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State Dependent AIMD Algorithms and Consensus Problems

Fabian Wirth *1, Robert Shorteri**1, andMehmet Akar ***1
! The Hamilton Institute, NUI Maynooth, Maynooth, Co. Kildadreland.

This papers analyses a class of nonlinear positive systeatsrodel the dynamics of nonlineadditive-increase multi-
plicative-decreas€AIMD) protocols. The system class covers a range of prdsottat are currently used in real communi-
cation networks, such as standard TCP, and recent progosalsngestion control protocols such as Scalable TCP.
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1 Introduction: Linear AIMD Congestion Control

The standard linear AIMD algorithm employed in TCP (trarssitgn control protocol) describes probing strategiesdbalve
in cycles, each cycle having two phases. The first phase afyitles is instantaneous. It occurs when capacity is reached
users are notified and each responds by down-scaling izatitin-rate (abruptly) by a multiplicative factor. Thibgse is
called theMultiplicative Decreas€MD) phase. During the second phase of a cycle, each usexases his utilization-rate
linearly until congestion is reached again, at which pdietfirst phase of the next cycle is entered. The second pheskdad
the Additive Increas€Al) phase.

Denote the share of the collective resource allocated toitsgtimet by x;(¢) and letz(t) = [x1(t),...,z.(t)]T. The
capacity constraint requires that"_, z;(t) < C, with C as the total capacity of the resource available to the esyisem.

The k*" cycle begins at a time(k) at which the global utilization of the resource reaches cipaThe instantaneous
decrease of the utilization-rate of useturing the MD phase of the'” cycle is expressed by:

ai(t(k)*) = Bii(t(k) ), 1)

wherex; (t(k)™) := limp (k) zi(t), z:(t(k) ™) := lim;_~ &) 2;(t) andp; is a constant in the open interv@l, 1). During the
Al phase of thek*”" cycle, the utilization-rate of usérevolves according to:

i(t) = 2i(t(k)") + ai(t — t(k)), (2)

whereq; is a positive constant. THé + 1)t cycle begins at timé&(k+1)* that equals the timefor which the right hand-side
of (2) reaches capacity. Combining (1) and (2), we see thiaétolution of the utilization-rate of usebetween the:*” and
(k + 1)%t congestion points is given by

2tk + 1)) = Bz (k) + o (t(k: r1) - t(k)), 3)

This avenue of investigation is explored e.g. in [2] wherlis Bhown that the transformation of the utilization-ratesAeen
consecutive congestion points is linear with the repregemtz(k + 1) = Axz(k), where the matrixd is derived from (3).

2 Nonlinear AIMD Congestion Control

We next describe a nonlinear variant of the basic AIMD aldponi which coincides with the standard (linear) AIMD except
that in the Al phase the increase in the utilization-rateasfteuser is dictated by the nonlinear function (k) — x; (k)":,
wherex,; € R. This form is motivated by the desire to make TCP more agyesshigh-speed and long distance networks.
The evolution of the utilization-rate of usebetween thé*" and(k + 1)t congestion points is then given by

zi(k +1) = Biwi(k) + (x:(k))™ (t(k + 1) — t(k)), (4)

which replaces (3). This family of congestion control piuls includes standard TCP when= 0, Scalable TCP when
k = 1, and several other proposed algorithms for high speed mk$wo

It has been recently shown by several authors that someeadhoicthe nonlinearities lead to poor dynamic properties,
including the lack of stable utilization-rates; see [1]isltherefore of interest to determine the properties of nete/with
various values of.

For reasons of space we are only able to state results. Wetadf for complete proofs.
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3 Stability Results: Fixed Points

We consider the system (4) subject to the constraint¥hat, =;(k) = C for all k, where; € (0,1) andC > 0 denotes the
capacity of the resource. The indeenumerates the time instances at which the capacity camntsgraeached ang; < (0,1)

is the backoff parameter applied when #th source is informed of ‘congestion’. The tini between congestion event
depends on the state at the beginning of the event and is lgywerk + 1) — t(k)) = T'(x(k)), where

OB (=B, 5)
- Zn 2 - Zn 2 :

J=1"3 J=1"3

T(x)

Definition 3.1 (Stable Networks) A network given by dynamics of the form (4) anhis called stable if (i) system (4) has
a unigue equilibrium pointv* € X, and (ii)w* is a globally asymptotically stable fixed point of (4) &n A network is said
to be unstable if it is not stable.

Let us first determine the fixed points of (4).
Proposition 3.2 Consider the systefd), (5). Then

(i) if (1 —r;)(1 — ;) > 0,foralli,j € {1,...,n} then there exists a unique fixed point € 3. This fixed point is

determined by the equations foe=1,...,n
T(w*) >1/(1fﬂ) _ n < T )1/(1%‘)
w; = ,  whereT'(w*) > 0 uniquely solves C = — . 6
, ((1—&) (w*) quely ; 5 (6)

(i) if ki #1,i=1,...,nandthere arg, j € {1,...,n}, such thafl — «;)(1 — ;) < 0 then the system is generically
unstable, that is, there exists a constéatit > 0, such that the syste(), (5) has no fixed pointix, if 0 < C < C* and
multiple fixed points, i€ > C*.

(iii) if exactly one source satisfiess; = 1, then there exists a unique fixed poirit € 3 if and only if

| g\ M)
c_ ; (ﬁ) > 0. @

(iv) if two or more sources,, .. .,i; have the parametet;, = ... = x;, = 1, then the network is unstable.

4 TCP and consensus

We have so far obtained conditions for the existence of ausfixed point of the network in terms of thg, namely allx;
have to be chosen such that the sign ef «; is fixed, (ignoring a few special cases, that are of no pderaelevance to the
general design of protocols). In [3] it is shown that furthestrictions have to be placed on thein order to obtain local
asymptotic stability of the unique fixed points. In parteyffor local stability it is necessary that < 1 fori =1,...,n. To
speak of a stable network, however, we would like to achideka) stability. This is the topic of the following result.

Proposition 4.1 Letx € [0,1), k; = &, 8; € [0,1),i = 1,...,nandC > 0. Then the fixed point* = (w7,...,w})
given by(6) is globally asymptotically stable for system (4).

The proof of this result is closely related to stability riégsthat have been recently obtained in the framework of ensiss
problems. In this sense the stability property of AIMD algfums may be interpreted as the problem of the sources mgchi
consensus on the share of the resource that each obtaimaitvdihect communication between the different users.
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