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Abstract: This paper focuses on the analysis of the dynamics that is caused by 
autonomously controlled logistic objects. On the one hand the introduction of 
autonomous logistic objects aims at the improvement of the systems stability 
and adaptability in situations of disturbances and/or external dynamics. This 
should be achieved by emergent effects and the interaction of the logistic 
objects. On the other hand this could cause different forms of dynamics like 
oscillations, quasi oscillations or even chaotic behaviour of the logistic target 
figures like throughput time and work in process. In this paper different 
autonomous control methods are compared using frequency analysis. It was 
discovered that different autonomous control methods can lead to different 
forms of dynamics which is of interest for planning and control systems that 
apply autonomous control methods.  
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1 Introduction 

Autonomous control is one of the large research trends in production planning and 
control and logistics in general (Armbruster, et al., 2006), (Hülsmann, et al., 2006), 
(Scholz-Reiter, et al., 2005). In this context, autonomous control means the 
decentralised coordination of intelligent logistic objects and the routing through a 
logistic system by the intelligent parts themselves, which is in accordance to the 
definition of autonomous control (Hülsmann, Windt, 2007).  
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The motivation for doing research on autonomous control is the assumption 
that by shifting the ability to render decisions to the logistic object itself, the 
adaptiveness, the flexibility and therefore the robustness as well as the performance 
of the logistic system could be enhanced. Research done by Ueda (Ueda, et al., 
1994), Prabhu and Duffie (Prabhu, Duffie, 1995) and van Brussel (van Brussel, et 
al., 1994) motivates this assumption. In earlier work, the authors have developed a 
discrete event simulation model to analyse the effects of different autonomous 
control strategies on the behaviour of a logistic system (Scholz-Reiter, et al., 2006). 
While the focus in this earlier work laid more on the performance and the stability 
of the logistic system, this paper deals with the influences of autonomous control 
strategies on the systems dynamics.    

2 Shop Floor Scenario and Simulation Model 

To compare the different autonomous control methods, a shop floor scenario is 
needed that allows for the application of autonomous control methods and is 
general enough to be valid for different scenarios and different classes of shop 
floor types. For these reasons, a shop floor model in matrix format has been chosen 
(Fig. 1). Subsequent productions steps are modelled vertically, while parallel 
stations are able to perform resembling processing steps.      

At the source the raw materials together with the orders for each product enter 
the system without any type of WIP control. Each product class has a different 
production plan, i.e. a list of processing steps that have to be fulfilled on the related 
machines. In case of overload the parts can decide autonomously to change the 
plan and to use a parallel machine instead. For rendering these decisions the parts 
follow predefined algorithms that are called autonomous control methods. The 
final products leave the system at the drain.  
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Fig. 1 Matrix model of a shop floor 
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The cycle time of a machine is set equally two hours for all part types. The 
transport times are regulary distributed between zero and one hour while the buffer 
size is infinite. Using the discrete event simulation software eM-Plant, the 
production logistic matrix model has been implemented to simulate different 
scenarios with different parameter constellations. Thereby the functionality of eM-
Plant has been expanded by programming methods that create automatically the 
different simulation scenarios of the MxN Matrix-Model such as different sized 
scenarios from 2x2 to 9x9 machines can be automatically created and are ready for 
simulation.  

The results in this paper are created using a 5x5 machines scenario. The 
scenario includes transportation times, i.e. to switch to a different machine takes an 
amount of time related to the distance between the machines.  

Furthermore, every part is given a due date following a normal distribution 
oriented on the mean throughput time that is determined from the first two months 
of simulation.   

3 Autonomous Control Strategies 

Queue length estimator 

The first method called queue length estimator compares the actual buffer level at 
all the parallel machines that are able to perform its next production steps, i.e. the 
direct succesors refering to its production plan. Therefore, the buffer content is not 
counted in number of parts but the parts are rated in estimated processing time and 
the actual buffer level are calculated as the sum of the estimated processing time on 
the respective machine. When a part has to render the decision about its next 
processing step it compares the current buffer level i.e. the estimated waiting time 
until processing and chooses the buffer with the shortest waiting time (Scholz-
Reiter, et al., 2005).  

Pheromone method 

The second method does not use information about estimated waiting time, i.e. 
information about future events but uses data from past events. This method is 
inspired by the behaviour of foraging ants that leave a pheromone trail on their way 
to the food. Following ants use the pheromone trail with the highest concentration 
of pheromone to find the shortest path to the food. In the shop floor scenario this 
behaviour is imitated in a way that whenever a part leaves a machine, i.e. after a 
processing step is accomplished, the part leaves information about the duration of 
processing and waiting time at the respective machine. The following parts use the 
data stored at the machine to render the decision about the next production step. 
The parts compare the mean throughput times from parts of the same type and 
choose the machine with the lowest mean duration of waiting and processing. The 
amount of data sets that are stored define the up-to-dateness of the information. 
This number of data sets can be used to tune the pheromone method. The 
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pelacement of older data sets resembles to the evaporation of the pheromone in 
reality (Scholz-Reiter, et al., 2006). 

