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Abstract: This paper presents a convex optimisation method for observer-based control design of 
LPV neutral systems. Utilising the polynomials parameter-dependent quadratic functions and a 
suitable change of variables, the required sufficient conditions with high precision for the design 
of a desired observer-based control are established in terms of delay-dependent  
parameter-independent linear matrix inequalities. An observer-based controller guaranteeing 
asymptotic stability of the closed-loop system and satisfying a prescribed level of performance to 
the LPV neutral system with constant delay parameters is developed. A Lyapunov-Krasovskii 
method underlies the observer-based  control design. A numerical example with simulation 
results illustrates the effectiveness of the methodology. 
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1 Introduction 

The problem of observer design for reconstructing state 
variables is a more involved issue in systems with any kind 
of delay. In general, some sufficient conditions for the 
existence of an observer have been established and 
computational algorithms for construction of the observers 
have been presented in the literature (see Busawon and Saif, 
1999; Fridman et al., 2003; Hassibi et al., 1999; De Souza et 
al., 2000; Thau, 1973; Trinh et al., 2006). Lyapunov 

stability theory is used to design the state observers for 
linear time-varying or nonlinear systems (see Busawon and 
Saif, 1999; Trinh et al., 2006; Gao and Wang, 2003, 2004; 
Geromel and de Oliveira, 2001; Gu and Poon, 2001). 
Recently, problem of guaranteed-cost observer-based 
control was studied in Lien (2005) for a class of uncertain 
neutral time-delay systems such that the convex 
optimisation problem is formulated in terms of linear matrix 
inequalities (LMIs) and an equality constraint which are not 
in the classis LMI solvable form. 

Copyright © 2008 Inderscience Enterprises Ltd. 
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On the other hand, the stability analysis, filtering and 
control design of linear parameter-varying (LPV) systems 
where the state-space matrices depend on parameter vector, 
whose values are not known a priori, but can be measured 
online, have received considerable attention recently 
(Apkarian and Gahinet, 1995; Feron et al., 1996; Gahinet et 
al., 1996; Shamma and Athans, 1991; Zhang et al., 2002). 
Concerning unknown parameter vector, an adaptive method 
has been presented for robust stabilisation with H∞ 
performance of LPV systems in Karimi (2007). It is well 
known that stability analysis of the LPV systems via the use 
of classical quadratic Lyapunov function leads to 
conservative results. Therefore, to investigate the stability  
of LPV systems one needs to resort the use of  
parameter-dependent Lyapunov functions to achieve 
necessary and sufficient conditions. Generally, the robust 
stability analysis of LPV systems is an NP-hard problem 
because parameter-dependent LMIs (PLMIs) (Blondel and 
Tsitsiklis, 1997). Recently, Bliman (2004a) states that 
PLMIs admit polynomial solutions; provided they are 
feasible for each parameter value. This result paved the  
way to non-conservative conditions for LPV and LTI 
parameter-dependent (LTIPD) systems (Chesi et al., 2005; 
Karimi, 2006a). Therefore, a systematic way for the use of 
polynomial parameter-dependent quadratic (PPDQ) 
functions in the state/output feedback control of LTI 
parameter-dependent systems with time-delay in the state 
vector was proposed in Karimi (2006b) and Karimi et al. 
(2005). It is noted that the above paper introduces a  
delay-independent stability criterion which is a source of 
conservativeness in comparison with the present paper. The 
stability and the performance issues of the LPV systems 
with delay are then both theoretically and practically 
important and are a field of intense research. In general, the 
presence of a delay in a system may be the result of some 
essential simplification of the corresponding process model. 
Therefore, the delay effects problem on the stability of 
systems including delays in the state and/or the input is a 
problem of recurring interest since the delay presence may 
induce complex behaviours (oscillation, instability, bad 
performances) for the system (see Karimi, 2006c; Niculesu, 
2001). Recently, some appreciable researches have been 
performed to analyse and to synthesise LPV time-delay 
systems (see e.g., Zhang et al., 2002; Tan et al., 2003; Wu 
and Grigoriadis, 2001). It is also worth citing that few 
studies have been done for the design of robust H∞ filters for 
LPV systems (Mahmoud and Boujarwah, 2001; Velni and 
Grigoriadis, 2007; Wu et al., 2006). Up to now, to the best 
of our knowledge, no results about the observer-based H∞ 
control problem of LPV neutral systems which are in the 
classis LMI solvable form are available in the literature and 
remains to be important and challenging. This motivates the 
present study. 

