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Abstract We provide a generalized version of the nonlinear small gain theorem for
the case of more than two coupled input-to-state stable systems. For this result the
interconnection gains are described in a nonlinear gain matrix, and the small gain
condition requires bounds on the image of this gain matrix. The condition may be
interpreted as a nonlinear generalization of the requirement that the spectral radius
of the gain matrix is less than 1. We give some interpretations of the condition in
special cases covering two subsystems, linear gains, linear systems and an associated
lower-dimensional discrete time dynamical system.

Keywords Interconnected systems - Input-to-state stability - Small gain theorem -
Large-scale systems - Monotone maps

1 Introduction

Stability is one of the fundamental concepts in the analysis and design of nonlinear
dynamical systems. In particular, the notions of input-to-state stability (ISS) and non-
linear gains have proved to be efficient tools for the qualitative description of stability
of nonlinear control systems. There are different equivalent formulations of ISS: In
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terms of KL and K, functions (see below), via Lyapunov functions, as an asymptotic
stability property combined with asymptotic gains, and others, see [27]. A more quan-
titative but equivalent formulation, which captures the long-term dynamic behavior of
the system, is the notion of input-to-state dynamical stability (ISDS), see [9].

One of the interesting properties in the study of ISS systems is that under certain
conditions ISS is preserved if these systems are connected in cascades or feedback
loops. In this paper we generalize the existing results in this area. In particular, we
obtain a general condition that guarantees ISS of a general system described as an
interconnection of several ISS subsystems.

The earliest interconnection result on ISS systems states that cascades of ISS sys-
tems are again ISS, see e.g., [24-26]. Furthermore, small gain theorems for the case
of two ISS systems in a feedback interconnection have been obtained in [9,13,14].
These results state in one way or another that if the composition of the gain functions
of ISS subsystems is smaller than the identity, then the overall system is ISS.

The papers [9, 13, 14] use different approaches to the formulation of small gain con-
ditions that yield sufficient stability criteria: In [13] the proof is trajectory-based and
uses properties of KL and K, functions. This approach requires that the composition
of the gains is smaller than the identity in a robust sense, see below for the precise
statement. We show in Example 18 that within the context of the summation formula-
tion of ISS the robustness condition cannot be weakened. The ISS result of [13] will
turn out to be a special case of our main result. That paper also covers practical ISS
results, which we do not treat here. An ISS-Lyapunov function for the feedback sys-
tem is constructed in [14] as some combination of the corresponding ISS-Lyapunov
functions of both subsystems. The key assumption of the proof in that paper is that the
gains are provided in terms of the max-formulation of ISS, by which the authors need
not resort to a robust version of the small gain condition. The proof of the small gain
theorem in [9] is based on the ISDS property, and conditions for asymptotic stability
of the feedback loop without inputs are derived.

General stability conditions for large-scale interconnected systems have been
obtained by various authors in other contexts. In [20] sufficient conditions for the
asymptotic stability of a composite system are stated in terms of the negative definite-
ness of some test matrix. This matrix is defined through the given Lyapunov functions
of the interconnected subsystems. Similarly, in [22] conditions for the stability of
interconnected systems in terms of Lyapunov functions of the individual systems are
obtained.

In [23] Siljak considers structural perturbations and their effects on the stability of
composite systems using Lyapunov theory. The method is to reduce each subsystem
to a one-dimensional one, such that the stability properties of the reduced representa-
tion imply the same stability properties of the original interconnected system. In some
cases the lower dimensional representation gives rise to an interconnection matrix W,
such that quasi-dominance or negative definiteness of W yield asymptotic stability of
the composite system.

In [32] small gain type theorems for general interconnected systems with linear
gains can be found. These results are of the form that the spectral radius of a gain
matrix should be less than 1 to conclude stability. The result obtained here may be
regarded as a nonlinear generalization in the same spirit.
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In [29] Teel gives a small gain theorem for systems with outputs satisfying an ISS-
related stability property and having saturated interconnections. Here, it is also shown
how this result may be used in a large variety of specific control applications. In [30]
Razumikhin-type theorems for functional differential equations are derived, which are
based on the ISS small gain theorems in [13] and [29].

In this paper we consider a system that consists of two or more ISS subsystems.
We provide conditions by which the stability question of the overall system can be
reduced to consideration of stability of the subsystems. We choose an approach using
asymptotic gains and global stability to prove the ISS stability result for general inter-
connected systems. The generalized small gain condition we obtain is, that for some
monotone operator I related to the gains of the individual systems the condition

[(s)#s (1)

holds forall s > 0, s # 0 (in the sense of the component-wise ordering of the positive
orthant). We discuss interpretations of this condition in Sect. 5.

In [4-7] the authors prove that condition (1) is also sufficient for the existence of an
ISS Lyapunov function for interconnections of ISS subsystems. An explicit construc-
tion of this Lyapunov function in terms of the Lyapunov functions of the subsystems
is described and a numerical algorithm for the construction is provided.

While the general problem of establishing ISS for networks of ISS systems can be
approached by repeated application of the cascade property and the known small gain
theorem, in general this can be cumbersome and it is by no means obvious in which
order subsystems have to be chosen to proceed in such an iterative manner. Hence an
extension of the known small gain theorem to larger interconnections is needed. In
this paper we obtain this extension for the general case.

The paper is organized as follows. In Sect. 2 notation and necessary concepts are
introduced. The problem is stated in Sect. 3. In Sect. 4 we prove the main result,
which generalizes the known small gain theorems, and consider the special case of
linear gains. In Sect. 5 the small gain condition of the main result is discussed and we
show in which way it may be interpreted as an extension of the linear condition that the
spectral radius of the gain matrix has to be less than 1. It is shown that the small gain
condition is intimately related to the stability of a discrete time monotone dynamical
system defined using the gain matrix. Section 6 concludes this work. In the Appendix
we recall some relations between non-negative matrices and directed graphs.

2 Preliminaries

Notation By xT we denote the transpose of a vector x € R". In the following we
denote R4 := [0, 00). For x, y € R", we use the standard partial order induced by
the positive orthant. It is given by

x>y & xi>y,i=1,...,n, and x>y & x;j>y, i=1,...,n (2)

By R, we denote the positive orthant {x € R" : x > 0}.
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For nonempty index sets I, J C {1, ..., n} we denote by #I the number of elements
of I and by y; the restriction
yi = i)iel

for vectors y € R’,. Let P; denote the projection of R’ onto R’f mapping y to yj,
and R; the anti-projection R’f — R, defined by

#J
X = Zxke s
k=1
where {ex }r=1....» denotes the standard basis of R"” and J is

J={j1,..., jgs}, with ji < jes1, k=1,...,#J — 1.

This allows to define the restriction A7 : R%/ — R*/ of amapping A : R”. — R".
byA[J =Py OAORJ.
For a function v : R4 — R we define its restriction to the interval [sy, s3] by

v(t) ift € [s1, s2],
0 otherwise.

