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Abstract: We consider strongly connected networks of input-to-state stable (ISS)
systems. Provided a small gain condition holds it is shown how to construct an
ISS Lyapunov function using ISS Lyapunov functions of the subsystems. The
construction relies on two steps: The construction of a strictly increasing path
in a region defined on the positive orthant in Rn by the gain matrix and the
combination of the given ISS Lyapunov functions of the subsystems to a ISS
Lyapunov function for the composite system.
Novelties are the explicit path construction and that all the involved Lyapunov
functions are nonsmooth, i.e., they are only required to be locally Lipschitz
continuous. The existence of a nonsmooth ISS Lyapunov function is qualitatively
equivalent to ISS.
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1. INTRODUCTION

In this paper we are interested in the stability
of a network of nonlinear input to state stable
(ISS) systems. A nonlinear small gain theorem for
networks of input-to-state stable (ISS) systems
was obtained in Dashkovskiy et al. (2007). Here
we provide a constructive method to find a nons-
mooth ISS Lyapunov function for a composite sy-
stem, when the ISS Lyapunov functions and non-
linear gains for the subsystems are all known. This
result is particularly useful, since the knowledge of
a Lyapunov function directly leads to knowledge
of invariant sets and allows for different controller
design methods, see, e.g., Khalil (1996). A main
step of the construction was already carried out in
Dashkovskiy et al. (2006c). Namely, it was shown
how to construct a nonsmooth ISS Lyapunov func-
tion, if a strictly increasing function σ : R+ → Rn

+

exists such that D(Γ(σ(t))) < σ(t) for all t > 0.
Here Γ is the gain matrix, and D is a diagonal
scaling operator. In Dashkovskiy et al. (2006c) the

existence of such a function was shown only for the
case of three interconnected systems. The case of
two systems in a feedback loop was considered
in Jiang et al. (1994) and the construction of
Lyapunov functions for this case was presented
in Jiang et al. (1996).

The small gain condition derived in Dashkovs-
kiy et al. (2007) leads to interesting invariance
properties of the map defined by Γ, which al-
low a construction of the desired σ. Here we are
going to construct a σ, that is differentiable al-
most everywhere. The overall Lyapunov function
is then obtained as a weighted maximum of the
ISS Lyapunov functions of the subsystems similar
to Jiang et al. (1996). As a consequence the con-
structed Lyapunov function is not differentiable,
so that we resort to nonsmooth formulations of
ISS Lyapunov functions. An alternative would be
to use a smooth approximation, which is possible
in principle. We avoid this as it does not add to
the understanding of our construction.
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In Proposition 12 we construct a piecewise linear
and strictly increasing function σs : [0, 1] → Rn

+

up to some predetermined radius, provided that
Γ is irreducible. If Γ is even primitive, then this
function can be extended to a function σ ∈ Kn

∞.
If Γ is only irreducible, this function σ can still be
defined, but under slightly stronger assumptions,
see Theorem 14.

2. NOTATION

Let K = {f : R+ → R+ : f is continuous, strictly
increasing and f(0) = 0} and K∞ = {f ∈ K :
f is unbounded}. A function β : R+ × R+ → R+

is of class KL, if it is of class K in the first
component and strictly decreasing to zero in the
second component.

A matrix Γ = (γij) ∈ (K∞ ∪ {0})n×n defines a
map on Rn

+ via Γ(s)i =
∑n

j=1 γij(sj), for s ∈ Rn
+,

in analogy to matrix vector multiplication.

The adjacency matrix AΓ = (aij) of a matrix
Γ ∈ (K∞∪{0})n×n is defined by aij = 0 if γij ≡ 0
and aij = 1 otherwise. We say that the matrix Γ
is primitive, irreducible or reducible if and only
if AΓ is primitive, irreducible or reducible. See
e.g. Berman and Plemmons (1979) for definitions.

On Rn
+ we use the partial order induced by the

positive orthant. For vectors x, y ∈ Rn
+ we define

x ≥ y : ⇐⇒ xi ≥ yi for i = 1, . . . , n,

x > y : ⇐⇒ xi > yi for i = 1, . . . , n, and
x 	 y : ⇐⇒ x ≥ y and x 6= y.

