γ ◦ A−1(σ(τ)) < σ(τ) , ∀ τ > 0. (14)

The existence of such a path is central in one of the
constructions for a Lyapunov function we will present.
A further condition that will lead to another class of

Lyapunov functions is the assumption that there are boun-
ded positive definite functions ηi, i = 1, . . . , n, such that∫∞
0

ηi(τ)dτ = ∞ and so that for η = (η1, . . . , ηn)T we
have

η(s)T Γ ◦ A−1(s) < η(s)T s, ∀s ∈ R
n
+ \ {0}. (15)

Again a robust version of this condition is that there exists
a diagonal D as before such that

η(s)T D ◦ Γ ◦ A−1(s) < η(s)T s, ∀s ∈ R
n
+ \ {0} . (16)

As we will see, both these conditions allow for the construc-
tion of interesting Lyapunov functions.
In the linear case the statement r(A−1Γ) < 1 is equivalent

to (14) as well as to (16). The latter equivalence has been
shown in Lemma III.1. Interestingly, one equivalence is
obtained by studying right eigenvectors, while the other uses
left eigenvectors. We conjecture that (13) does not only imply
(14) but also (16). The proof of the known result that (13)
implies the existence of the path described in (14) uses the
Knaster-Kuratowski-Mazurkiewicz theorem. We suspect that
using complementary arguments (16) can be shown.

Theorem IV.1 Consider the interconnected systems (1) and
assume that each subsystem has a dissipative ISS-Lyapunov
function as in (3). Then
(i) If the weak small gain condition (15) is satisfied and if
for each i ∈ {1, . . . , n} and λi(τ) := ηi(αi(τ)), τ ∈ R+ we
have ∫ ∞

0

λi(τ) dτ = ∞ , (17)

then the interconnection (2) is iISS with an iISS-Lyapunov
function defined by

V (x) :=
n∑

i=1

∫ Vi(xi)

0

λi(τ)dτ . (18)

(ii) If the robust small gain condition (16) is satisfied
and (17) holds then the interconnection (2) is ISS with a
Lyapunov function V (x) again defined by (18).

Proof: First note that (17) guarantees that the function
V defined in (18) is a proper function.
(i) Consider the derivative of V along the trajectories of the
system (2). Defining λ(Vvec) := (λ1(V1), . . . , λn(Vn)) and
using (11) we obtain

dV

dt
= λ(Vvec)T V̇vec

< λ(Vvec)T (−A(Vvec) + Γ(Vvec) + γu(||u||))
(19)

From assumption (15) we have for all x �= 0

η(A(Vvec))T Γ ◦ A−1 ◦ A(Vvec) < η(A(Vvec))T A(Vvec)

and thus

−λ(Vvec)T A(Vvec) + λ(Vvec)T Γ(Vvec) < 0.

This term can be bounded from above by −α(V ) for some
positive definite function α. Further recall that the functions
ηi are assumed to be bounded. Hence λi, i = 1, . . . , n is also
bounded and there exists some positive constantM such that
γu(||u||) · λ(Vvec) < Mγ(||u||) for some γ ∈ K∞ . From
(19) it follows that

dV (x)
dt

≤ −α(V (x)) + γ(||u||) (20)

and the iISS property of the interconnection follows.
(ii) In case the stronger assumption (16) holds, then in the
argument above α can be taken of class K∞ . Thus in case
of (16) the overall system is ISS.

Remark IV.2 This theorem reduces the problem of a con-
struction of a Lyapunov function to a geometrical problem of
the construction of a continuous curve in R

n
+ parameterized

by ηi and satisfying (15) or respectively (16) condition.
However the existence and construction of such auxiliary
functions ηi may be a nontrivial problem. We hope that the
small gain condition

D ◦ Γ ◦ A−1(s) �≥ s , ∀s ∈ R
n
+ \ {0}

implies the existence. An explicit construction of η is a
matter of our future research. A similar method was used
in [3] and [6], where a construction of a corresponding
parameterized curve was performed on the base of the
corresponding small gain condition.