Ulsy,s2] (t) = [

Definition 1 (i) A function y : Ry — Ry is said to be of class X if it is contin-
uous, strictly increasing and y (0) = 0. It is of class K if, in addition, it is
unbounded.

(i) A function 8 : Ry x Ry — Ry is said to be of class KL if, for each fixed ¢,
the function S(-, t) is of class K and, for each fixed s, the function B(s, -) is
non-increasing and tends to zero for t — oo.

Let | - | denote some norm in R”, and let in particular |x|ynax = max; |x;| be the max-
imum norm. The essential supremum norm on essentially bounded functions defined
on R is denoted by | - ||co-

Stability concepts Consider a system
x=f(x,u), xeRY, ueRM, 3)

such that for all initial values £ and all essentially bounded measurable inputs u unique
solutions exist for all positive times. We denote these solutions by x(-; &, u).

Definition 2 (input-to-state stability) The system (3) is called input to state stable
(ISS), if there exist functions B of class KL and y of class K, such that the inequality

Ix(z: &, w)| < BUEL 1) + v (lulloo)

holds forallr > 0,& € RN u: Ry — RM measurable and essentially bounded.
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Definition 3 (asymptotic gain) System (3) has the asymptotic gain (AG) property,
if there exists ¥y € K, such that for all initial states & € RY and all u() €
L®([0, c0); RM) the estimate

litmsup lx(t, &, u)] < y(llulloo) “

holds.

The asymptotic gain property states, that every trajectory must ultimately stay not far
from zero, depending on the magnitude of ||u||sc-
Note that (4) is equivalent to

limsup|x (¢, &, u)| < y(ess. limsup,_, |u(?)|) = ess. limsup,_, .y (lu(®)]), (5)

11— 00
see [27].

Definition 4 (global stability) System (3) has the global stability (GS) property, if
there exist o1, 0» € Koo, such that for all initial states £ € RV, all + > 0, and all
u(-) € L*®([0, 00); RM) the estimate

|x(z, &, w)| < o1(1§D) + o2(]lu]|0) (6)
holds.

Definition 5 The system (3) is said to be globally asymptotically stable at zero (0-
GAS), if there exists a 8 € KL, such that for all initial conditions & € RN

lx(2; &, 0)] < B(&L 1). (N

Thus 0-GAS holds, if, when the input u is set to zero, the system (3) is globally
asymptotically stable at x* = 0.

By a result of Sontag and Wang [27] the asymptotic gain property and global
asymptotic stability at O together are equivalent to ISS.

3 System interconnection
Consider n interconnected control systems given by

)'Cl = fl(xl,...,xn,u)
: (@)

Xn = fu(x1, ..., Xp, u)
n . .. .
where x; € RV, u € RM and f; : R2j=1 Ni+M _, RN is continuous and for all

r € Ry it is locally Lipschitz continuous in x = (xlT, ey x; )T uniformly in u for
lul <r.
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Here x; is the state of the ith subsystem, and u is considered as an external control
variable.

Without loss of generality we may assume to have the same input for all systems,
because we may consider u as partitioned u = (u1, ..., u), such that each u; is the
input for subsystem i only. Then each f; is of the form f; (..., u) = f,-(. .., Pi(w)) =
fi (..., u;) with some projection P;.

If we consider individual systems, we treat the state x;, j # i as an independent
input for x;. Thus, we call the ith subsystem of (8) ISS, if there exist functions f; of
class XL and y;;, yi € X U {0} with y;; = 0, such that the solution x; (¢) starting at
x; (0) satisfies

(0] < B O 1) + D 1134 1l1s0) + ¥ (lull0) ©)

j=1

for all + > 0. We write I''SS = (y, 7). The functions y;; and y; are called (nonlinear)
gains.

We also need GS and AG definitions for the subsystems:

Subsystem i of (8) is AG, if there exist y;;, yi, € Koo U{0}, ;i =0, =1,...,n,
such that

lim suplx; (£, &5 x; (), j # i, u()] < Zyij(”xjnoo) +vi(llulloo), — (10)

—00
J

and it is GS, if there exist yy;, 02;j, 03; € Koo U {0}, 02;; = 0,1, j =1,...,n, such
that

lxi(t, & x;(), j #i,u()| <o (&) + ZUZij(”xjHoo) + y3i(llulleo), (1D

J

where both (10) and (11) are supposed to hold forall £ € RNi;u(-) € L*®([0, o0); RM)
and x;(-) € L*([0, 0o); RNi) forall j #iandall > 0.

We denote I'4C = (yij)?jzl and I'6S = (02ij)?j=1~ Let I" be one of I'SS, AG,
or I"SS. This matrix is referred to as gain matrix.

Note that I" defines in a natural way amap I" : R’} — R’ by

T

n n
I (1)) = [ D76 D vai(s)) (12)
j=1 j=1
fors = (s1,....80)" € R’ . Note that by the properties of y;; for 51,5, € R we
have the implication
s1 =852 = I'(s1) 2 I'(s2), (13)

so that I" defines a monotone operator on R, .
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For vector valued functions x = (x],...,xDT : Ry — RMT+Nu guch that
xi Ry — RN j=1,...,n,and times 0 < #; < o, r > 0 we define
11, (1,121 1l oo [x1(0)]
| x| == : eRY and |x()]:= : e RY.
||xn,[t1,t2]”oo [x, ()]

For u(-) € L>®([0, 0o); RM), finite times r > 0, and for s € R we introduce the
abbreviating notation

yilulioo) Bi(s1. 1)
Y (lulleo) := : €RL and B(s,1):= : .
Ya(llulloo) B (Sn, 1)

where y1, ..., ¥» come from (9) or (10) and B; from (9).
Now we can rewrite the ISS conditions (9) of the subsystems in a vectorized form
fort > 0 as

IxO1 < BAx O] ) + TS5(| xp0.1 [P + v Ululloo)- (14)

The AG conditions now reads

lim sup|x ()] < I29(| x(0,001 [P + ¥ (1llo). (15)
11—

where this time y denotes the vector [y, ..., y,,]T corresponding to (10).
For the GS assumption we obtain

IxOl < o1AgD + T (| x0. [P + v3Ululioo). (16)

where o1 ([E]) = (o11(I&1D), .., 01, (1€ and y3(luller) = (31(llelloo)s - -

Van(lulloo)) T
Assuming each of the subsystems of (8) to be ISS, we are interested in con-

ditions guaranteeing that the whole system defined by x = (xlT, cee x,f )T, f =
(FT,..., fN" and
x = f(x,u) (17)
is ISS (from u to x).
Remark 6 (Additional Preliminaries) We also need some notation from lattice theory,
cf. [28] for example.
Let (R”, sup, inf) be the lattice given by the standard partial order defined by (2).

