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There exist various approaches to the mathematical modelling of dynamic 
processes occurring in shop floor logistics. These include methods from 
queuing theory or use dynamical systems given by ordinary or partial dif-
ferential equations (fluid models). If the number of elements within the 
process is large it can become prohibitively complex to analyse and opti-
mize a given logistic process or the corresponding mathematical model us-
ing global strategies. A new approach is to provide for an autonomy of 
various smaller entities within the logistic network, i.e. for the possibility 
of certain elements to make their own decisions. This necessitates changes 
in the appropriate mathematical models and opens the question of stability 
of the systems that are designed. In this paper we discuss the fundamental 
concepts of autonomy within a logistic network and mathematical tools 
that can be used to model this property. Some remarks concerning the sta-
bility properties of the models are made. 

Introduction 

In a production network (e.g. on shop floor level), the flow of parts is usu-
ally pre-planned by a central supervisory or control system. This approach 
fails for large scale networks in the presence of highly fluctuating demand 
or unexpected disturbances [21]. One of the reasons for this phenomenon 
is that in practice the complexity of centralized control architectures tends 
to grow rapidly with the size of the network, resulting in rapid deteriora-
tion of fault tolerance, adaptability and flexibility [25]. 

 
An advantageous alternative is the management of the dynamic behav-

iour according to the requirements of production logistics. In this sense the 
development of decentralised and autonomous control strategies is a prom-
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ising research field [27]. Here autonomous control describes a decentral-
ised coordination of intelligent logistic objects (parts, machines etc.) and 
the allocation of jobs to machines by the intelligent parts themselves. 
Therefore, there are no standard policies for production logistics that may 
be readily applied. Instead, strategic policies have to be derived that enable 
the parts to decide autonomously, instantaneously and using locally avail-
able information only to choose between different alternatives. The appli-
cation of autonomous control in production networks leads to a coales-
cence of material flow and information flow and enables every part or 
product to manage and control its manufacturing process autonomously 
[7]. The dynamics of such a system depends on the local decision-making 
processes and produces a system’s global behaviour that has new emerging 
characteristics [20]. 

 
In the literature several attempts may be found to explain the emergent 

behaviour of large scale structures that arise from autonomous control 
policies. First intuitive approaches suggest to set up a policy like ‘go to the 
machine with the shortest processing time’ or ‘go to the machine with the 
lowest buffer level’ [28], [29] etc. More sophisticated autonomous control 
strategies can be found in biological systems. Camazine et al. [11] give a 
good overview and some case studies of self-organized behaviour in bio-
logical systems. Their case studies comprise social insects, slime moulds, 
bacteria, bark beetles, fireflies and fish. According to the authors biologi-
cal self-organization can be found in group-level behaviour that arises in 
most cases from local individual actions that are influenced by the actions 
of neighbours or predecessors and in structures that are build conjointly by 
individuals. They identify positive feedback as a “key ingredient” of self-
organization. Positive feedback is a method that enables and endorses 
change in a system. In ant colonies for example, a scout ant that has found 
food lays down a pheromone trail as it returns to the nest. By changing the 
environment, succeeding ants may simply follow the trail and find the 
food, which in turn reinforce the trail with their pheromone [22].  

 
Ant colony optimization (ACO, see e.g. [7], [18]) uses positive feedback 

with the help of artificial pheromones and is used to solve discrete optimi-
zation problems like the travelling salesman problem and the quadratic as-
signment problem. Logistics applications of the ACO concept can be 
found for example in Gambardella et al. [19], where the authors find solu-
tions to vehicle routing problems with time windows and in Bautista et al. 
[6], where ACO is applied to an assembly line balancing problem for a 
bike factory. Applications of the pheromone concept for manufacturing 
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control can be found in Peeters et al. [23] and Armbruster et al. [1] where 
pheromones are used to find a control system for a flexible shop floor.  

 
Brückner et al. [9], [10] suggested implementing the pheromone concept 

to organize production systems as multi-agent systems. The authors call 
the approach a “synthetic ecosystems” and present a formal software infra-
structure as well as a real-world example. In their “guided manufacturing 
control system” they combine distributed and reactive control in their con-
trol subsystem with a global advisory subsystem. 