In this paper, we are concerned to develop an efficient 
convex optimisation approach for delay-dependent 
observer-based H∞ state feedback control problem of LPV 
neutral systems. It is assumed that the state-space data 
depend on parameters that are measurable in real time. Our 

motivation for considering such a delay-dependent 
parameter-dependent observer-based H∞ control design is 
that in some cases utilising the available information for the 
measured parameters and delay parameters is a natural way 
to reduce the conservatism of the design. The main merit of 
the proposed method is the fact that it provides a convex 
problem by a suitable change of variables such the observer 
and the control gains can be found from a PLMI 
formulation. Then, new required sufficient conditions are 
established in terms of delay-dependent LMIs combined 
with the Lyapunov-Krasovskii method for the existence of 
the desired delay-dependent observer-based H∞ control such 
that the resulting observer error system is asymptotically 
stable and satisfies a prescribed level of H∞ performance 
measure. It is mentionable that application of the  
PPDQ functions and using the parameter-dependent  
Kalman-Yakubovich-Popov (KYP) lemma (see Gusev, 
2006) make it possible to relax the PLMIs into conventional 
(parameter-independent) LMIs by introducing some 
Lagrange multiplier matrices. Eventually, an illustrative 
example is given to show the qualification of our filter 
design methodology. 

1.1 Notation 

The notations used throughout the paper are fairly standard. 
The matrices In, 0n, 0n×p are the identity matrix and the n × n 
and n × p zero matrices, respectively. )(Aσ  denotes to the 
largest singular value of the matrix A and the operator 
sym(A) represents A+AT. The symbol * denotes the elements 
below the main diagonal of a symmetric block matrix. Also, 
the symbol ⊗  denotes Kronecker product, the power of 
Kronecker products being used with the natural  
meaning  
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which have essential roles for polynomial manipulations. 
The parameter-dependent matrix A(ρ) is represented shortly 
as )(: ρρ Α=Α . Finally, given a signal x(t), 

2
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the L2 norm of x(t); i.e., ∫=
∞

0

2

2
)()()( dttxtxtx T  and the 

operator Tyu is the transfer function mapping input u(t) to 
output y(t). 

2 Problem description 

We consider a class of LPV neutral systems represented by 
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where , , ,  

and  are state vector, control signal, disturbance 
input, estimated output and measured output, respectively. 
The time-varying function 
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φ  is continuous vector valued 
initial function and the time delays h and τ are constant and 
known. The dynamical system (1) arises naturally in a wide 
range of applications, including: networked control systems, 
control of large flexible space structures, control of 
mechanical multi-body systems, robotics control, vibration 
control in structural dynamics, linear stability of flows in 
fluid mechanics and electrical circuit simulation (see for 
instance Bolea et al., 2006; Balas, 1982; Bhaya and Desoer, 
1985). 

Throughout the paper, we make the following 
assumptions. 

Assumption 1: The vector-valued parameter ρ  evolves 
continuously over time, and its range is limited to a compact 
subset  and its time derivative is bounded and 
satisfies 
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Assumption 2: The columns of the matrix B(ρ) are linearly 
independent. 

In (1), the parameter-dependent coefficient matrices are real 
continuous matrix functions which affinely depend on the 
vector-valued parameter ρ, that are 
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In this paper, the author’s attention will be focused on the 
design of a full order delay-dependent parameter-dependent 
observer-based  control with the following state-space 
equations 
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where the parameter-dependent matrices 
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of the appropriate 
dimensions are the objectives of the control design to be 
determined. In (3), it is assumed that  is the 
estimation of the plant’s state. The augmented system 
formed by (1) and (3), namely observer error system, with 
the estimation error 
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The H∞ norm of the system (4), by assuming the frozen 
LPV parameters, is given by 

)}({sup ωσ
ω

jHew
ℜ∈

∞ =Τ  (5) 

where 

1
1

21 )()( EeAjeAAIjLjH jhj
n

−−− −−−= ωτω ωωω . 