Here sup denotes the supremum and inf denotes the infimum with respect to the par-
tial order. With this notation the upper limit for bounded functions s : R, — R’} is
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defined by

lim sup s(¢) := inf sup s(7).
t—00 >0 ¢>¢

We will need the following property.
Lemma7 Lets : Ry — R’ be continuous and bounded. Then

lim sup s (1) = lim sup || 512,00 || -
t—>0o0 t—>o0

Proof Let limsup,_, . s(1) =: a € R". and lim sup, _, ., || sp/2.00) || =: b € R.. For
every ¢ € R, ¢ > 0 (component-wise!) there exist #,, #, > 0 such that

Vi>tg:sups(t) <a+e and V>t :sup||spmee || <b+e  (18)
>ty

>1q
Clearly we have
s(®) < || st2.00 ||

for all + > 0, i.e., @ < b. On the other hand s(tr) < a + ¢ for t > ¢ implies
|| str/zo0) || < @ + e fort > 2t,ie., b < a.

4 Main results
In the following subsection we present a nonlinear version of the small gain theorem

for networks. In Subsect. 4.5 we restate this theorem for the case when the gains are
linear functions.

4.1 AG, GS, and ISS small gain theorems

We introduce the following notation. For o; € Ko,i = 1, ..., n define a diagonal
operator D : R’} — R’ by

(Id + a1)(s1)
D ((sl, N .,s,,)T) - : . (19)
(Id + &) (sn)

We say that a gain matrix I satisfies the small gain condition, if there exists an operator
D asin (19), such that for all s € R” , s # 0 we have

IoD(s):=I'(D(s)) #s. (20)
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For short we just write I o D % id. This condition can equivalently be stated as: there
has to be at least one i € {1, ..., n}, such that the ith component of I" o D decreases,
i.e., I'(D(s)); < s;.In other words (20) states that there existsnos > 0, s # 0, such
that I" o D(s) > s.

Note that I" o D # id if and only if D o I' # id.

Theorem 8 (small gain global stability theorem) Assume each subsystem of (8) is GS.
If 'S satisfies the small gain condition (20), then (17) possesses the global stability

property.

Theorem 9 (small gain theorem for asymptotic gains) Assume each subsystem of (8)
is AG and solutions of the composite system (17) exist for all times and are essentially
bounded. If 'S satisfies the small gain condition (20), then (17) has the asymptotic

gain property.

Note that here we explicitly have to ask for the existence of trajectories for all times.
This is in general not guaranteed by the AG condition, as Example 14 in Sect. 4.2
shows.

Before proving Theorems 8 and 9 we note some immediate consequences. Com-
bining the two theorems we obtain:

Theorem 10 Assume each subsystem of (8) is GS and AG. If both I'*C and I"CS
satisfy the small gain condition (20), then (17) has the global stability property and
the asymptotic gain property.

Since AG and GS together are equivalent to ISS, this can be reformulated to obtain
our main result:

Theorem 11 (small gain theorem for networks) Consider the system (8) and suppose
that each subsystem is ISS, i.e., condition (9) holds for alli = 1,...,n. Let I" be
given by (12). If there exists a mapping D as in (19), such that

(I'oD)(s) #s5, Vs eRL\({0},

then the system (17) is ISS from u to x.

Proof (of Theorem 11) The ISS condition |x(¢)| < B(|&], ) + yss(|lu]lco) implies
[x(®)] < B(E&], 0) + y1ss (|l ]l oo), Where B(-, 0) is a class Ko-function. But this is just
a GS estimate, implying that o5 < y1ss for GS estimates 0. This gives I” > 'S and
makes Theorem 8 applicable. In particular this shows that solutions exist for all times
and are uniformly bounded.

Obviously, by looking at (14) and (15), ISS implies AG, since given an ISS gain
¥iss. it is also a valid asymptotic gain. So we may assume I > "G and Theorem 9
is applicable.

Together we obtain that the interconnection is GS and AG, hence it is ISS by a
result in [27]. O
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Remark 12 Condition (20) is equivalent to the requirement that the graph {(s, I" o
D(s)) : s € R} of the map I" o D does not intersect the set {(s, w) € R} x R} :
w > s > 0}. Although looking very complicated to handle at first sight, this small gain
condition is a straightforward extension of the ISS small gain theorem of [13] for two
systems (and coincides with it in this case), see Sect. 5.1 for details. This condition
has several interesting interpretations, as we will discuss in Sect. 5.

The following lemma provides the essential argument for the proofs of the above
theorems:

Lemma 13 Let I' € (KX U {0})"*" satisfy the small gain condition (20). Then there
exists a ¢ € Koo such that for all w, v € R'jr,

(Id—TI)(w) =v 2L

implies |lw| < @(v).

Proof Let D be given by the small gain condition. Fix v € R’} . We first show, that for
those w € R’ satisfying (21) at least some components have to be bounded. To this
end let X
a; (v1)
r* = (D—-1d)"'(v) = :
o, ! (vn)

N 22)
v + o (v1)

and s* := D(r*) = :
vy + Oln_l(vn)

We claim that s > s* implies that w = s does not satisfy (21). So let s > s* be
arbitrary and r = D7!(s) > r* (as D™ € KCZ). For such s we have

s—D ' s)=D@Ur)—r>D0"*)—r*=v,

where we have used that (D — Id) € K7,. The assumption that w = s satisfies (21)
leads to

s<v+TI(s)<s—Ds)+ ),
or equivalently, 0 < I"(s) — D~ (s). This implies for » = D~ (s) that
r<IoD(),

in contradiction to (20). This shows that the set of w € Ri satisfying (21) does not
intersect the set

Zy:={weR} |w=>s").
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Assume now that w € R’} satisfies (21). Let shi=g* If 5! Z# w, then there exists
an index set I1 C {1, ..., n}, possibly depending on w, such that

wl->si1, fori € I1 and w,-ssil, fori e I{ :={1,....n}\ L.

So from (21) we obtain

wye Fyepy Trere | \[wrg |) — Lvig
Hence we have in particular

wll_Flll] (wl|) = vn + Flllf(s]llf)
< Dy o (Dy, — Id[l)_l o(vy, + F[11IC(S1115)) = S%l. (23)
>1d

Note that Iy, , satisfies (20) with D replaced by Dy, . Thus, arguing just as before, we
obtain, that w;, > s%l is not possible. Hence some more components of w must be
bounded.

We proceed inductively, defining

: i+1
Ij+1 % Ij, 1j+1 ={i e Ij w; > sl'./+ IR
with I;Jr] ={l,...,n}\ Ij41 and
o B -
S;jJr = Dy; 0 (Dy; —1d1) ™" o (ur; + Fz_fz‘;:(S};)).

This nesting will end after at most n — 1 steps: There exists a maximal k < n, such
that

{L....n} 2L 2... 2L #0
and all components of wy, are bounded by the corresponding components of s];k“ .Let
s¢ == max{s*, Ry, sH, ..., Ry, (s")1.