Due date method 

The due date method is a two step method. When the parts leave a machine they 
use the queue length estimator to choose the machine with the lowest buffer level. 
Within the buffer the due dates of the parts are compared and the part with the 
most urgent due date is chosen to be the next product to be processed.  

4 Simulation and Analysis 

To model a highly dynamic market situation, the demand for the different products 
is set as an oscillating curve with situation of over and under load. A short extract 
of three month of the resulting arrival rate is shown in Fig. 2.a. Fig. 2.b shows the 
corresponding arrival rate if the parts enter the system with the same mean arrival 
rate but following a normal distribution. For these two different arrival 
characteristics the resulting dynamics caused by the three different autonomous 
control methods is analysed. Different forms of dynamics could be: 
 

• chaos or deterministic chaos means an aperiodic deterministic behaviour, 
which is very sensitive to its initial conditions, i.e. infinitesimal 
perturbations of boundary conditions for a chaotic dynamic system 
originates unpredictable variations of the systems behaviour 

• periodic behaviour of a system means that the system reaches the same 
values after some definite period of time.  

• quasiperiodic behaviour means that a system is showing periodic 
characteristics (with multiple frequencies) without ever exactly coming 
back to the same states (in phase space). 

• stochastic behaviour means that the system shows unpredictable 
fluctuations.  

 
To distinguish between the different forms of dynamics Fig. 3. shows extracts of 
the resulting throughput times for a simulation time of two months with sinussoidal 
input. Shown are the mean throughput times for one product for the three different 
autonomous control methods. The first month is cut of to avoid transient effects. 
Fig. 3.a shows the throughput time for the queue length estimator, Fig. 3.b shows 
the resulting throughput times for the pheromone method, Fig. 3.c shows the 
resulting throughput times for the due date method. To analyse the resulting 
dynamics of the system a frequency analysis of the time series as a discrete fourrier 
transformation has been done.  
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Fig. 2. Input, sinusoidal and stochastic 

There are many more tools in nonlinear time series analysis, but the frequency 
analysis is adequate to distinguish between periodic, quasi periodic and 
chaos/stochasticity. To distinguish between chaotic and stochastic dynamics is not 
possible with ordinary frecquency analysis and is not topic of this paper.   
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Times series of the throughput times 
for one product for a simulation time 
of two months.   
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Fig. 3. Throughput time for three different autonomous control strategies 

One realises that the time series of the pheromone method shows a periodic 
behaviour, while the time series of the queue length estimator and the due date 
method show a more complicated structure. Furthermore, the mean values and the 
variance of the time series from the pheromone method is significantly higher than 
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that of the queueu length  estimator which has also been analysed in earlier work 
(Scholz-Reiter, et al., 2006). The larger the amount of data is, the better are the 
results of the disctrete fourier transformation. Therefore a simulation time of three 
years has been chosen. Fig. 4. shows the corresponding power spectra of the 
throughput time series.  Power spectra answer the question which frequencies the 
signal contains. The answer is in the form of a distribution of power values as a 
function of frequency, where "power" is a relative amount correlated with the 
average of the signal. In the frequency domain, this is the square of the magnitude 
of the fourrier transformation. 
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Fig. 4. Fourrier transformation of the time series from Fig. 3 

 
Periods of 700h, 143h and 44h are found within the pheromone signal. The first 
and highest peak in the signal resembles the period of 700h or one month, which is 
the simulation period and which is identical with the period of the arrival rate. The 
other two dominating frequencies of 143h and 44h, which are approximately 2 and 
6 days, can not be explained by the incoming sinusoidal signal and could be called 
emergent.  

Emergent behaviour cannot be explained by the features of the single objects 
and are properties of the overall system that are caused by the interaction of the 
autonomous objects (Ueda, et al., 2004) (Küppers, Krohn, 1992). Here, the 
pheromone method gives no hint why the system should oscillate with a period of 
2 or 6 days. This oscillation can be only understood through the interaction of the 
parts via their surrounding, in this case the information that are left at the 
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machines. It seems to be that the parts oscillate between fast and not so fast 
solutions to get through the network which. This could be influenced by the 
evaporation constant which is a measurement of the up-to-dateness of the 
information that is used. This evaporation constant is a mean to tune the 
pheromone rule and its amount has an effect on the performance of the system 
(Peeters, et. al., 2001). The effects of the evaporation constant on the resulting 
dynamics will be one of the topics of future research.     

The power spectrum of the queue length estimator shows three dominating 
periods at 222, 143 and 63 hours. These frequencies can also not be explained by 
the oscillation of the arrival rate and have also to be called emergent. In this case, it 
is not clear how these frequencies depend on the arrival rate. The simulation period 
of 700 h does not appear because their is no update of information like in the 
pheromone rule so that the effect described in Peeters et. al. is not found here. 
Interesting is that the period of six days appears here again which gives a hint to a 
system inherent characteristic. Nevertheless, if the stochastic arrival rate is applied, 
the frequencies disappear and the system shows stochastic behaviour.   