A map ∆ : Rn
+ → Rn

+ is monotone if x ≤ y implies
∆(x) ≤ ∆(y). Clearly Γ ∈ (K∞∪{0})n×n induces
a monotone map. For Γ : Rn

+ → Rn
+, ∆ : Rn

+ →
Rn

+ we write Γ ≥ ∆ if for all x ∈ Rn
+ we have

Γ(x) ≥ ∆(x). Similarly, we write Γ � ∆, Γ > ∆,
respectively Γ 	 ∆, if for all x ∈ Rn

+ \ {0} we
have Γ(x) � ∆(x), Γ(x) > ∆(x), respectively
Γ(x) 	 ∆(x). Here x � y means that for at least
one component i the inequality xi < yi holds.

For monotone maps Γ on Rn
+ we define the follo-

wing sets:

Ω(Γ) = {x ∈ Rn
+ : Γ(x) < x},

Ωi(Γ) = {x ∈ Rn
+ : Γ(x)i < xi},

Ψ(Γ) = {x ∈ Rn
+ : Γ(x) ≤ x}.

If no confusion arises we will omit the reference
to Γ. Note that for general monotone maps we
have Ω ( Ψ, but for Γ ∈ (K∞ ∪ {0})n×n we have
equality.

By | · | we denote the 1-norm on Rn and by Sr the
induced sphere of radius r in Rn intersected with
Rn

+, which is an n-simplex. By Uε(x) we denote
the open neighborhood of radius ε around x with
respect to the Euclidean norm ‖ · ‖.

For our construction we will need the notions of
proximal subgradient and nonsmooth ISS Lyapu-
nov functions, c.f. Clarke et al. (1998), Clarke
(2001). Also we need some results from nonsmooth
analysis.

Definition 1. A vector ζ ∈ RN is a proximal
subgradient of a function φ : RN → (−∞,∞] at
x ∈ RN if there exists a neighborhood U(x) of x
and a number σ ≥ 0 such that

φ(y) ≥ φ(x) + 〈ζ, y − x〉 − σ|y − x|2 ∀y ∈ U(x).

The set of all proximal sub-gradients at x is the
proximal sub-differential of φ at x and is denoted
by ∂P φ(x).

3. INPUT-TO-STATE STABILITY

We consider a finite set of interconnected systems

Σi : ẋi = f(x1, . . . , xn, u), fi : RN+M → RNi ,
(1)

i = 1, . . . , n, where xi ∈ RNi , u ∈ RM ,
∑

Ni = N .

If we consider one of the systems, indexed by i,
and interpret the variables xj , j 6= i, and u as
unrestricted inputs, then this system is assumed
to have unique solutions defined on [0,∞) for
all L∞-inputs xj : [0,∞) → RNj , j 6= i, and
u : [0,∞) → RM .

We write the interconnection of systems (1) as

Σ : ẋ = f(x, u), f : RN+M → RN , (2)

where x = (xT
1 , . . . , xT

n )T .

We will impose ISS conditions on the subsystems
given by (1) and we are interested in conditions
guaranteeing ISS of the interconnected system (2).
To this end we will construct an ISS Lyapunov
function for (2).

Definition 2. (ISS Lyapunov function). A smooth
function V : RN → R+ is an ISS Lyapunov func-
tion of (2) if there exist ψ1, ψ2 ∈ K∞, χ ∈ K∞,
and a positive definite function α such that

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), ∀x ∈ RN , (3)

V (x) ≥ χ(|u|) =⇒ ∇V (x) · f(x, u) ≤ −α(V (x)).
(4)

The function χ is called a Lyapunov-gain. Sy-
stem (2) is input-to-state stable (ISS) if it has an
ISS Lyapunov function.

It is well known, see Sontag and Wang (1996),
that the existence of an ISS Lyapunov function is
equivalent to the system being ISS in the following
sense:

There exist β ∈ KL and γ ∈ K∞ such that for all
initial conditions x0 ∈ RN and all L∞-inputs u(·)
it holds that



|x(t)| ≤ β(|x0|, t) + γ(‖u‖∞), for all t ≥ 0. (5)

In our context we need a notion of ISS Lyapunov
functions that avoids the assumption of differen-
tiability. This is just a reformulation of (4).