If we denote by [M]" the n-fold composition M o - - - o M, then for w satisfying (21)
we clearly have

w<s; <[Do(D—1d)"" o (1d+ ] (v)

and the term completely on the right-hand side does not depend on any particular
choice of nesting of the index sets. Hence every w satisfying (21) also satisfies

_ T
w < [Do(D—1d)"" o (Id+ M (|vlmaxs - - - [V]max)
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and taking the maximum-norm on both sides yields

|wlmax < @(|v|max)
for some function ¢ of class K. This completes the proof of the lemma.
We proceed with the proof of Theorems 8 and 9.

Proof (of Theorem 8) We may assume that the vectorized formulation (16) of the GS
conditions (11) for all £ € RM*+Nu ‘and u(-) € L®(R,; RM) is satisfied for some
t>0:

1< 0145D + T (| xi0.01 [P + w3l o)

Taking the supremum on both sides over T € [0, #] we obtain

Ad =TSy (| xoal) = o1d€D + v3llullo).

Note, that the right-hand side is independent of + > 0, hence this estimate holds for
all + > 0. Now by Lemma 13 we find

lx0.1llcc < @ (lo1AED + v3(llullco))
< @eQ2-lordéEDD + ¢ 2 - ly3llullco))) (24)
= Sxo (25)
for some class K function ¢ and all times ¢ > 0. Hence for every initial condition and
essentially bounded input u the solution of our system (17) exists for all times t > 0

and is uniformly bounded, since s, in (25) does not depend on 7. The GS estimate
for (17) is then given by (24).

Proof (of Theorem 9) Assume solutions of (17) with essentially bounded input exist
for all times, are uniformly bounded, and the AG formulation (15) is valid, i.e., we
have for all T > 0, all initial conditions, and all inputs u(-) € L*°(R,; RM) that

lim sup |x ()] < T29(|| xpr.00) |D + 7 (lullso)- (26)
—00
By Lemma 7 we have
lim sup|x ()] = lim sup" X[1,00) " =:l(x) e R:,
t—00 T—>00

hence by (5) inequality (26) can be stated equivalently as
1(x) < TA91)) + v (lulloo).
where we used (13). It follows that

(Id — I'*9) o 1(x) < y(llulloo)-
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Finally, by Lemma 13 we have

1) < ey (lulloo) D 27

for some ¢ of class K, which is the desired asymptotic gain property (4).

4.2 AG and forward completeness of interconnections
In Theorem 9 we explicitly require solutions of the interconnection to exist for all
times. If this requirement is not met, then the assertion of the theorem is false, as the

following example shows. It is based on an example in [10].

Example 14 Consider the planar autonomous system defined by

' 2y —x) 4y
- = ?
x=f(x,y) 2+ y2) (1 + (x2 +y2)?) )
2y =2
y=2g(x,y) = o= =

(2 4+ y)(1 + (x2 4+ yH)2)’

It is shown in [10, Sect. 40, pp. 191-194] that for (28) and (29) the origin is globally
attractive but unstable.
Now replace (29) by

2
.~ o y (y —2x) 2
P8OV = Gk (2 s TP G0

X fxy)
)=\ , 31
(y) (g(x, Y, v>) b
where v € R is a parameter.

By the same methods as in [10, Sect. 40, pp. 191-194] it can be shown that for
any fixed v € R the origin for system (31) is unstable, but globally attractive. By
symmetry it suffices to consider the open upper half plane in R?. The proof is exactly
as in [10] and therefore omitted.

Next we show, that for u(-) € L*°(Ry; R), ||ullc < m, the origin of the system

X _ o Sy
(&) a (g‘(x, 2 u>) (32)

is globally attractive and unstable: Suppose a trajectory ¢(-, (xo, yo)©, u(-)) of (32)
starts in (xo, yo)T lying in

to obtain the system

wt :={(x,y)TeR2:(x§Oandy>0)or(x>0andy>2x)}.
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V1 = Y2 V2 = Y1

2

Fig. 1 Feedback system (33)

In the region W™ the second component of the trajectory ¢(-) := ¢ (-, (xo, yo)T, u())
is bounded by the second component of the trajectory 1(-) := n(-, (x0, ¥0) T, ||#]]o0)
of system (31) in the sense that for all z, T > 0 such that ¢(z), n(t) € ¥ we have

o1 =n()1 = @) <n():.

This follows as for almost all # we have g(x, y, u(t)) < g(x, v, |ullco)-

Now 7(-) is known to reach the half-line H := {(x, y)T e R : x > 0, y = 2x}
in finite time (using the argument provided in [10]). Since in ¥+ we have ¥ > 0 and
y > 0, the trajectory ¢(-, (xo, yo)T, u) also hits the line H in finite time T > 0 at the
point (x, y,)T, see Fig. 2.

Define the “attractive set” A := {(x, )T e R> : y > 0, x > %y}. Trajectories with
bounded input starting on the line H C A are ultimately attracted to the origin: on
H every velocity vector points into A, in A the y-component of each velocity vector
is strictly negative. At some point each trajectory in A reaches a neighborhood of the
x-axis, where all velocity vectors point to the lower left.

The preceding argument shows, that system (32) has the asymptotic gain property,
with arbitrary small gain y. So with slight abuse of notation we may choose y = 0 as
the asymptotic gain.

Now consider the feedback interconnection of two systems (32), each with input
v = y as depicted in Fig. 1:

s (51 = RASIENY 5 (2) = fx2,y2) (33)

Vi 8(x1, y1,¥2) 2 8(x2, y2, y1)
We concentrate only on the “diagonal”, that is, we let each system start at (xo, yo)T €
R2 and denote x; = x, = x and y1 = y2 = y. Hence the evolution of both systems
is exactly the same, motivating the term diagonal. The small gain condition, which in

this case reduces to yz = 0 < id, is clearly satisfied.
On the diagonal the dynamics are given by

x=f(x,y), y=2g(x ). (34)

For suitable initial conditions system (34) has a finite escape time, as the next cal-
culation shows: let V(x, y) = %yz be a storage function on the set {(x, y)T e R?:
y > 0} U {(0,0)T}. We will show that V > V?2 along trajectories for suitable initial
conditions. This implies that not all trajectories of the feedback system exist for all
times.
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10+

0 - L . . . .
0 2 4 6 8 10 12

X

Fig. 2 A trajectory of the (28)—(30) in Example 2: the dashed trajectory starts in (—1, DT with input
V/3sin(r). The solid trajectory starts in the same point with constant input equal to v/3. The half-line H
with (slope 2) is dashed dotted. The regions Q and A are depicted as well

y 2
First we define the set Q = {(x,y)T c R?: y>0,0<x< %}, see

Fig. 2. On Q we have

1
r < =) 35
i<y (35)

2 (e¥ —y2—
forsystem (33). Asymptotically we have % ~ Jyasy — 00.Also %

< %y forall y > 0.