Definition 1: The delay-dependent observer-based  
control of the type (3) is said to guarantee robust 
disturbance attenuation if under zero initial condition 
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for all bounded energy disturbances and a prescribed 
positive value γ. 

Clearly, since 
∞∞ −= )()( ωω jHjH T  for all transfer 

function matrices H(s) with real coefficients, it follows that 
the  norm of the system (4) is equal to the  norm of 
the following system 

∞H ∞H
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Note that the latter system represents the backward adjoint 
of the system (4) (Fridman et al., 2003). Its forward 
representation (7) is described by 
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Since the characteristic equation of the systems (7) and (4) 
are identical, the former system is asymptotically stable if 
and only if the system (4) is as well. 

Now, using the Newton-Leibniz formula, i.e.  
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The problem to be addressed in this paper is formulated as 
follows: Given a prescribed level of disturbance attenuation 
γ>0, find an observer-based  control of the form (3) such 
that 

∞H

1 the descriptor system (9) is asymptotically stable for 
any time delays h and τ and for all admissible 
parameters ζρ ∈  

2 under zero initial conditions and for all non-zero 
),0[)(~

2 ∞∈ Lte  and ζρ ∈ , the induced L2–norm of the 
operator form )(~ te  to the controlled output )(~ tw  is less 
than γ. 

In this case, the LPV system (1) with the observer-based 
control (3) is said to be robustly asymptotically stable with 

 performance measure. ∞H
Note that now one important role to investigating the 

Lyapunov-based stability of the augmented system (9)  
will be played by the search for polynomially  
parameter-dependent quadratic functions chosen within the 
following class. 

Definition 2 (Bliman, 2004b): A polynomially parameter-
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Notice that the nonzero blocks of the matrix Sk are just the 
matrix coefficients of the polynomial matrix )(ρS . 

3 Robust observer-based control design 

In this section, we will concentrate ourselves on the 
determination of the observer-based control gains  
using Lyapunov functional method. In the literature,  
extensions of the quadratic Lyapunov functions to the  
Lyapunov-Krasovskii functionals have been proposed for 
time-delayed systems (see for instance Niculesu, 2001; 
Krasovskii, 1963). Hence, a class of Lyapunov-Krasovskii 
functionals for this purpose is given by 
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It is noting that the first, the second and the third terms of 
V(f) are generally used for the delay-independent stability 
analysis of the LPV neutral systems. In this section, the 
following lemma is used to give an upper bound on the 
integral terms in the Lyapunov-Krasovskii derivative. 
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Lemma 1 (Park, 1999): For any arbitrary positive definite 
matrix R and the matrix M the following inequality holds: 
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Theorem 1: Let the state-space parameter-dependent 
matrices of the delay-dependent observer-based  
control (3) be given. Under Assumption 1, the augmented 
system (4) obtained from the interconnection of the plant (1) 
and the filter (3) achieves, simultaneously, the asymptotic 
stability and  performance for a given performance 
bound γ in the sense of Definition 1 if there exist the scalar 
α, the positive definite matrices 

∞H

∞H

P , ,2
1}{ =iiQ ρ R  such that 

the following PLMI is satisfied 

Proof: Consider the same Lyapunov-Krasovskii functional 
(11) and a HJI function in the form of 

)(~)(~)(~)(~)()](~),(~[ 2 tetetwtw
dt

tdVtetXJ TT γ−+=  (14) 

where derivative of  is evaluated along the trajectory 
of the augmented system (9). It is well known that a 
sufficient condition for achieving robust disturbance 
attenuation is that the inequality 

)(tV

0)](~),(~[ <tetXJ
)(tV

 for 

every  results in a function , which is strictly 
radially unbounded. Differentiating (11) in t we obtain: 

2)(~ Lte ∈
0

0
00
000

)1(
000

2
2

1

21
11

<

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−∗∗∗∗
−∗∗∗

−∗∗
−∗

+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−Γ

Rh
I

Q
Q

Ph
L

P
A

P
A

P T
T

T
T

T
T

T

γ

αα

ρ

ρ  (13) 