Definition 3. A continuous function V : RN →
R+ is a nonsmooth ISS Lyapunov function of
system (2) if there exist functions ψ1, ψ2 of class
K∞ such that V satisfies (3) and such that there
exists a positive-definite function α : R+ → R+

and a class K∞-function χ such that

sup
u: V (x)≥χ(|u|)

〈f(x, u), ζ〉 ≤ −α(V (x)), (6)

for all ζ ∈ ∂P V (x), and all x 6= 0.

Here ∂P V (x) denotes the proximal subgradient of
V at x. See also (Clarke et al., 1998, p. 188 and
Theorem 4.6.3). Note that if V is locally Lipschitz
continuous then almost everywhere in RN we have
(4) if (6) holds. Conversely and still assuming that
V is locally Lipschitz, if (4) holds at every point
of differentiability of V , then (6) is true.

Clearly ISS in the sense of (5) implies the exi-
stence of a nonsmooth ISS Lyapunov function.
The converse is also true:

Theorem 4. Let V be a nonsmooth ISS Lyapunov
function as in Definition 3 for System (2). Then
there exist β ∈ KL and γ ∈ K, such that (5) holds,
i.e., system (2) is ISS in the “original sense”.

The proof works as the in the known smooth case
and is omitted for reasons of space.

In analogy to Definition 2 we extend the ISS
notion to the subsystems: We say that the sub-
systems defined by (1) are ISS, if for i = 1, . . . , n
there exist smooth ISS Lyapunov functions Vi :
RNi → R+ and functions ψ1i, ψ2i ∈ K∞, χij ∈
(K∞ ∪ {0}), and χi ∈ K∞, and positive definite
functions αi such that

ψ1i(|xi|) ≤ Vi(xi) ≤ ψ2i(|xi|), ∀xi ∈ RNi , (7)

and all xi ∈ RNi

Vi(xi) ≥
∑

j 6=i

χij(Vj(xj)) + χi(|u|)

=⇒ ∇Vi(xi) · fi(x, u) ≤ −αi(Vi(xi)).
(8)

The functions χij are called ISS Lyapunov gains
or simply gains, if no confusion arises.

We refer to the subsystems (1) with their respec-
tive ISS Lyapunov functions satisfying (7) and (8)
as a network of ISS systems. The questions is,
whether the composite system (2) is ISS from u
to x.

Consider the network of ISS systems given by (1).
Setting χii ≡ 0, i = 1, . . . , n, the gain functions
χij give rise to an n× n-gain matrix

Γ := (χij) ∈ (K∞ ∪ {0})n×n.

Associated to such a network is a graph, whose
vertices are the systems and its directed edges
(i, j) correspond to inputs going from system j
to system i. We will call the network strongly
connected if its graph is.

4. MAIN RESULTS

We construct an ISS Lyapunov function under the
assumption, that the network is strongly connec-
ted, or equivalently, that Γ is irreducible.

Theorem 5. (Lyapunov-type small gain theorem).
Consider a strongly connected ISS network as
in (1), (7), and (8). Assume there exists a class
K∞-function η such that for D = diagn(id + η)
we have

D ◦ Γ(s) � s, ∀s ∈ Rn
+, s 6= 0. (9)

Then there exists an ISS Lyapunov function for
system (2).

Remark 6. For the case of two systems in a feed-
back loop condition (9) is equivalent to the small
gain condition derived in Jiang et al. (1994), see
also Dashkovskiy et al. (2007).

The proof relies on two steps. First we construct
a piecewise linear σ ∈ Kn

∞ with trace in Ω(D ◦
Γ) ∪ {0} for a suitable diagonal operator D =
diagn(id + α), α ∈ K∞. Namely, such that for
i = 1, . . . , n

σi(t) > (id + α)
( n∑

j=1

χij(σj(t))
)
, ∀t > 0. (10)

The second step was done in (Dashkovskiy et al.,
2006c, Theorem 6), which we quote as

Proposition 7. Consider an ISS network as in (1),
(7), and (8). For each subsystem Σi, i = 1, . . . , n,
let Vi be an ISS Lyapunov function satisfying (7)
and (8). Assume there exists a diagonal operator
D = diagn(id + α), α ∈ K∞, and a locally
Lipschitz path in Rn

+ parameterized by σ ∈ Kn
∞,

satisfying σ(t) ∈ Ω(D ◦ Γ) for all t > 0 and
(σ−1

i )′(t) > 0 for almost all t > 0, i = 1, . . . , n.
Then the composite system (2) is ISS with ISS
Lyapunov function

V (x) := max
i
{σ−1

i (Vi(xi))}. (11)

Note that by definition the Lyapunov function
defined in (11) is not smooth, so that we are



constructing an ISS Lyapunov function in the
sense of Definition 3. Before proving Theorem 5
we develop some theory for matrices in (K∞ ∪
{0})n×n.