Now we show that in the feedback system (33) a trajectory starting in (x, y) € O,
with y > 6, will always stay in Q (as long as it exists): To this end consider the
392, (xo, yo)T)z) o the

horizontal distance between ¢ (-, (xo, yo)T) and the point
#( (x0, y0)") and the p (w(t, (x0, y0) )2

half line H. This distance is just

1 T T
d(t) = Efﬂ(l, (x0, ¥0) )2 — @(t, (x0, ¥0) 1.

By (35) the derivative of d(t) satisfies

. 1
d(t)zzg(xvyvy)_f(x’y)>07 (36)

for (x, y)T € Q. Hence d(t) is non decreasing on the set Q. By (28) and (30) we have
X > 0and y > 0 on Q. Moreover, the right hand side boundary of Q approaches H,
i.e., the distance between this boundary and H decays monotonically for increasing
values of y > 6. Hence the solution ¢ (-, (xo, yo)T) for (xo, yo)T € Q must stay in Q,
as long as it exists.
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Now assume (x, y)T € Q with y > 1 sufficiently large and such that y > 2x + 1.
By (36) if follows that ¢>(f) > 2¢1(¢) + 1 for all + > 0 along the trajectory ¢ with
initial condition (x, y). Because of the dominating exponential term we have

_ (v = 20) exp(y?)
v T _ y(y
V(x, y)(f(xv y),g(x, Y, y)) (x2+y2)(1+(x2+y2)2)

3 2
y~exp(y?) 1
e e e U

along trajectories, provided that y is sufficiently large. Finally, V > V2 implies a
finite escape time for the y-component.

Concluding, this example shows that although systems have the asymptotic gain
property and the small gain condition is satisfied, Theorem 9 may not be applicable to
the feedback interconnection, since solutions of the interconnected system need not
exist for all times.

4.3 The maximum formulation of ISS

The ISS estimates for (8) can be formulated equivalently using the maximum instead
of a summation. Using the maximum the condition for ISS is

i (2, 0, xj, j # i, wl < m]?lx{ﬂ(llé,-oll, D), Vijxjlloo)s Vullulloo)}s (37

fori =1, ..., n,allinitial conditions and all measurable bounded inputs. Note that to
obtain such an estimate for a particular system the gains y;;, y, are in general differ-
ent from the gains that would be used in an ISS inequality using summation as in (9).
Still we can write down the gain matrix I" = I'™SS as we did before and define the
max-operator g by

Tg(s); == mj?lx{)/ij(sj)}- (38)

If the gains y;; are all linear, then Iy is a max linear operator [19]. Note that this is
not the same as a max-plus linear operator.

In the discrete time context Teel [31] proves that if we have maximum ISS esti-
mates of the type (37) for each subsystem and if for each cycle (or equivalently, each
minimal cycle) in I” we have

Vkiky © Ykpks ©*+°© Vk,,,lkp < ld,

for all (k1,...,kp) € {1,...,n}’, p > 1 where k; = kp, then the network under
consideration is input-to-state stable. This result extends in a straightforward manner
to continuous time systems. It is an easy exercise to show that the cycle condition and
the statement

Ig(s) 25, VseRL,s#0,
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are equivalent. Note that this relies crucially on the operation defined in (38) and does
not hold for the operator I" defined earlier.

Potrykus et al. [21] prove a similar but rather involved small gain theorem for con-
tinuous time systems; their small gain condition is not at first sight equivalent to the
one in [31].

For real non negative matrices it is known that the linear cycle condition and that
the max spectral radius is less than unity are equivalent, a nice survey on this topic
can be found in Lur [19]. In general w(A) < p(A), where w(A) is the maximal cycle
geometric mean of a non negative matrix A (corresponding to the cycle condition),
and p(A) is the usual spectral radius of A, c.f. [19].

Now given a gain matrix I" = (y; J')?, j=1 we associate two operators R} — R,
namely the one given by I'(s); = >, jvij(sj) and the one given by I'g(s); =
max; y;j(s;), where s e R, ,i =1, ..., n. The small gain condition

r#id (39)
is a stronger condition on the gains than
Iy #id, (40)

both are sufficient conditions for the max-formulation of the ISS small gain theorem
for networks, but the latter is not sufficient for the sum-formulation. For the case n = 2
with y11 = y22 = 0, both conditions are equivalent, but for n > 3 condition (39) is
strictly stronger than condition (40), as can be shown easily by a linear example.

4.4 Discrete time systems

We now briefly discuss the extension of our result to the discrete time setting. In [12]
Jiang et al. prove an ISS small gain theorem for discrete time systems, while in [15]
they derive a small gain theorem for locally input-to-state stable systems. Both papers
use the maximum formulation of ISS.

In [17] Laila and Nesi¢ consider parameterized discrete time systems that are semi
globally practically ISS and give a small gain theorem for two such systems in feedback
interconnection.

Input-to-state stability for discrete time systems is defined in analogy to the con-
tinuous time case, but with time R4 replaced by N = {0, 1,2, .. .}:

In this subsection we denote by [0, k] the set {0, ..., k} and by [lx|lcc = sup;enf{xi}
for functions x : N — RV,

Consider the interconnected discrete time system

Yy xtk+ D) = filer(k), ..., x5 (k), u(k))

DI fork e N, 41

Tt xpk+1) = fn().m(k), coos X (k) u(k))

where x; (k) € RV u(k) e R™, and f; : RZj=1 NitM _, RNi is continuous.
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System X; is ISS, if there exists g € KL and y;;, y € K U {0} with y;; = 0, such
that every solution x; : N — RN of (41) satisfies

()] < Bi (1 O k) + D 737 (110 49 loe) + ¥ (il oo) 42)
j=1

forallinputs x; : N — RVi, j =1,...,n,j #i,andu : N — RM,
As a corollary of Theorem 11 we easily obtain the next result:

Proposition 15 Consider the systems %; in (41) and suppose that each subsystem is
1SS, i.e., condition (42) holds foralli = 1,...,n. Let I’ = (Vi.i)zr'l,jzl' If there exists
a mapping D as in (19), such that

(I'oD)(s) #s, Vs eRL\{0},

then the system X in (41) is ISS from u to x.

Proof The assertion of Theorem 11 still is true if we replace system (8) by the discrete
time system (41) and the definition of ISS by (42). Note that the proofs of Theorems 8,
9, and 11 do not depend on the time set being a continuum or discrete set.

4.5 Linear gains

Suppose the gain functions y;; are all linear, hence I" is a linear mapping and (12) is
just matrix-vector multiplication. In this case the network small gain condition (20)
has a straightforward interpretation in terms of well known properties of matrices. The
spectral radius of a matrix M is denoted by p(M). For non-negative matrices I it is
well known (see, e.g., [3, Theorem 2.1.1, p. 26, and Theorem 2.1.11, p. 28]) that

(1) p(I")is an eigenvalue of I" with a corresponding non-negative eigenvector,
(ii) if ax < I'x holds for some x € R \ {0} then o < p(I").