 
A concept that uses the interaction between nearest neighbours but does 

not rely on pheromones is the idea of a bucket brigade, which was intro-
duced by Bartholdi et al. [5]. A bucket brigade is a production line setup, 
where workers independently follow simple rules that determine what to 
do next. The rules are: a) Process your work until you meet a downstream 
worker. If so, give him your work. b) If you do not have work, go up-
stream until you meet another worker and continue with his job. c) If you 
are the first worker and you do not have work, then start a new job. d) If 
you are the last worker, then finish the job and follow rule b). The authors 
show that such a bucket brigade is self-balancing and results in a global 
optimum if the workers are sequenced from slowest to fastest. The concept 
has been extended to bucket brigades with worker learning by Armbruster 
et al. [2]. 

 
In order to develop and analyse autonomous control strategies dynamic 

models are required. For production systems several model classes have 
been investigated. These can be divided in discrete and continuous models. 

 
Discrete models are based on the consideration of individual parts in a 

network of machines. Queuing networks (e.g. with re-entrant lines) can be 
used to model complex manufacturing systems such as wafer fabrication 
facilities. The advantage of such models is the possibility to assign deci-
sion rules to machines and parts. Stability of such networks is defined 
probabilistically in terms of Harris recurrence and is often hard to check. 
For single class networks, which are also called generalized Jackson net-
works, with work-conserving disciplines such as the FIFO priority disci-
pline or the processor sharing discipline, stability is guaranteed by the 
usual traffic condition, which requires that the load is less than the capacity 
at each machine.  
 

However, this condition is not sufficient for multiclass open queuing 
networks [12]. Nonetheless, there are fluid limits models that allow the in-
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vestigation of the stability question for such networks [8], [12]. These are 
continuous models obtained with help of the functional strong law of large 
numbers. 
 

A further model class can be derived within the framework of dynami-
cal systems. By time averaging over a representative time period, it is pos-
sible to obtain a system of differential equations describing the behaviour 
of a queuing process as a continuous approximation (see, e.g., [15]). The 
advantage of this approach is that methods from the theory of dynamical 
systems can be used. E.g., stability criteria for a class of such systems were 
recently developed in [15-17]. Continuous models and some stability con-
ditions will be presented later on. Here the term continuous denotes the 
continuous material flow. In the literature continuous flow models of pro-
duction systems are often called hybrid models (cf. [4], [12] or [24]), 
meaning that the material flow is modelled as a continuous flow that is 
controlled by discrete actions. This discrete control is typical for produc-
tion systems. 

Logistic Processes  

Within this paper, we focus on logistic processes on shop floors. Produc-
tion logistics in this sense encompasses planning, control and monitoring 
of manufacturing processes. Enterprises face the problem of reacting to 
dynamically changing market competition in order to deploy and establish 
high quality products with a reasonable price possibly in a very short time. 
Thus, production logistics covers the interdisciplinary task between pro-
duction planning and control, engineering and strategic management. It 
takes care of the operational control of material and information flows to 
guarantee efficient and flexible production processes [12]. 
 

The main goal of production logistics is to design and organise produc-
tion processes according to high utilisation, low inventory and work-in-
process, short throughput times and high adherence to delivery dates. The 
first two aims are at operational level, whereas the two latter aims are cus-
tomer driven. It is obvious that these four aims are mutually contradictory; 
an enterprise has to find a trade-off between these goals and to position it-
self according to its own interpretation of their importance. 
 

The main tasks of production logistics can be derived from the main 
goals. The allocation of orders or jobs to resources comprises of getting (i) 
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the right products or services (ii) at the right time (iii) in the right amount 
(iv) to the right place. In this section we will discuss how autonomous con-
trol can meet these demands in presence of high dynamics. 