Lemma 8. Let Γ ∈ (K∞ ∪ {0})n×n be such that
Γ has no zero rows. Then 0 < r < s ∈ Rn

+ implies
Γ(r) < Γ(s).
If Γ is primitive, then there is a k only depending
on Γ such that s � t already implies Γk(s) <
Γk(t).

Proof. Just compare Γ(r)i with Γ(s)i. These are∑n
j=1 γij(rj) and

∑n
j=1 γij(sj), respectively. Since

Γ has no zero rows, both sums are non vanishing,
and from rj < sj , for j = 1, . . . , n, we deduce that
the first sum is strictly less than the second.
For the second assertion we consider the adjacency
matrix AΓ = (aij) of Γ. Since AΓ is primitive,
there exists a k > 0 such that Ak

Γ > 0. It is easy
to check, that this is equivalent to t 7→ (Γk(t ·
ej))i ∈ K∞ for all i, j = 1, . . . , n. This proves the
lemma. 2

Now we state some useful properties of the sets Ψ
and Ω.

Lemma 9. Assume Γ ∈ (K∞ ∪ {0})n×n is such
that Γ � id. Then
(i) for all r > 0 we have Ω ∩ Sr 6= ∅.
(ii) If Γ has no zero rows, then Γk+1(Ω) ⊂ Γk(Ω) ⊂
Ω for all k ≥ 0.
(iii) Γk+1(Ψ) ⊂ Γk(Ψ) ⊂ Ψ for all k ≥ 0. All these
sets are closed.
(iv) For all k ≥ 0 the sets Γk(Ω)∪{0}, and Γk(Ψ)
are pathwise connected.
(v) If Γ is irreducible, the set Ψ∞ := Ψ∞(Γ) :=⋂∞

k=0 Γk(Ψ) is non-empty, and satisfies Ψ∞∩Sr 6=
∅ for all r > 0.
(vi) If Γ is primitive, then there exists a k > 0
such that (Γk(Ψ) \ {0}) ⊂ Ω.
(vii) If Γ is irreducible and there exists a K∞-
function α, such that for D = diagn(id + α) we
have Γ ◦D � id, then Γ(Ψ(Γ ◦D)) \ {0} ⊂ Ω(Γ).

A qualitative picture of (i) can be seen in Figure 1.

For the proof of this lemma we need the following:

Theorem 10. (Knaster,Kuratowski,Mazurkiewicz).
Let ∆n denote the unit n-simplex, and for a face
σ of ∆n let σ(0) denote the set of vertices of σ.

If a family {Ai|i ∈ ∆(0)
n } of subsets of ∆n is such

that all the sets are closed or all are open, and each
face σ of ∆n is contained in the corresponding
union

⋃{Ai|i ∈ σ(0)}, then ∩iAi 6= ∅.

Remark 11. The original proof for closed sets was
given in Knaster et al. (1929), while the formu-

Ω1

Ω2

Ω3

Fig. 1. The set Ω1 ∩ Ω2 ∩ Ω3 ∩ Sr in R3
+.

lation above is taken from Horvath and Lassonde
(1997) and was proved in Lassonde (1990).

Proof of Lemma 9. Some of this can also be found
in Dashkovskiy et al. (2006b).

(i) Note that Sr for r > 0 is a simplex with
vertices r · ei, i = 1, . . . , n. Each (nonempty)
face spanned by r · ei, i ∈ I ⊂ {1, . . . , n}, ful-
fills the assumptions of the Knaster-Kuratowski-
Mazurkiewicz theorem, see Dashkovskiy et al.
(2007). I.e., it is contained in the union

⋃
I(Ωi ∩

Sr). Then the KKM-theorem implies that
⋂n

1 (Ωi∩
Sr) 6= ∅.
(ii) Let s ∈ Γ(Ω), i.e., s = Γ(r) for some r ∈ Ω,
that is, Γ(r) < r. If Γ has no zero rows, then this
implies Γ(s) = Γ2(r) < Γ(r) = s, i.e., s ∈ Ω. The
claim follows by induction.