The function V in (18) is smooth which is in general
a desirable property. In the following we provide a nons-
mooth construction of an ISS-Lyapunov function for the
interconnection (2) where a corresponding auxiliary function
can be explicitly constructed.

Theorem IV.3 Let the systems given in (1) be ISS in the
sense of (3) and assume that their supply rate functions are
such that the operators A and Γ defined above satisfy the
small gain condition (13). Assume further that for σ1, . . . , σn

given in (14) there are constants 0 < c < C such that

0 < c <
d

dτ
σ−1

i ◦ αi(τ) < C , for all τ > 0 .

Then the interconnection (2) is ISS. An ISS-Lyapunov func-
tion is given by

V (x) := max
i=1,...,n

σ−1
i ◦ αi(Vi(xi)) . (21)

Proof: Let us assume for the moment that for a given
x �= 0 we have that the maximum in (21) is uniquely attained
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in the first component i = 1, i.e., V (x) = σ−1
1 ◦α1(V1(x1)).

Denote by Γ1 the first row of Γ. We obtain

V̇ (x) =
d

dt
σ−1

1 ◦α1(V1(x1)) =
(
σ−1

1 ◦ α1

)′
(V1(x1))V̇1(x1)

and

V̇1(x1) ≤ [−α1(V1(x1)) +Γ1(Vvec(x)) + γ1u(‖u‖)]
We now denote zi = αi(Vi(xi)), z := (z1, . . . , zn)T and
obtain the following estimate

−α1(V1(x1)) + Γ1(Vvec(x)) = −z1 + Γ1 ◦ A−1(z)

= −σ1◦σ−1
1 (z1)+Γ1◦A−1(σ1◦σ−1

1 (z1), . . . , σn◦σ−1
n (zn))

and as by the assumption of this first part of the proof we
have σ−1

1 (z1) > σ−1
j (zj) for j = 2, . . . , n, we obtain

≤ −σ1 ◦ σ−1
1 (z1) + Γ1 ◦ A−1 ◦ σ(σ−1

1 (z1)) (22)

Now for τ := σ−1
1 (z1) we have by (14)

D ◦ Γ ◦ A−1 ◦ σ(τ) ≤ σ(τ)

hence
Γ ◦ A−1 ◦ σ(τ) ≤ D−1 ◦ σ(τ)

and so (recall that βi is defined before (13)) we have from
(22) for the first component that

−σ1(τ) + Γ1 ◦ A−1 ◦ σ(τ)

< ((id + β1)−1 − id ) ◦ σ1(τ)

= −β1 ◦ (id + β1)−1 ◦ α1(V1(x1)) < 0 .

(23)

Hence under the assumption that V (x) = σ−1
1 ◦ α1(V1(x1))

is uniquely given we obtain

V̇ (x) ≤ −cβ1 ◦ (id + β1)−1 ◦ σ1(V (x)) + Cγ1u(‖u‖) .

The argument can be repeated for the indices i = 2, . . . , n
in the same manner and so setting

α̃(s) := min
i=1,...,n

cβi ◦ (id + βi)−1 ◦ σi(s)

and
γ(s) := max

i=1,...,n
Cγiu(‖u‖)

we obtain that

V̇ (x) ≤ −α̃(V (x)) + γ(‖u‖) .

for all points x ∈ R
N where the maximizing argument in

(21) is uniquely defined. As the set of such points is an
open and dense subset of R

N and as the function V is locally
Lipschitz continuous, this proves that it is a Lipschitz ISS
Lyapunov function for the interconnestion.
(In this case this can also be seen directly in an easy

manner, [2],[1], [6]. As V is obtained by the maximization
of C1 functions Vi, i = 1, 2, ..., n, the Clarke subgradient of
V in x ∈ R

n can be computed by the set

∂ClV (x) = conv { 
 (
σ−1

i ◦ αi ◦ Vi

)
(xi) |

σ−1
i ◦ αi(Vi(xi)) = V (x)