Autonomy in Logistic Processes  

By autonomy of a logistic process we understand the capability of the 
process to determine how to react to given changes in the environment, be 
they fluctuations in demand or in required production rate, failures in some 
components or changes in the function required of the process. Mathemati-
cally speaking we model an autonomous process as an input-output system 
that is regulated by its own feedback loop with a possibly dynamic feed-
back, i.e., a feedback capable of using the memory of the system to calcu-
late the control input, see Fig. 1. 
 

 
Fig. 1. A feedback loop  

From an abstract point of view it may seem difficult to call a system 
with inputs autonomous, since in general an input can be used to regulate a 
system from the outside. The distinction arises through the classification of 
inputs into inputs directly aimed at low-level control and others. We will 
call those systems autonomous that receive only inputs in terms of material 
and information, that needs to be processed, as well as high level demands. 
The decision on how these high level demands are met using the available 
resources rests with the control loop of the system. Clearly, the concepts 
we are using here are not defined in mathematical terms but would depend 
on the interpretation of different objects within a concrete scenario1. 

                                                      
1 We note that the usage of the word ‘autonomy’ in this paper does not correspond 

to terminology that is widely used within mathematical systems theory. Here a 
system is either called autonomous if the laws governing the evolution of the 
system do not explicitly depend on time [32], or within the framework of behav-
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As an example, consider a two machine two buffer system: Assume that 

due to customer demand a certain part has to be processed within the sys-
tem. In the conventional approach a central controlling entity decides 
based on global information on which buffer-machine system the part is 
processed. In contrast autonomous control would enable the part to choose 
the buffer-machine system autonomously based on local information the 
part actually has access to. 

Mathematical Modelling of Logistic Processes  

There are fundamental discrepancies in the interpretation of what consti-
tutes a model depending on different fields of research. In this paper we 
will take a modest mathematical point of view. We wish to understand the 
dynamics of logistic processes, that is, the laws by which certain logistic 
objects or quantities evolve in time. Here logistic objects may be parts in a 
factory, containers in a transport network or similar things. A model will 
therefore mostly consist of a set of equations for the time behaviour of a 
process. These models can be analysed to derive certain global properties 
of the system or simulated to obtain predictions for specific cases. 
 

The aim of deriving such models is to be able to analyse the behaviour 
from a qualitative point of view and also to provide predictive models, that 
is models that are accurate enough to provide good estimates of what is 
happening in the real process. Based on such a model, control or optimisa-
tion strategies may be derived. 
 

Due to the discrete nature of many logistic processes, the earliest models 
of such processes were in terms of discrete systems with an emphasis on 
the stochastic nature of the processes, arrival processes and other factors. 
We describe such models in the ensuing Section 3.1. In this approach 
processes are modelled by a number of servers with a processing rate. 
Each server has one or several queues to which possibly different types of 
customers arrive. The customers wait in these queues until they are served 
and after completion of the particular task they go on to the next server or 
leave the network. Concrete examples where such a modelling approach 
can be used are job shops where individual machines are interpreted as 

                                                                                                                          
ioural systems, a system is called autonomous, if the behaviours of the system 
are not parameterised by inputs [26]. 
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servers and customers are the parts that have to be processed. In the later 
sections we present continuous models in which parts and also production 
stage are not modelled as discrete variables. 

Discrete Models and Fluid Approximations  

Let J be the number of single machines denoted by index i=1,…,J. There 
are K classes of parts being processed. Each class k=1,…,K has its own 
exogenous arrival process with interarrival times tk(n), n=1,2,… with 
tk(n)=  for all n for some class k meaning that there are no external arri-
vals for this class.  
Parts of class k require service at machine s(k) and their service times are 
Tk(n), n=1,2,… . After being processed at station s(k) a class k part be-
comes a part of class l with probability Pkl or exits the network with prob-
ability 1- l Pkl, independent of all previous history, where P=(Pkl) is a sub-
stochastic matrix which is called routing matrix. Such a network is called 
an open multiclass queuing network, or briefly multiclass network. In case 
there is only one class with exogenous arrivals and the entries of the rout-
ing matrix satisfy Pk,k+1=1, for k=1,…K-1 and zero otherwise, then the 
multiclass network is called a re-entrant line, see Fig. 2. 
 