Using this it is easy to see that for a non-negative matrix I~ € R"*" the following are
equivalent:

i pd) <1,
() VseRL\{0}:TI's %5,
(ii) I'* = 0, fork — oo,
(iv) thereexistay, ..., a, > 0 such that Vs € R \ {0}:

I'(I + diag(ay, ..., a,))s # s.

Note that (iv) is the linear version of (20). As condition (i) makes no sense in
the nonlinear setting, (20) has been used as an extension to the nonlinear case. As a
consequence we obtain
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Corollary 16 Consider n interconnected ISS systems as in the previous section on
the problem description with a linear gain matrix I', such that for the spectral radius
p of I we have

oI < 1. (43)

Then the system defined by (17) is ISS from u to x.

Remark 17 For the case of large-scale interconnected input-output systems a result
similar to Corollary 16 exists, cf. [32, p. 110]. It also covers Corollary 16 as a special
case. The condition on the spectral radius is quite the same and is applied to a matrix,
whose entries are finite gains of products of interconnection operators and corre-
sponding subsystem operators. These gains are non-negative numbers and, roughly
speaking, defined as the minimal possible slope of affine bounds on the interconnection
operators.

5 Interpretation of the generalized small gain condition

In this section we wish to provide insight into the small gain condition of Theorem 11.
We are considering I" € (I U {0})"*" with zero diagonal as introduced in (12). The
small gain condition sufficient for ISS of an interconnection defined with the maximum
formulation is

I #id, (44)

whereas for the robust condition, we need that there exists a diagonal D as in (19)
such that
FoD #id, (45)

in case of ISS defined via summation.

We first show, that Theorem 11 covers the known interconnection results for cas-
cades and feedback interconnections and discuss implications for the case of linear
systems.

Further, we investigate topological consequences of the small gain condition. Note
that this condition has an interesting interpretation for the stability analysis of a dis-
crete time dynamical system defined through the gain matrix I". Finally, an overview
of all the interrelations is presented.

5.1 Connections to known results

As an easy consequence of Theorem 11 we recover, that an arbitrary feed forward cas-
cade of ISS subsystems is again ISS. If the subsystems are enumerated consecutively
and the gain function from subsystem j to subsystem i > j is denoted by y;;, then
the resulting gain matrix has non-zero entries only below the diagonal. For arbitrary
a € K the gain matrix with entries y;; o (Idg,, +«) fori > jand O fori < j clearly
satisfies (20). Therefore any feed forward cascade of ISS systems is ISS.
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Consider n = 2 in Eq. (8), i.e., two subsystems with linear gains. Then in
Corollary 16 we have

1 0 vz -

and p(I") < 1 if and only if y12y21 < 1. Hence we obtain the known small gain
theorem, cf. [9, 14].

For nonlinear gains and n = 2 the condition (20) in Theorem 11 reads as follows:
There exist a1, ay € Koo such that

y12 0 (Id + a2)(s2) s1
I'oD(s) = ,
° P (m otd+anen ) Z (s
forall s = (s1,5)7 € R%r. This is easily seen to be equivalent to

yizo(d+a) oy odd+a)t) <t, Yt 0. (46)

To this end we consider the vector [y12 o (Id 4+ a2)(1), 1T for any t > 0. Applying
I o D we see that the first component does not change, hence the second one must be
less than 7, which is just (46). The converse implication is obvious. Now inequality
(46) is equivalent to the condition in the small gain theorem of [13], namely, that for
some &1, &y € Ko it should hold that

(Id+aj) oypro(Id+az) o yia(s) <s, Vs>0, 47

for all s € R, hence our theorem contains this result as a particular case.

Example 18 The condition (47) of [13] seems to be very similar to the small gain
condition y12 o y21(s) < s of [9,14], however in these papers the maximum formula-
tion of ISS is used, so that the interpretation of the gains is different. This similarity
raises the question, whether the compositions with (Id+;), i = 1, 2 in (47) or more
generally with D in (20) are necessary in the context of the summation formulation
of ISS. The following example shows that this is indeed the case.

Consider the equation

t=—-x+u(l—e™), x(0)=x"eR, uck.

Integrating for # > 0 it follows

t
x(1) = e 'x° +/e*(’*f>u(r)(1 — e "My dr
0
e X0  lulloo (1 — e Moy = e 7150 4y (flu o),

IA
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with y(s) = s(1 — e™*). Clearly y (s) < s. Then for a feedback system

X1 =—x; +x2(1 —e™) +u@), (48)
Xo=—xp+x1(1 —e™) +u@) (49)
1,0

we have ISS for each subsystem with x; (1) < e X; 4+ vi (I1xilloo) +1i (||| |0o), Where
yi(s) < s and hence y1 o y»(s) < s for s > 0, but there are solutions x; = xp = const
given by

X1 = —x2e¢ 2 +u, withu = xpe 2.

Here x; = x» can be chosen arbitrary large with u — 0 for x; — 00, so that the
system cannot satisfy the asymptotic gain property and is therefore not ISS. Hence the
condition I"(s) z s, forall s € ]R’jr \ {0}, or for two subsystems y12 o y21(s) < s, for
all s > 0, is not sufficient for the ISS of the composite system in the nonlinear case.

Application to linear systems ~ Linear systems are an important special case for which
the results are applicable. Consider the following setup where in the sequel we omit
the external input for notational simplicity. Let

ij=Ajxj, xRN, j=1,.n, 0)

describe n globally asymptotically stable linear systems, which are interconnected
through

n
K =Ajxi+ D Apx, j=1.....n, (51)
k=1
which can be rewritten as

x=(A+ A)x, (52)

where A is block diagonal, A = diag(A;, j = 1,...,n), each A; is Hurwitz and the
matrix A = (A j;) is also in block form and encodes the connections between the 7 sub-
systems. We suppose that A;; = 0 for all j. Define the matrix R = (rjx), R € R*",

by 7k := || A jk||. For each subsystem, there exist positive constants M, A ;, such that
ledi’]| < Mje=i" forall t > 0.
. LM .
Define a matrix D € R},*" by D := diag(5+, j = 1,...,n). Itis easy to see that
J

in this case the gain matrix is I"'>S = DR. Then from Corollary 16 we obtain
Corollary 19 If p(D - R) < 1 then (52) is globally asymptotically stable.
Note that this is a special case of a theorem, which can be found in Vidyasagar

[32, p. 110], see Remark 17. The corollary is also a consequence of more general and
precise results of a recent paper by Karow et al. [16].
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5.2 Topological consequences of the small gain condition

For the following statement we define the open domains

2; = S€R15si>zyij(sj) , i=1,...,n.
J#i

Note that £2; = {s € R, : s; > I'(s);}. Also we need the simplex A, defined as the
intersection of the positive orthant R’} with the hyperplane s1 + --- + 5, = r > 0.
The vertices of A, are given by rey, ..., re, (where ¢; denotes the i-th unit vector).
The convex hull of a set C is denoted by conv C.