In the spectrum of the due date method there can hardly be any single 
frequency peaks identified. In this case, the dynamics tend more to chaotic 
behaviour than in the other two cases. This shows that the ordering by due date 
limits the influence of the outside dynamics and results in chaotic behaviour when 
in a totally deterministic system a deterministic periodic signal is used as input.    

The stochastic arrival rate results for all the three methods in a stochastic 
behaviour and no single peaks in the power spectra could be observed.   

5 Conclusion and Outlook 

Analysing the dynamics of the time series that are caused by autonomous control 
methods give a hint to the behaviour of the overall system. In this paper we have 
discovered different forms of dynamics and different oscillating periods that can 
not be explained by the incoming oscillating arrival rate nor through the features of 
the single objects. This behaviour of the system can be called emergent, because it 
is caused by the interaction of the autonomous parts and can not be explained by 
the features of the single objects.   

The sinussoidal signal that is induced into the system via the arrival rate can 
cause periodical behaviour of the overall system. This is found for the pheromone 
method and for the queue length estimator. The due date method shows no 
periodical behaviour at all. But the interesting fact about the found oscillations are 
the emergent frequencies. Such periodic behaviour that is not predictable from the 
systems structure or the incoming dynamics is of great interest for planning and 
management decisions.  

The knowledge about the resulting dynamics is essential before transferring 
autonomous control strategies to real life systems, because unforeseen periodic or 
chaotic behaviour can cause serious problems and prevents the predictability of the 
system’s behaviour. Therefore, it is essential to know in advance what kind of 
dynamics is caused by which autonomous control method.  

Furthermore, the stochastic arrival rate has so far not shown any periodic 
behaviour in the resulting signals. Future work concentrates on finding scenarios 
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where autonomous control methods lead to periodical behaviour while no periodic 
signal is introduced in the system via external dynamics.    

6 Acknowledgements 

This research is founded by the German Research Foundation (DFG) as part of the 
Collaborative Research Centre 637 “Autonomous Cooperating Logistic Processes: 
A Paradigm Shift and its Limitations” (SFB 637) at the university of Bremen. 

7 References 

Armbruster D, de Beer C, Freitag M, Jagalski T, Ringhofer C (2006) Autonomous Control 
of Production Networks Using a Pheromone Approach. Physica A, 363(2006)1, pp. 104-
114 

Hülsmann M, Scholz-Reiter B, Freitag M, Wycisk C, de Beer C (2006) Autonomous 
Cooperation as a Method to cope with Complexity and Dynamics? – A Simulation based 
Analyses and Measurement Concept Approach. In: Bar-Yam, Y. et al. (eds.): 
Proceedings of the International Conference on Complex Systems (ICCS 2006). Boston, 
MA, USA, web-publication, 8 pages. 

Hülsmann M, Windt K (eds.) (2007): Understanding Autonomous Cooperation & Control in 
Logistics – The Impact on Management, Information and Communication and Material 
Flow. Berlin: Springer, forthcoming.  

Küppers G, Krohn W (1992) Selbstorganisation. Zum Stand einer Theorie in den 
Wissenschaften. In: Krohn W, Küppers G (Hrsg) „Emergenz: Die Entstehung von 
Ordnung, Organisation und Bedeutung“, 2. Aufl., Frankfurt/M .: Suhrkamp, S. 7-26. 

Peeters P, van Brussel H, Valkenaers P, Wyns J, Bongaerts L, Kollingbaum M, Heikkilä T 
(2001) Pheromone based emrgent shop floor control system for flexible flow shops. 
Artificial Intelligence in Engineering 15(4), pp.343-352. 

Prabhu VV, Duffie N (1995) Modelling and analysis of non-linear dynamics in autonomous 
heterarchical manufacturing systems control. Annals of the CIRP 44/1/1995,p. 425-429. 

Scholz-Reiter B, Freitag M, de Beer C, Jagalski T (2005) Modelling and analysis of 
autonomous shop floor control. Proceedings of the 38th CIRP International Seminar on 
Manufacturing Systems, Florianopolis, Brazil; CD-ROM 

Scholz-Reiter B, Freitag M, de Beer C, Jagalski T (2006) Modelling and Simulation of a 
Pheromon based Shop Floor Control. In: Cunha, P.; Maropoulos, P. (eds.): Proceedings 
of the 3rd International CIRP Sponsored Conference on Digital Enterprise Technology - 
DET2006 . University of Setubal, Setubal. 

Ueda K, Ohkura K (1994) A Modeling of Biological-oriented Manufacturing Systems with 
Two Types of Populations. Advancement of Intelligent Production, pp. 75-80. 

Ueda K, Lengyel A, Hatano, L (2004) Emergent Systhesis Approaches to control and 
planning in make to order manufacturing environments. In: Annals of the CIRP 
53(2004)1, pp. 385-388.  

Valckenaers P, Van Brussel H, Bonneville F, Bongaerts L, Wyns J (1994) Holonic 
Manufacturing Systems. Proceedings of the IFAC Workshop, IMS’94, Wien. 

 
 

Proc. of the 2nd Int. Conf. on Changeable, Agile, Reconfigurable and Virtual Production

280