 
Fig. 2. A seven buffer five machine re-entrant line  

Such models have been considered by many authors, see e.g. [14]. The 
fluid limit models for multiclass networks and re-entrant lines were con-
sidered by, e.g., [13], [14], where the stability question is discussed and 
stability criteria via fluid models are obtained. 

 
Within this modelling framework autonomous control can be introduced 

as follows. If the transition probabilities Pkl are dependent on the current 
buffer level of classes, this dependence can reflect the ability of parts to 
decide where to go to. Furthermore, the distribution of Tk  can also depend 
on the state of the queues; this reflects the ability of machines to change 
their own processing rate. Finally, servers may be able to decide in which 
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order to process the waiting parts on the base of their buffer levels, i.e., the 
serving discipline is changing with time. Stability investigation and fluid 
models have yet to be developed for such re-entrant lines with autonomous 
control. 

Continuous Models: Partial Differential Equations 

We now describe a modelling approach based on partial differential equa-
tions. We introduce the variable x taking values in [0,1] which signifies the 
completion stage within a certain production process, see [4]. So material 
at the stage x=0 stands for raw material, while the material has reached 
stage x=1 when production process is completed. In this approach we are 
interested in the density function �(x,t) which denotes the amount of mate-
rial that has reached completion stage x at time t. The approach is now to 
write down a partial differential equation for �. The first of the following 
equations represents conservation of mass, while the second is an equation 
for the local velocity within the production system, cf. [3]. 
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The advantages of this modelling approach lie in the relative ease with 

which model based simulations can be performed. For logistic processes 
with a large number of production stages it is also plausible to justify the 
transition from a finite number of production stages to a continuum. How-
ever, the approach does not lend itself easily to the modelling of autonomy 
because it is not obvious how to incorporate the behaviour of autonomous 
parts in the PDE. For instance one of the problems occurring is that for 
autonomous parts there may not be an ordered set of stages that has to be 
completed, so that it does not really seem appropriate to model completion 
by a variable taking values in [0,1]. While this does not mean that the ap-
proach is not suitable for modelling autonomous processes, the derivation 
of such models is an open problem. 
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Continuous Models: Ordinary Differential Equations  

In this section we first consider a single autonomous machine that can be 
modelled in a continuous modelling framework. Then we will show how 
such machines can be combined in a logistic network. 

A Single Machine  
Let x =(x1,…,xn) be the vector representing the state of a machine at time t 
and let u=(u1,…,uk) be the vector of inputs representing both external dis-
turbances and inputs from other machines, see Fig. 3. The evolution of the 
state x with time t is described by a differential equation 

 

),( uxf
dt
dx

 
with initial condition 

0)0( xx . 
 

 
Fig. 3. A single machine  

The decision rules of the machine are included in the function f. The in-
put u accounts also for the decisions of the processed parts. Stability prop-
erties of such a nonlinear system can be described in terms of input-to-
state stability (ISS), see [31].  

A Production Network  
Consider a shop floor with several, that is m machines. To each of these 
we associate its state vector denoted by xi=(x1,…,xn) Rn, i=1…,m, and de-
note the total state of the network by x=(x1,...,xm) Rnm. Let us combine 
these machines in a network, see Fig. 4. This network may be represented 
as a directed graph, where the nodes are individual machines and edges de-
scribe an influence of the state of one machine on the state of another ma-
chine. 
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Fig. 4. A network of machines with mutual influences represented as a directed 
graph 

 
The notion of ISS incorporates a measure of influence of the magnitude 

of the input to the magnitude of state, called nonlinear gain. A nonlinear 
gain ij from machine xi to machine xj is a strictly increasing continuous 
function with ij(0)=0 [31]. These gains can be gathered into a matrix, set-
ting ii  0, which is a weighted adjacency matrix of the graph representa-
tion of the production network. Based on this a stability condition can be 
derived. 