Proposition 20 Consider I' € (ICU{0})"*" with zero diagonal. Then condition (44)
is equivalent to | J;_; £2; = R, \ {0}. Furthermore (44) implies that for all r > 0

AN ()2 # 0. (53)

i=1

Proof Let s # 0. Formula (44) is equivalent to the existence of at least one index
ief{l,...,n}withs; > Zj#i vij(sj). This proves the first part of the assertion.

To prove the second part we will use the Knaster—Kuratovski—-Mazurkiewicz (KKM)
theorem (see [11]), a topological fixed point theorem for simplices. The KKM theorem

states that if for any face of A, given by o(re;,, ..., re;) = conv{re;, ..., re;},
kell,...,n},1<iy <ip <---<ip <n,wehave
k
o(rey,...,rey) C szl.Qij,

then (53) follows (where we use that A, N §2; is open in A;).

Without loss of generality consider the face ¢ = conv{rey, ..., rex} (the other
cases follow by permutation) and let s € o. By assumption I"(s) 7 s, so there is an
index i such that I'(s); < s;. As I'(s) > 0 it follows that for this index s; > 0. Hence
1 <i < k. This shows s € £2; for some 1 <i < k and the assumptions of the KKM
theorem are satisfied. This completes the proof.

We need the following invariance property of MN; £2;.

Lemma 21 Consider I' € (KX U{0})"*" with zero diagonal and assume (44). Assume
that I" has no zero row. If s > 0 satisfies s € N;$2;, then I (s) € N; $2;.

Proof Firstnote, thatass > 0and as I" has no zero rows, it follows that I"(s) > 0. Fur-
thermore, s € N;£2; is equivalentto I"(s) < s. Applying I" to this inequality it follows
from monotonicity of I" that I'%(s) < I'(s), which is equivalent to I"(s) € N; £2;.

Note in particular that the set ();_, £2; is unbounded. It is of further interest to know
that it is unbounded in all components. This will provide the key argument in the sta-
bility analysis of the associated discrete time system s(k + 1) = I"(s(k)). However,
this is not true in general. We therefore note
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Proposition 22 Consider I' € (Ks U {0})"*" with zero diagonal and assume (39).
If I is irreducible, then for any s € R} there is a z € N;§2; such that 7 > s.

Proof We first assume that I” is primitive, see the Appendix. Let ko be the non-neg-
ative integer given by Lemma 26a), such that P(;; o rk o Rij) € K for any i, j,
where P denotes a projection, R an injection. See Sect. 2 for the definitions of P and
R.Fixs > 0.Fort € [0,00),i = 1,...,n we define

@) .= r*oo Ry o).

As Py o ' o R(jy € Koo foralli, j = 1,...,n, thereisa T € Ry such that for all
i=1,...,nwehave

rfw >s forall 1>T. (54)

Chooser =nT andv > 0,v € A, N(N;£2;). Such a v exists as the intersection N; £2;
is open in A,. Then v; > T for some 1 <i < n and so

r*@) = max I (v)) = I ;) = I°(T) > s.
J

By Lemma 21 we have 1'% (v) € N;£2;. This completes the proof for the case that I”
is primitive.

In the case that I” is not primitive we apply Lemma 26b). So without loss of gen-
erality, we have a block-diagonal power IV of I, where each of the square blocks on
the diagonal is primitive. Then arguing as before, for every s we can choose a v > 0,
v € N;£2; so that

rkove) > s.

This completes the proof.

Let us briefly explain a further reason, why the overlapping condition (53) is inter-
esting, apart from the fact, that Proposition 22 is important for the results of the next
section. From the theory of ISS-Lyapunov functions (see, e.g., [14]) it is known, that
a system of the form (3) is ISS if and only if it has a smooth ISS-Lyapunov function.
In the context of n interconnected systems the small gain condition states, according
to Proposition 20, that along trajectories of the interconnection

(i) in every state there is one subsystem with a decaying Lyapunov function,
(i) there is an unbounded region, where the Lyapunov functions of all subsystems
decay.

In [6] it is shown how this observation leads to the explicit construction of a Lyapunov
function for the interconnection. A preliminary version can be found in [4].

A typical situation in case of three one dimensional systems (R?) is presented in
Fig. 3 on a plane crossing the positive semi axis. The three sectors are the intersections
of the sets §2; with this plane.
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Fig. 3 Overlapping of £2; domains in R3

5.3 Stability of monotone discrete time systems

We now relate the small gain condition to stability properties of the monotone discrete
time system s4.1 = I"(s) defined on the state space R} .

In recent papers by Angeli, De Leenheer, and Sontag small gain type theorems for
continuous time monotone systems are presented, where the main stability condition
is that an associated discrete time system has a unique globally attractive fixed point,
see [1, Theorem 3] or [2, Theorem 1]. These results extend easily to arbitrary inter-
connections of more than two systems, and the stability conditions remain the same.
This extension is implicitly contained in the result [8, Theorem 2].

In this section we need the notion of irreducibility. In Appendix the necessary
definitions are recalled and a dichotomy lemma for irreducible matrices is stated.

A related question to the stability of the composite system (17) is, whether or not
the discrete time positive dynamical system defined by

Skl =1"(sk), k=1,2,... (55)

with initial state so € R’} has x* = 0 as asymptotically stable and globally attractive
fixed point.

Theorem 23 Assume that I' is irreducible. Then the equilibrium point 0 of system
(55) is globally asymptotically stable if and only if I'(s) # s for all s € R’} \ {0}.

Proof If I'(sg) > so for some so € R’ \ {0} then by monotonicity of I" we have
Fk(so) > F"’l(so) > so for k = 2, 3, .. .. Hence the sequence {Fk(so)},fozo does not
converge to 0 as k — oo. Hence x* = 0 is not globally attractive.

Conversely, if I" % id, then by Proposition 22 for every s > 0 there is a z € N; §2;
with s < z. This implies 0 < I'k(s) < I'*(z) for all k € N. So to prove global
attractivity of x* = 0 all we have to show is that I" k(z) — 0 for z € N;£2;. For
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z € N;£2; we have by induction that 1 (z) < r*(z) for all k € N. This implies
w = limy_, oo I'¥(z) exists. By continuity of I" it follows that I"(w) = w. As I ;f id
this implies w = 0. Finally, to prove stability of x* = 0, fix ¢ > 0, and choose
7> 0,z € Ay N (N;$2;). Then for all s < z we have I'*(s) < I'k(z) < z for all
k € N. Now choose § > 0, such that |s|pax < § implies s < z. Then |s|pax < §
implies |I7*(5)|max < |Z|lmax < € for all kK > 0. This concludes the proof.

In [5] it is shown, that the condition, that there exists a diagonal operator D : Ri —
R’ as in (19) such that (D o I")(s) # sforall s #0,s € R, is in fact equivalent to
global asymptotic stability of the fixed point x* = 0 of D o I', for a certain diagonal
operator D as in (19).