}
,

where conv M denotes the convex hull of the set M .
As we have the dissipation inequality presented above as
V̇ ≤ −α̃(V (x)) + γ(‖u‖) for each of the extremal points
of ∂ClV (x), the dissipation inequality holds in terms of
the Clarke generalized derivative for each ζ in the Clarke
subgradient.)
Thus we have obtained two different ways of constructing

dissipative ISS Lyapunov functions. To compare the two
constructions, we briefly return to the linear case as detailed
in Section III. Recall that for the matrices in (4) the necessary
condition is r(A−1Γ) < 1. The construction explained in
Section III uses a left vector such that μT (−A + Γ) <
0 and sets V (x) := μT Vvec(x). In the construction of
Theorem IV.3 we choose a right vector s ∈ R

n
+ such

that ΓA−1s < s. For μ := A−1s this is equivalent to
(−A+Γ)μ < 0. We then let V (x) := maxi=1,...,n μ−1

i Vi(xi)
and by Theorem IV.3 this is an ISS Lyapunov function. In
the context of convex analysis maximization and summation
are dual operations. In this sense the two construction are
dual to one another.

A. Linearly Scaled Gains
In this subsection we specialize the results we have

obtained so far to the case, where the gains are obtained
by linearly scaling gain functions associated with each of
the subsystems.
To be precise, we assume that there exist functions gi ∈

K∞ and ai, cij ∈ R+, ai > 0, i, j = 1, . . . , n such that the
gain functions in (3) are given by

γij(s) = cijgj(s), ∀j, αi(s) = aigi(s), ∀i . (24)

We now let Ã = diag (a1, . . . , an) and C =
(
cij

)
i,j=1,...,n

and we denote for s ∈ R
n
+

g(s) :=
(
g1(s1), . . . , gn(sn)

)T
.

Note that with respect to our previous notation we have

A(s) = Ãg(s) , Γ(s) = Cg(s) .

Note also that from (3) we obtain ISS of the subsystems if
we have gi ∈ K∞ , i = 1, . . . , n. On the other hand if the gi

are only positive definite, then we merely have integral ISS
for the subsystems

Theorem IV.4 Consider the interconnected systems (1) and
assume that each subsystem has a dissipative ISS-Lyapunov
function as in (3) where the gain functions satisfy (24).
Assume r(Ã−1C) < 1 and let μ > 0 be a vector such that
μT (−Ã + C) < 0.
(i) If the functions gi, i = 1, . . . , n are positive definite, then
the interconnected system is integral ISS with an integral ISS
Lyapunov function given by

V (x) := μT Vvec(x) . (25)

(ii) If the functions gi ∈ K∞ , i = 1, . . . , n, then the
interconnected system is ISS with an ISS Lyapunov function
given by (25).
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Proof: First note, that the choice of μ in the formulation
of the theorem is possible by Lemma III.1. We have for
V (x) := μT Vvec(x) that

V̇ (x) = μT V̇vec(x) ≤ μT (−Ã+C)g(Vvec(x))+μT γu(‖u‖)
and defining 0 > L := μT (−Ã + C) we obtain

V̇ (x) ≤ Lg(Vvec(x))+μT γu(‖u‖) ≤ −l(V (x))+μT γu(‖u‖) ,

where we define

l(s) := min{−Lg(Vvec(x)) | μT Vvec(x) = s} .

It is clear that l is positive definite if the gi are and that
l ∈ K∞ if the gi are. This proves the assertion.
It is worth mentioning that the spectral radius condition
implicitly requires some subsystems in the overall system
to be ISS in the case (i) of the above theorem. For instance,
in the two subsystems case, a1 < c12 implies a2 > c21

which indicates that at least one subsystem needs to be ISS
although the subsystem is defined by a dissipation inequality
only with positive definite functions of the integral ISS type.
This fact is consistent with the result in [10].

V. CONCLUSIONS

In this paper we have introduced an approach of a
construction of Lyapunov functions for interconnected ISS
systems. This method provides an explicit construction for
a general interconnection of any number of ISS systems.
Our construction is based on the existence of some auxili-
ary function that can be found explicitly for a nonsmooth
construction. We have also shown how they can be found
for a smooth construction in a special case of supply rate
functions. Their construction for general supply rates is a
matter of our future investigations. We also hope to relax
the technical assumption 0 < c < (σi ◦ αi)′(τ) < C in
Theorem IV.3.
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