 
The dynamical behaviour of this network is given by a system of differ-

ential equations 
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with initial conditions 
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Modelling Autonomy in Logistic Processes  

As we have seen in the brief discussions of the previous sections it is not 
obvious how to include the concept of autonomy in the mathematical mod-
els, depending on the modelling approach. In general existing models aim 
for a global understanding of the system and are suitable for the derivation 
of global control strategies. The implementation of such strategies may be 
unfeasible due to the size of the network, problems in making information 
available globally within a network and the like. This is the intrinsic moti-
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vation for studying autonomous control processes. Autonomy of processes 
suggests to model each process individually and to derive a model for the 
overall systems by coupling the autonomous components. Such an ap-
proach has been studied in the area of decentralised control, which we will 
now briefly discuss. 
 

In the field of control theory decentralised control has been actively in-
vestigated starting in the early 80s of the last century, see [30, 33] for an 
account and an introduction to the available results. The basic paradigm of 
decentralised control is that in contrast to the situation depicted in Fig. 1, a 
system is to be controlled by several controllers each of which only has ac-
cess to a subset of the measured variables and to the control inputs to per-
form its task. This raises the question under which conditions a global con-
trol goal can be reached via the implementation of several local 
controllers. Especially for linear systems several results have been ob-
tained that characterise stabilisability and optimisation of systems in which 
only an approach using decentralised strategies is possible, see [30, 33]. 
For nonlinear systems however, many basic questions remain unsolved. 
 

From a certain point of view the problem of designing logistic processes 
with several autonomous components can be viewed as a variant of the 
problems treated in the field of decentralised control. Also in the logistic 
context the goal is to achieve certain tasks by the actions of several inde-
pendent processes, each of which has limited access to the information. 
One of the fundamental difficulties in this approach is that very often lo-
gistic processes are governed by nonlinear laws. In other cases, one wishes 
to introduce nonlinearities to achieve certain control goals. In this area 
many mathematical problems are still unsolved. 

Autonomous Control and its Effects on the Dynamics of 
Logistic Processes  

Here we give some examples, how autonomous control can be introduced 
into the models discussed above and we consider how it affects the solu-
tions of these models. 
 

First consider the re-entrant line discussed above. As we have noted 
there, the possibility to choose where to go to be served for the parts can 
be described in terms of the transition probabilities Pij, making them de-
pendent on the current situation, e.g., on the queue lengths. From the other 
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side, if the machines are able to increase their processing rate when their 
queues are long or to decrease it once the queues become short, the service 
times Tk(n) become also functions of the queue lengths. Appropriately cho-
sen rules of the autonomous control may improve the dynamics of the pro-
duction line in the sense that it becomes more efficient and robust. The re-
sources of idling machines can be utilised. The parts automatically go to an 
idling machine, i.e., one with an empty queue, if the others are busy, i.e., 
have longer queues. In case of failure of a machine the parts route them-
selves to other machines. The ability to change service rates may help to 
avoid bottlenecks. These are potential advantages of an autonomous con-
trol. However the rules of an autonomous control should be chosen care-
fully. There are examples (see [8]) of networks satisfying the usual traffic 
condition that the nominal load of the whole network is less then one, but 
that are nonetheless unstable, i.e., the queues grow unboundedly. 

An Illustrative Example  

Let us consider a couple of simple deterministic scenarios to demonstrate 
what a continuous model looks like in case of autonomous control. We 
consider a two machine production network. In this network there are two 
types of parts arriving at rates ai, i=1,2, to receive service at the two differ-
ent machines. The first machine is designed to process the first type of 
parts at rate b11, however, it is able to process parts of the second type at a 
reduced rate b12<b11. Similarly, for the second machine we have the two 
processing rates b22>b21, for serving the second and the first type, respec-
tively. If there is no control of the particle routing, parts of each type are 
always served at the machine designed for their type, i.e., a part of type i 
goes always to the i-th machine. This situation we will call Scenario 1. 
 