)(~)(~)(~)(~)(
00

)()(
00

)()()()()()(~)(~)(~)(~

)()}(~0
)(

0
)(
)(~~{

)(
)(~

2)(~)()(~)](~),(~[

2
11

1111

2211

21

1

tetetXEEtXd
A

R
A

t
A

R
A

thtQttQthtXQhtXtXQtX

tte
L

t
At

tXAP
t
tXtX

P
tXtetXJ

TTT
t

ht
T

T

T
T

T

T

T

TTTTT

TT
T

T
m

j j
j

T

γσσησηη

ητητηηη

κτη
ηηρ

ν

ρρρρ

ρ

−+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
×

+−−−+−−−+

+⎥
⎦

⎤
⎢
⎣

⎡
+−⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

∂

∂
=

∫

∑

−

=

  (15) 

 

where  From (15) and (16), it follows that 

∫
−

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−=

t

ht
T

T
T

dss
A

P
t
tXt )(

0
)(
)(~

2:)(
1

η
η

κ . )()()](~),(~[ tttetXJ T χχ Γ≤  (17) 

where the vector  
Using Lemma 1 for )(

0
)(

1
s

A
sa T η⎥

⎦

⎤
⎢
⎣

⎡
=  and  we 

obtain: 

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(~

)(
t
tXPsb

η )}(~),(),(~),(),(~{:)( tethtXttXcolt τηηχ −−=  
is an augmented state and the matrix Γ is given by 

1
2 2

1

1 1

( ) ( )
( ) ( ) ( )

( ) ( )

0( )
           2 ( ( ) ( ))

( )

0 0
( ) ( )

T

T T
n n

T

T T
T

Tt
T

T T
t h

X t X t
t h P RM I R RM I P

t t

X t
P M R X t X t h

At

s R s ds
A A

κ
η η

η

η η

−

−

⎡ ⎤ ⎡
≤ + +⎢ ⎥ ⎢

⎣ ⎦ ⎣

⎡ ⎤ ⎡ ⎤
+ −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫

� �

� � �

⎤
⎥
⎦

−  (16) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−∗∗∗

−∗∗
−∗

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−Γ

=Γ

I
Q

Q
L

P
A

P
A

RMP T
T

T
T

T
TT

2
2

1

21
11

0
00

000ˆ

γ
ρ

ρ  (18) 

 

 

 

 

 



 A convex optimisation approach to robust observer-based H∞ control design 231 
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From (17), it is clear that the inequality Γ<0 is a sufficient 
condition to satisfy the inequality . By 
Schur, complements and considers 

0)](~),(~[ <tetXJ

nIMR 2α=  for the 
arbitraries matrices  and M to remove the 
present nonlinearities in the matrix (18), the inequality Γ<0 
results in the inequality matrix (13). 

0>= TRR

Remark 2: Theorem 1 provides a sufficient condition for the 
singular delay system (9) to be stable. Furthermore, by 
comparing Theorem 1 with Xu et al. (2002), we can regard 
Theorem 1 as an extension of existing results on singular 
systems with discrete delay to singular delay systems with 
both discrete and distributed delays. 

Remark 3: It is easy to see that the inequality (13) implies 
. Hence by Proposition 4.2 in Fridman and Shaked 

(2002), the matrix 
011 <Γ

P  is non-singular. Then, according to 
the structure of the matrix P  in (12), the matrix  
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Now, we are in a position to give our main results on the 
existence of a delay-dependent observer-based control in the 
form of (3), and show how to construct such a desired 
control for the LPV neutral system in (1). 

Theorem 2: Let the positive integer  as the degree of 
the PPDQ functions is given. Under Assumptions 1 and 2, 
consider the LPV neutral system (1) with the known 