(iii) This may be shown as in (ii).

(iv) Let s ∈ Ω, then limk→∞ Γk(s) = 0 because
Γk+1(s) < Γk(s) < . . . < s, is a monotone
sequence. Its limit point s∗ is a fixed point for
Γ, hence s∗ = 0.
Now consider λ ∈]0, 1[ and let z = (1−λ)Γ(s)+λs.
Clearly Γ(s) < z < s. Now apply Γ to obtain
Γ2(s) < Γ(z) < Γ(s) < z < s. Hence z ∈ Ω and by
varying λ from 0 to 1 we get a line segment from
Γ(s) to s. This interpolation may be performed for
all pairs Γk+1(s) < Γk(s). In this way we construct
a piecewise linear strictly increasing path from
s to 0. As s ∈ Ω was arbitrary this shows the
assertion. The argument for Ψ is of course exactly
the same.

To complete the proof, for each r = Γk(s) ∈ Γk(Ω)
we may choose a path σ in Ω from s to 0. By (ii) it
follows that Γk(σ) is a continuous path from r to 0.
This shows the assertion and the same argument
applies to Γk(Ψ), of course.

(v) Since Ψ is nonempty and closed, so are all
Γk(Ψ) by continuity of Γ. Furthermore, the sets
Γk(Ψ) are unbounded. As each s ∈ Γk(Ψ) may



be connected by a continuous path to 0 it follows
that Sr ∩ Γk(Ψ) 6= ∅ for all r > 0, k ≥ 0.

As Γk+1(Ψ) ⊂ Γk(Ψ) for all k ≥ 0 using a stan-
dard compactness argument we have

⋂
k≥0 Γk(Ψ)∩

Sr 6= ∅ for all r > 0.

(vi) First check, that in full analogy to adjacency
matrices A, where there exists a k > 0 such that
the entry a

(k)
ij > 0 of Ak is positive for every

i, j = 1, . . . , n, there exists a k > 0, such that
t 7→ Γk(t ·ej)i is of class K∞ for all i, j = 1, . . . , n.
Hence Γ(s) � s (and hence s 6= 0) implies
Γk+1(s) < Γk(s), because the strict inequality
in one component is propagated to every other
component.

(vii) This may be seen as in (vi). 2

This lemma will be an essential ingredient for the
strict monotonicity of the path σ that we want to
construct.

An intermediate result is the following, that al-
ready implies a semi-global version of Theorem 5,
where semi-global means “on arbitrarily large
compact sets around the origin”.

Proposition 12. Let Γ ∈ (K∞ ∪ {0})n×n, Γ � id,
be such that Γ has no zero rows. For every s ∈ Ω
there exists a continuous and strictly increasing
vector function σs : [0, 1] → (Ω ∪ {0}) ∩B1(0, |s|)
with σs(0) = 0 and σs(1) = s. Moreover, each
component function is piecewise linear on every
interval of the form [ε, 1], ε > 0.

Figure 2 shows what this looks like in two dimen-
sional space.

Ω
s

Γ(s)

Γ2(s)Γ3(s)

Fig. 2. The path σs in Ω(Γ) in R2
+ can be chosen

to be piecewise linear.

Proof. This construction was performed in the
proof of Lemma 9 (iv), see Dashkovskiy et al.
(2006a) for further details. 2

This gives one direction of the path, the other
direction is given next.

Theorem 13. Let Γ ∈ (K∞ ∪ {0})n×n, Γ � id, be
primitive. Then there exists a piecewise linear and
strictly increasing vector function σ : R+ → Ω ∪
{0} with σ(0) = 0 and limt→∞ σ(t) = ∞, i.e., the
component functions are of class K∞.

Proof. By Lemma 9 (vi) we have Ψ∞ ⊂ Ω ∪ {0}.
Combining the results of Proposition 12 and
Lemma 9 we start with σs : [0, 1] → Ψ∞, where
σs(1) = s ∈ Ψ∞ and σs is piecewise linear.

Since we may always pick a preimage in Ψ∞ we
extend σs to a function σ on R+ by defining
σ|[0,1] = σs and

σ|]1,∞[(t) = (1−t+btc)Γ1−btc(s)+(t−btc)Γ−btc(s).
It remains to prove unboundedness of the compo-
nent functions. Assume σ is bounded. Since σ is
non decreasing, there must exist a limit point

s∗ := lim
k→∞

σ(k) = lim
k→∞

Γ(σ(k)) = Γ(s∗),

but since σ(1) > 0 and σ is non decreasing, and
hence s∗ > 0, this contradicts Γ � id.

