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State Dependent AIMD Algorithms and Consensus Problems
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This papers analyses a class of nonlinear positive systems that model the dynamics of nonlinearadditive-increase multi-
plicative-decrease(AIMD) protocols. The system class covers a range of protocols that are currently used in real communi-
cation networks, such as standard TCP, and recent proposalsfor congestion control protocols such as Scalable TCP.
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1 Introduction: Linear AIMD Congestion Control

The standard linear AIMD algorithm employed in TCP (transmission control protocol) describes probing strategies thatevolve
in cycles, each cycle having two phases. The first phase of thecycles is instantaneous. It occurs when capacity is reached,
users are notified and each responds by down-scaling its utilization-rate (abruptly) by a multiplicative factor. This phase is
called theMultiplicative Decrease(MD) phase. During the second phase of a cycle, each user increases his utilization-rate
linearly until congestion is reached again, at which point the first phase of the next cycle is entered. The second phase iscalled
theAdditive Increase(AI) phase.

Denote the share of the collective resource allocated to user i at timet by xi(t) and letx(t) = [x1(t), . . . , xn(t)]T . The
capacity constraint requires that

∑n
i=1 xi(t) < C, with C as the total capacity of the resource available to the entiresystem.

The kth cycle begins at a timet(k) at which the global utilization of the resource reaches capacity. The instantaneous
decrease of the utilization-rate of useri during the MD phase of thekth cycle is expressed by:

xi(t(k)+) = βixi(t(k)−), (1)

wherexi(t(k)+) := limtցt(k) xi(t), xi(t(k)−) := limtրt(k) xi(t) andβi is a constant in the open interval(0, 1). During the
AI phase of thekth cycle, the utilization-rate of useri evolves according to:

xi(t) = xi(t(k)+) + αi(t − t(k)), (2)

whereαi is a positive constant. The(k+1)st cycle begins at timet(k+1)+ that equals the timet for which the right hand-side
of (2) reaches capacity. Combining (1) and (2), we see that the evolution of the utilization-rate of useri between thekth and
(k + 1)st congestion points is given by

xi(t(k + 1)) = βixi(t(k)) + αi

(

t(k + 1) − t(k)
)

, (3)

This avenue of investigation is explored e.g. in [2] where itis shown that the transformation of the utilization-rates between
consecutive congestion points is linear with the representationx(k + 1) = Ax(k), where the matrixA is derived from (3).

2 Nonlinear AIMD Congestion Control

We next describe a nonlinear variant of the basic AIMD algorithm which coincides with the standard (linear) AIMD except
that in the AI phase the increase in the utilization-rate of each useri is dictated by the nonlinear functionxi(k) 7→ xi(k)κi ,
whereκi ∈ R. This form is motivated by the desire to make TCP more aggressive in high-speed and long distance networks.
The evolution of the utilization-rate of useri between thekth and(k + 1)st congestion points is then given by

xi(k + 1) = βixi(k) + (xi(k))κi(t(k + 1) − t(k)), (4)

which replaces (3). This family of congestion control protocols includes standard TCP whenκ = 0, Scalable TCP when
κ = 1, and several other proposed algorithms for high speed networks.

It has been recently shown by several authors that some choices of the nonlinearities lead to poor dynamic properties,
including the lack of stable utilization-rates; see [1]. Itis therefore of interest to determine the properties of networks with
various values ofκ.

For reasons of space we are only able to state results. We refer to [3] for complete proofs.
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3 Stability Results: Fixed Points

We consider the system (4) subject to the constraint that
∑n

i=1 xi(k) = C for all k, whereβi ∈ (0, 1) andC > 0 denotes the
capacity of the resource. The indexk enumerates the time instances at which the capacity constraint is reached andβi ∈ (0, 1)
is the backoff parameter applied when thei’th source is informed of ‘congestion’. The timeT between congestion event
depends on the state at the beginning of the event and is givenby (t(k + 1) − t(k)) = T (x(k)), where

T (x) =
C −

∑n
j=1 βjxj

∑n
j=1 x

κj

j

=

∑n
j=1(1 − βj)xj
∑n

j=1 x
κj

j

. (5)

Definition 3.1 (Stable Networks) A network given by dynamics of the form (4) oñΣ is called stable if (i) system (4) has
a unique equilibrium pointw∗ ∈ Σ̃, and (ii)w∗ is a globally asymptotically stable fixed point of (4) onΣ̃. A network is said
to be unstable if it is not stable.

Let us first determine the fixed points of (4).

Proposition 3.2 Consider the system(4), (5). Then

(i) if (1 − κi)(1 − κj) > 0, for all i, j ∈ {1, . . . , n} then there exists a unique fixed pointw∗ ∈ Σ̃. This fixed point is
determined by the equations fori = 1, . . . , n

w∗
i =

(

T (w∗)

(1 − βi)

)1/(1−κi)

, whereT (w∗) > 0 uniquely solves C =
n

∑

j=1

(

T ∗

(1 − βj)

)1/(1−κj)

. (6)

(ii) if κi 6= 1, i = 1, . . . , n and there arei, j ∈ {1, . . . , n}, such that(1 − κi)(1 − κj) < 0 then the system is generically
unstable, that is, there exists a constantC∗ > 0, such that the system(4), (5) has no fixed point iñΣ, if 0 < C < C∗ and
multiple fixed points, ifC > C∗.

(iii) if exactly one sourcei satisfiesκi = 1, then there exists a unique fixed pointw∗ ∈ Σ̃ if and only if

C −
∑

j 6=i

(

1 − βi

1 − βj

)1/(1−κj)

> 0 . (7)

(iv) if two or more sourcesi1, . . . , il have the parameterκi1 = . . . = κil
= 1, then the network is unstable.

4 TCP and consensus

We have so far obtained conditions for the existence of a unique fixed point of the network in terms of theκi, namely allκi

have to be chosen such that the sign of1 − κi is fixed, (ignoring a few special cases, that are of no particular relevance to the
general design of protocols). In [3] it is shown that furtherrestrictions have to be placed on theκi in order to obtain local
asymptotic stability of the unique fixed points. In particular, for local stability it is necessary thatκi < 1 for i = 1, . . . , n. To
speak of a stable network, however, we would like to achieve global stability. This is the topic of the following result.

Proposition 4.1 Let κ ∈ [0, 1), κi = κ, βi ∈ [0, 1), i = 1, . . . , n andC > 0. Then the fixed pointw∗ = (w∗
1 , . . . , w∗

n)
given by(6) is globally asymptotically stable for system (4).

The proof of this result is closely related to stability results that have been recently obtained in the framework of consensus
problems. In this sense the stability property of AIMD algorithms may be interpreted as the problem of the sources reaching
consensus on the share of the resource that each obtains without direct communication between the different users.

Acknowledgements This work was supported by Science Foundation Ireland grant04-IN3 -I460 and 00/PI.1/C067. The authors would
like to thank Christopher King and Oliver Mason for useful discussions.

References

[1] E. Altman, K. E. Avrachenkov, and B. J. Prabhu, Fairness in MIMD congestion control algorithms, in Proc. of IEEE INFOCOM 2005,
Miami, FL, 2005, pp. 1350–1361.

[2] R. Shorten, F. Wirth, D. Leith, A positive matrix model ofTCP: Asymptotic results, IEEE Transactions on Networking (2006), to
appear.

[3] R. Shorten, F. Wirth, M. Akar. On nonlinear AIMD congestion control for high-speed networks. Submitted to Proc. 45thIEEE Con-
ference on Decision and Control, San Diego, CA, USA, December 2006.

Copyright line will be provided by the publisher