constant time-delay parameters 

1−k

0, >τh . For a given 
performance bound γ , there exits a delay-dependent 
observer-based  control in the form of (3) such that the 
resulting closed-loop system is robustly asymptotically 
stable and satisfies  performance measure in the sense 
of Definition 1, if there exist a scalar 
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then the state-space matrices of the observer-based  
control are given by 
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and postmultiplying  to the matrix inequality (13) in 
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Remark 3). 
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Since the matrix inequality (23) is not a LMI condition 
owing to the multiplication of the matrix variables (Goh et 
al., 1996), then the following change of variables are 
considered in our manipulations to get a convex problem 
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Now, the underlying observer-based  control synthesis 
problem is a convex problem, therefore, the analysis 
condition to satisfy asymptotic stability and an  
performance measure results in the LMIs (20) and the 
observer-based  control matrices are computed from 
(21). 
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Remark 4: Notice that the PLMIs (20) correspond to 
infinite-dimensional convex problems due to their 
parametric dependence. The major difficulty in solving LPV 
analysis problem lies in how the LMIs (20) will be verified 
over the entire parameter space. In the literature, two types 
of methods are usually used (see Apkarian et al., 1995; Tan 
et al., 2003; Wu and Grigoriadis, 2001; Apkarian and 
Adams, 1998; Apkarian and Gahinet, 1995; Apkarian and 
Tuan, 2000; Lim and How, 2002); either the controller gain 
is first computed for a bunch parameter values (gridding of 
the parameter space), and then interpolated between the 
nodes of this grid (but the stability, and possibly 
performance, results are not guaranteed between the nodes); 

or the solution of the parameter-dependent LMIs involved is 
sought for with prescribed dependence with respect to the 
parameters, usually constant or affine (at the cost of adding 
conservatism). Moreover, techniques such as the  
S-procedure, the KYP lemma or multiconvexity concepts 
can also be used repeatedly to get a finite number of 
(sufficient) LMI conditions (see Gusev, 2006, and 
references therein). The main approach employed here is 
based on applying the parameter-dependent KYP  
lemma by introducing some Lagrange multiplier matrices to 
obtain less conservative results (see Bliman, 2004a; 2005; 
Karimi, 2006a; Bliman, 2005) and to study polynomial 
solutions (with respect to the parameters) of a  
parameter-dependent LMI. 

Lemma 2: Let the degree of the PPDQ function  be ρF
1−k . A PPDQ function of degree k  for parameter-

dependent matrix ρρ ΠF  is given by 
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Proof: See Karimi et al. (2005). 

Remark 5: (PLMI relaxation) It is noted that according to 
Lemma 2 the product of two polynomial matrices is 
expressed in terms of a PPDQ function for a specific degree. 
It is shown in Bliman (2004a) that if an LMI polynomially 
depends on the parameters, then it can be transformed into 
an LMI of a larger dimension that does not depend on these 
parameters. 

According to Lemma 2 for the parameter-dependent 
matrix , we have ρA
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where the PPDQ functions  and  of the 

order  satisfy the representation form of (10), where 
 stands for the parameter-independent matrices 

, then the parameter-independent 

matrices  and  are represented, 

respectively, in the following forms 
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then the state-space matrices of the observer-based  control are given by ∞H
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Proof: By substituting the relations (28)–(36) into the 
PLMI (20b), one parameter-dependent matrix inequality is 

obtained which includes left-and right-multiplication of 
the LMI (20b) by: 
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and its transpose. Then, it can be concluded that LMI (37b), 
which included the positive definite Lagrange multiplier 
matrices  (see Bliman, 2004b; 2005) to 

obtain less conservative results, are sufficient conditions to 
fulfill the matrix inequality (20b) for any vector-valued 
parameter
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 in Assumption 1. Similar to the procedure 
above with the positive definite Lagrange multiplier 
matrices , the LMI (37a) is concluded. m,

Remark 7: We note that the problem of finding the 
smallest 0>γ , namely 0γ , is to determine whether the 
problem (37) is feasible or not. It is called the feasibility 
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such the bound 0γ  is given by ∗= λγ 0 , where  is the 
optimal value of the optimisation problem. Note that a 
locally optimal point of a quasi-convex optimisation 
problem with strictly quasi-convex objective is globally 
optimal (for details, see Boyd et al., 1994). Various efficient 
convex optimisation algorithms can be used to check 
whether the matrix inequalities (37) are feasible. In this 
paper, in order to solve the matrix inequalities (37), we 
utilise Matlab’s LMI Control Toolbox (Gahinet et al., 
1995), which implements state-of-the-art interior-point 
algorithms, which is significantly faster than classical 
convex optimisation algorithms (Boyd et al., 1994). Of 
course, the high dimension of the resulting LMI will 

increase the computational complexity of the proposed 
approach to some extent. It turns out that, by working with 
symmetry reduction techniques (Gaterman and Parillo, 
2004), a smaller size of LMI can be derived with a 
significantly smaller number of decision variables so that 
the computational burden can be reduced. This notably 
affects the total running time. Therefore, the reduction 
techniques enable the numerical solution of large scale 
instances that are otherwise computationally infeasible to be 
solved. 