So there exists at least one unbounded component
of σ, without loss of generality this is the first one.
From irreducibility (primitive matrices are also
irreducible) we deduce that there exists another
unbounded component and inductively we obtain
that all components are unbounded.

It follows that the vector function σ constructed
above fulfills σ(t) ∈ Ω for all t > 0 and by the same
argument as in the proof of Proposition 12 the
component functions of σ are strictly increasing
and hence of class K∞. 2

This theorem provides a Kn
∞-function σ that sa-

tisfies

Γ(σ(t)) < σ(t), for all t > 0,

for the case that Γ is primitive. Of course, pri-
mitivity is quite a restrictive assumption for the
topology of the network, that we look at, not every
strongly connected network satisfies this assump-
tion. Thus we need to extend the statement to
irreducible Γ.

Now the aim is to extend this result to just
strongly connected networks. So we have to find
such a function σ for irreducible Γ. Recall, that in
Theorem 5 we are also given a diagonal operator
D and the stronger assertion Γ◦D � id instead of
Γ � id. (It is easy to see that D ◦ Γ � id and
Γ ◦ D � id are equivalent, Dashkovskiy et al.
(2006b)). This will come in handy in the next
statement.

Theorem 14. Let Γ ∈ (K∞ ∪ {0})n×n be irreduci-
ble and assume there exists a function α ∈ K∞,
such that for D = diagn(id + α) we have Γ ◦



D � id. Then there exists a locally Lipschitz and
strictly increasing vector function σ : R+ → Ω(Γ)
with σ(0) = 0 and limt→∞ σ(t) = ∞, i.e., the
component functions are of class K∞.

Proof. First note that ΨΓ◦D
∞ :=

⋂
k≥0(Γ◦D)k(Ψ(Γ◦

D)) ⊂ Ω(Γ) because of Ψ(Γ ◦ D) ⊂ Ω(Γ). The
set ΨΓ◦D

∞ has all the nice properties as Ψ∞ in
Lemma 9. Hence for s ∈ ΨΓ◦D

∞ ⊂ Ω(Γ) there
exists an ascending sequence {zk}k≥0 ⊂ ΨΓ◦D

∞ ,
satisfying

z0 = s and (12)
zk = Γ ◦D(zk+1) � zk+1 for all k ≥ 0. (13)

One can easily check that this sequence is un-
bounded in every component (as in the proof of
Theorem 13).

The rest of the construction is similar to the
construction of σs, but it is technical to make σ
strictly increasing. This part is omitted for reasons
of space, but can be found in Dashkovskiy et al.
(2006a). 2

Remark 15. The functions σ ∈ Kn
∞ that we con-

structed in Theorems 13 and 14 are possibly not
smooth on a discrete set in ]0,∞[. Nevertheless,
for each i = 1, . . . , n, the derivative σ′i of σi is
positive, except on this discrete set. This in par-
ticular implies (σ̃−1

i )′(t) > 0 for almost all t > 0
and i = 1, . . . , n.

Proof of Theorem 5. Just combine the statements
of Proposition 7 and Theorem 14:

Recall that D ◦ Γ � id if and only if Γ ◦D � id.
We may always decompose D into two diagonal
operators D1, D2, see Dashkovskiy et al. (2006a),
such that D1 ◦D2 = D, whereby D1, D2 are also
of the form diagn(id + αi), αi ∈ K∞, i = 1, 2.

So we have D1 ◦ Γ ◦ D2 � id, which we write
Γ̃ ◦ D2 � id. Now apply Theorem 14 to obtain a
Kn
∞-function σ, satisfying

D1 ◦ Γ(σ(t)) = Γ̃(σ(t)) < σ(t), for all t > 0.

It remains to apply Proposition 7. 2

5. CONCLUSIONS

We have constructed a nonsmooth ISS Lyapunov
function for strongly connected networks of ISS
systems. The resulting ISS Lyapunov function
is a combination of the ISS Lyapunov functions
of the subsystems. The path in Rn

+ required for
this combination was explicitly constructed for
strongly connected networks.
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