The following example shows that irreducibility is essential in the statement of
Theorem 23.

Example 24 Consider the map I : Rf_ — Ri defined by

yu id
I :=
|: 0 )/22]
where forr € R

yin() =t(l—e")

and the function y»; is constructed in the sequel. First note that y;; € Ko and
y11(t) < t,Vt > 0. Let {g};2, be astrictly decreasing sequence of positive real num-

bers, such that limy_, o & = 0 and limg_ o Z,le gr=00.Fork=1,2,...define

k—1 &

N k-1 .

yole+ |1+ Zé‘j e (1+21:1 s") =g+ | 1+ ZEJ. e_(1+2j:181)
j=1 j=1

and observe that

k—1 k

k=1 _ I

e+ |1+ E Ej e_(H_Z/:lef) >ep1+ | 1+ E gj|e (1+Z/=1£/)’
j=1 j=1

since g; > gryq forallk = 1,2, ... and the map t — ¢ - e~ is strictly decreasing on

(1, 00).
Moreover we have by assumption, that

k— 00

k—1
k1,
e+ |1+ E T R R — )
=1

These facts together imply that y»> may be extrapolated to some Ko-function, in
a way such that y»,(¢) < ¢, V¢ > 0 holds.
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Note that by our particular construction we have I'(s) # s forall s € ]Ri \ {0}.
Now define s' € Ri by
1
1._
= [1 + e_1:|

and for k = 1, 2, ... recursively define shtl.— F(sk) € Ri.
By induction one verifies that

k
Sk+1 :Fk(sl): 1+Z]=1 8j
1 k N (+E ej) |-
ekt +(L+ 2052 €))e /

By our previous considerations and assumptions we easily obtain that the second
component of the sequence {s* Jro | strictly decreases and converges to zero as k tends
to infinity. But at the same time the first component strictly increases above any given
bound.

Hence we established that I'(s) # s Vs # 0 in general does not imply Vs #
0: I'*(s) = 0as k — oo. For this example it is also easy to verify that N, £2; is not
unbounded in all components. So that the assertion of Proposition 22 is false in this
case.

Remark 25 Note that we can even turn the constructed 2 x 2 matrix I” into the null-
diagonal form to conform with the structure of gain matrices in Sect. 3. Using the
same notation for y;; as in Example 24, we just define

0O yu id O 1
|y 0 0 id 1. 1
I = 0 0 0 ym and s = |4 et

0 0 y»n O 14+e!

and easily verify that I"*(s') does not converge to 0.

5.4 Summary map of the interpretations concerning I”

In Fig. 4 we summarize the relations between various statements about I” that were
proved in Sect. 5.

6 Conclusions

We have considered a composite system consisting of an arbitrary number of nonlinear
arbitrarily interconnected input-to-state stable subsystems, as they arise in applica-
tions.

For this general case a network version of the nonlinear small gain theorem has
been obtained. For linear interconnection gains this is a special case of a known result,
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iHDasin(lQ):FoD(s) 25|
4 (fr if I" is linear)

U2 =rY\ {0}
F(b =
Vr>0:[2NA #£0

i=1

s(k+1)
150(1AS

{ if I is linear
p(IN) <1

Fig. 4 Some implications and equivalences of the generalized small gain condition. All statements are
supposed to hold for all s € R" , s # 0. The implication denoted by * holds if I" is linear or irreducible

cf. [32, p. 110]. It has been shown how the generalized small gain theorem can be
applied to the analysis of linear systems and further implications of the small gain
condition have been discussed to clarify its significance. The problem of constructing
Lyapunov functions within this framework will be dealt with in [6].
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Appendix: Non-negative matrices and graphs

A (finite) directed graph G = {V, E} consists of a set of vertices V and a set of edges
E C V x V. We may identify V = {1, ..., n} in case of n vertices. The adjacency
matrix Ag = (a;;) of this graph is defined by

1 if(j,i) € E,

a;;i =
/ 0 else.

Conversely, given an n x n-matrix A, a graph G(A) = {V, E} is defined by V :=
{I,....n}and E = {(j,i) € V x V :q;; #0}.

There are several concepts and results of (non-negative) matrix theory, which are
of purely graph theoretical nature. Hence the same can be done for our gain matrix /.
We may associate a graph G ("), which represents the interconnections between the
subsystems, in the same manner, as we would do for matrices.

The graph of a power I'F of I' consists of the same set of vertices V as I" and has
edges E = {(j,i) € V x V : Component j influences componenti }. This can be
stated equivalently as £ = {(j,i) € V. x V :3s e R 1t Py o k(s +1¢- ej)is
ofclass CYor E ={(j,i) e VxV:VseR)| : 1+ P{,} ork (s+t e;) is of class
K}. With this notation we have

A%y = A(G((A(M)*Y), (56)
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where the right hand side denotes the adjacency matrix of the graph associated to the
matrix (A(17)), that is the graph with edges E = {(i, j) € V x V : (A(F))k),-j # 0}.

We say I is irreducible, if G(I') is strongly connected, that is, for every pair of
vertices (i, j) there exists a sequence of edges (a path) connecting vertex i to vertex
j. Obviously I is irreducible if and only if I'T is. I is called reducible if it is not
irreducible.

The gain matrix I” is primitive, if there exists a positive integer m such that (Ag )™
has only positive entries.

For the following facts only the graph structure associated to a gain matrix is
relevant.

If I" is reducible, then a permutation transforms it into a block upper triangular
matrix. From an interconnection point of view, this splits the system into cascades of
subsystems each with irreducible (or zero) adjacency matrix.

Lemma 26 Assume the gain matrix I' is irreducible. Then there are two distinct cases:

(@)  The gain matrix I' = (y;;(:)), where y;;(-) € X or y;j = 0, is primitive and
hence there is a non-negative integer ko such that '™ fulfills Pjyo '™ o R, € K
foranyi, j.

(b)  The gain matrix I can be transformed to

0 I 0 ... 0
0 0 Ip ... 0
prri=| : Do =TI (57)
0 0 0 Loty
L 0 0 0

using some permutation matrix P, where the zero blocks on the diagonal are
square and where the adjacency matrix of I'" is of block diagonal form with
square primitive blocks on the diagonal. Here v is the index of imprimitivity,
which is the number of nonzero blocks in the above definition of T

Proof Let Ag be the adjacency matrix corresponding to the graph associated with
I'". This matrix is primitive if and only if I" is primitive. Note that the (i, j)th entry
of A’ér is zero if and only if the (i, j)th entry of I'¥ is zero. Multiplication of I" by a
permutation matrix only rearranges the positions of the class K-functions, hence this
operation is well defined. From these considerations it is clear, that it is sufficient to
prove the lemma for the matrix A := Ag . But for non-negative matrices this result
follows from standard results in the theory of non-negative matrices, see, e.g., [3] or
[18].
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