∗λ

Remark 8: A new set of matrices verifying LMIs (37) can be 
generated, with index 1+k

k

 instead of k . In this case, the 
solvability of LMIs (37) implies the same property for the 
larger values of the index . Of course, the high dimension 
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of the resulting LMIs will increase the computational 
complexity of the proposed approach to some extent. 
However, our approach is different from those in Mahmoud 
and Boujarwah (2001); Velni and Grigoriadis (2007); Wu et 
al. (2006) in several perspectives: 

a their system structure corresponds to our case 
with 0)(2 =ρA

0)( =
, i.e. an LPV retarded system 

and ρB where other state-space matrices are real 
continuous matrix functions which affinely depend on 
the vector-valued parameter ρ  

b the augments states are defined differently 

c their test conditions are a set of PLMIs conditions while 
ours are PLMIs with relaxation embedded 

d this paper presents a systematic approach for the  
delay-dependent observer-based  control of LPV 
neutral systems using PPDQ function that is never seen 
before. 

∞H

It is also worth mentioning that, effective use of our results 
is subordinate to powerful LMI solvers. According to 
Bliman (2005), a general idea for reducing the computation 
complexity (or computational burden) consists in 
performing first a subdivision of the admissible parameter 
set in sub-domains and applying the results given in 
Theorem 3. 

4 Illustrative example 

Consider the following state-space matrices for the LPV 
neutral system (1), 
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where )sin(5.0)( tt =ρ  and the constant delays are 
assumed to be 5.0==τh . For simulation purpose, a unit 
step signal in the time interval  as the disturbance is 
imposed on the system. 

]1,0[

It is required to design an observer-based  control 
such that the closed-loop system is asymptotically stable 
and satisfies the  performance measure. To this end, in 
light of Theorem 3 with  and the performance bound 

∞H

∞H
2=k

95.0=γ , we solved LMIs (37) and obtained the control 
and the observer gains in (3) for the whole range of the 
parameter )(tρ , for instance  
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For initial condition , the simulation 
results are shown in Figures 1–3. The curve of  
observer-based  control in (3d) is shown in Figure 1. To 
observe the  performance, the response of the 
estimation error signal, i.e., , is depicted 
in Figure 2 and correctness of the disturbance attenuation 

level, i.e. 

)0,1())0(),0(( 21 =xx

(ˆ)()( ztzte −=

∞H

∞H
)t

0)() 2

2
−( 2 twte γ 2

2
< , is plotted in Figure 3. 

It is seen from Figures 2 and 3 that the closed-loop system is 
asymptotically stable and the control signal reduces the 
effect of the disturbance input w(t) on the estimation error. 
The solution was obtained after about 80 seconds on a 
computer with a 2.67 GHz Pentium processor. 

Figure 1 Control law for system (see online version for colours) 
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Figure 2 Curve of estimation error signal (see online version for 
colours) 
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Figure 3 Curve of 2 2
2( ) ( )e t w tγ− 2

2  (see online version for 

colours) 
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5 Conclusions 

The convex optimisation problem of robust observer-based 
control for a class of LPV neutral systems with constant 
time-delays has been studied in this paper. A  
delay-dependent observer-based  control, which 
depends on parameters that are measurable in real time,  
has been proposed. By using the polynomial  
parameter-dependent quadratic (PPDQ) functions and a 
suitable change of variables, the required sufficient 
conditions with high precision have been established in 
terms of delay-dependent parameter-independent LMIs for 
the existence of the desired observer-based control. 
However, the explicit expression of the robust  
delay-dependent observer-based control has been derived to 
satisfy both asymptotic stability and  performance. A 
numerical example has been provided to demonstrate the 
usefulness of the theory developed.  
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