In the second scenario the parts are able to decide by themselves at what 
machine they want to be serviced. They use certain decision rules that 
form the autonomous control and that have to be defined in advance. For 
example, a part might choose the machine with the shortest queue. Here 
we will use the following decision rule: A part of type i is routed to the 
machine j i only if the queue in front of machine j is empty and at the 
same time the queue in front of machine i is positive. Otherwise, it chooses 
the machine i. In case of ai>bii, i=1,2, both queues eventually become 
positive and each part of type i goes to the i-th machine. This case is not 
interesting for us. The situation is similar if ai<bii, i=1,2. An interesting 
setup is a1<b11, and a2>b22. In this case the first machine, which would idle 
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periodically in the first scenario, every now and then receives parts of the 
second type. Hence the total throughput should be not less than in the first 
scenario. 
 

We consider also the following Scenario 3, but with a different autono-
mous control. The parts first arrive at a common buffer. Then, when the i-
th machine completes service, it orders a part of type i from the buffer. If 
there are no parts of type i, it orders a part of the other type. One can say 
that in this scenario the machines are autonomously controlled. The ma-
chines decide which type of part to process next. One way to compare 
these three scenarios is via discrete event simulation, which we do before 
we turn to continuous models. 

Discrete-Event Simulation  

It is clear that the interesting case is a1<b11 and a2>b22. To perform the 
simulation we normalise the maximum arrival rate of the parts of the sec-
ond type to be one and set a1=1/24, b11=b22=1/16, b12=b21=1/20. The arri-
val rate of the second type is varied between 1/16<a2<1. The simulation 
result of a time period of 500 time units is presented in Figure 5, where the 
total amount of parts processed by both servers is plotted. Dashed, solid, 
and dotted lines correspond to Scenarios 1, 2, and 3, respectively. In the 
first scenario there are no decision rules, and hence the total throughput 
depends only on the processing rates, but not on the arrival rates. The sec-
ond scenario is more efficient than the first one for most choices of arrival 
rate a2. As expected, the third scenario has an even higher throughput than 
the first two. For longer interarrival times 1/a2 of parts of the second type 
all three graphs coincide. This is clear, since in this case the second ma-
chine can serve all arriving parts of the second type. 
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Fig. 5. Total throughput depending on the arrival rate of parts of second type 

The Continuous Model  

Let xi(t), yi(t) denote the number of parts of the first and second type, re-
spectively, waiting in buffer i. Denote by 0 pi(t) 1 the fraction of parts of 
type i that are routed to machine 1 at time t. The evolution of these state 
variables can be described by ordinary differential equations as 
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see [15]. The processing times of the machines are not constant but depend 
on the mixture of served parts, i.e., their fractions, which may change over 
time due to autonomous control of the parts. Moreover the processing rates 
are discontinuous functions of time and their expressions depend on the 
situation at the queues. If both queues are nonempty then 
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(see [15] for details). If the first buffer is empty, x1(t)+y1(t)=0, i.e., 
x1(t)=y1(t)=0, it holds that 
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The rules of autonomous control are encoded in the functions p1 and p2, 

which are in general functions of t, x1, x1, y1, y2 and, vice versa, given the 
rules of an autonomous control, the fractions p1, p2 can be calculated. For 
the Scenarios 2 and 3 the corresponding expressions can be found in [15]. 
Like the processing rates, so are their expressions different for different 
situations at the queues. Obviously, if both queues are non-empty at time t, 
then 

 
0)(and1)( 21 tptp  

 
hold. For x1(t)+y1(t)=0, x2(t)+y2(t)>0 one can derive 
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The corresponding expressions in the other cases, also for the third sce-

nario, can be found in [15]. We note that the autonomous control rules in 
these scenarios are assigned to the parts. One can also allow the machines 
to decide in which order to process the parts or how fast to process them. 
In the latter case the processing rates bij become functions of t, x1, x1, y1, y2. 
 

These simple examples illustrate how autonomous control can be de-
fined, how it enters the equations and how it affects the dynamic behaviour 
of a logistic network. 

Conclusions  

We have classified possible models for autonomous logistic processes and 
discussed how an autonomous control enters these models and what its ef-
fects on the dynamics and stability of the processes are. An example illus-
trates the answers to these questions. We discussed the advantages of 
autonomous control and pointed out the related stability problem. 
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