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Abstract— This papers analyzses a class of nonlinear positive
systems that model the dynamics of nonlinear additive-increase
multiplicative-decrease (AIMD) protocols. The system class covers
a range of protocols that are currently used in real communica-
tion networks, such as standard TCP, and recent proposals for
congestion control protocols such as Scalable TCP.

I. INTRODUCTION

Traffic generated by the Transmission Control Protocol (TCP)

accounts for 85% to 95% of all traffic in today’s internet

[1]. TCP, in congestion avoidance mode, is based primarily

on the Chiu and Jain’s [2] Additive-Increase Multiplicative-
Decrease (AIMD) paradigm for decentralized allocation of a

shared resource (e.g., bandwidth) among competing users. The

AIMD paradigm is based upon a network of users competing

for the available resource by using two basic strategies; they

probe for their share of the available resource by utilising

more and more of the resource (the additive increase stage),

and then instantaneously down-scale their utilization-rates in

a multiplicative fashion when notified (simultaneously) that

capacity was reached (the multiplicative decrease stage). With

some minor modifications, the AIMD algorithm has served

the networking community well over the past two decades and

it continues to provide the basic building block upon which

today’s internet communication is built.

Recently, in the context of designing high speed communi-

cation networks, several authors have suggested basic modi-

fications to the AIMD algorithm; for example, see [3], [4],

[5], [6], [7]. One idea underlying these modifications is to

allow the employment of more aggressive probing for available

bandwidth by replacing the linear in time increase of probing

that is a feature of TCP with nonlinear growth. We refer to

these algorithms as nonlinear AIMD (NAIMD) algorithms.

While the modifications appear minor from an algorithmic

viewpoint, they result in networks with different dynamic

properties than those employing the basic (linear) AIMD;

see [8]. Remarkably, despite increasing deployment of these

algorithms many basic questions pertaining to the behavior of

such networks have not yet been addressed.

The objective of the current paper is to examine and study

a class of NAIMD algorithms. Under the assumption of

user-synchronization, necessary and sufficient conditions are

derived which guarantee that the network has a unique stable

outcome to which it converges geometrically under all starting

points.
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II. PREAMBLE: AIMD CONGESTION CONTROL

In their original paper [2], Chiu and Jain consider a system

in which n users compete for a resource having limited

availability per unit time, e.g., bandwidth in communication

networks. The users’ actions consist of (continuously) probing

the availability of the resource by submitting requests for its

use – these requests are satisfied whenever global capacity is

not exceeded. A key assumption in the model formulated by

Chiu and Jain is the assertion that the users do not commu-

nicate directly with each other. Further, the only information

about availability of the resource that the users get is when

the collective utilization of the resource exceeds some capacity

constraint. At such time-instances, referred to as congestion
events, all users are instantly and simultaneously informed

through a binary feedback. The users are assumed to respond

instantly to these notifications of congestion by decentralized

down-scaling of their individual utilization-rates. Given this

basic setting, the problem is then to develop an algorithm that

produces probing strategies for the users so that each user will

infer its “fair” share of the shared resource in a decentralized

manner.

In the current paper we focus on the synchronized problem,

referring to simultaneous notification of congestion to all users

to which they all respond. In unsynchronized systems, the

signal about system-saturation is not transmitted simultane-

ously to all users. While synchronization is not valid in many

real communication networks, the study of such systems is

important for two reasons. First, it represents an important

first step towards the understanding of more general systems.

And Second, synchronization appears to be a common feature

of high speed communication networks [7] and consequently

the understanding the behavior of such networks may be of

merit in some practical situations.

III. LINEAR AIMD CONGESTION CONTROL

The AIMD algorithm of Chiu and Jain describes probing

strategies that evolve in cycles, each cycle having two phases.

The first phase of the cycles is instantaneous. It occurs when

capacity is reached, users are notified and each responds by

down-scaling its utilization-rate (abruptly) by a multiplicative

factor. This phase is called the Multiplicative Decrease (MD)

phase. During the second phase of a cycle, each user increases

his utilization-rate linearly until congestion is reached again,

at which point the first phase of the next cycle is entered. The

second phase is called the Additive Increase (AI) phase.

Denote the share of the collective resource allocated to user

i at time t by xi(t) and let x(t) = [x1(t), . . . , xn(t)]T . The

capacity constraint requires that
∑n

i=1 xi(t) < C, with C as

the total capacity of the resource available to the entire system.
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The kth cycle begins at a time t(k) at which the global

utilization of the resource reaches capacity. The instantaneous

decrease of the utilization-rate of user i during the MD phase

of the kth cycle is expressed by:

xi(t(k)+) = βixi(t(k)−), (1)

where xi(t(k)+) := limt↘t(k) xi(t), xi(t(k)−) :=
limt↗t(k) xi(t) and βi is a constant in the open interval (0, 1).
During the AI phase of the kth cycle, the utilization-rate of

user i evolves according to:

xi(t) = xi(t(k)+) + αi(t − t(k)), (2)

where αi is a positive constant. The (k + 1)st cycle begins

at time t(k + 1)+ that equals the time t for which the right

hand-side of (2) reaches capacity.

A convenient framework to study the implication of the AIMD

algorithm is to consider the utilization-rates at congestion

events that occur at times t1, t2, . . . . Combining (1) and

(2), we see that the evolution of the utilization-rate of user

i between the kth and (k +1)st congestion points is given by

xi(t(k + 1)) = βixi(t(k)) + αi

(
t(k + 1) − t(k)

)
, (3)

This avenue of investigation is explored in [9] where it is

shown that the transformation of the utilization-rates between

consecutive congestion points is linear with the representation

x(k + 1) = Ax(k) (4)

where

A =

⎡
⎢⎢⎢⎣

β1 0 · · · 0
0 β2 · · · 0
...

...
. . .

...

0 0 · · · βn

⎤
⎥⎥⎥⎦ (5)

+
1∑n

j=1 αi

⎡
⎢⎣

α1

...

αn

⎤
⎥⎦ [

1 − β1, · · · , 1 − βn

]
.

IV. NONLINEAR AIMD CONGESTION CONTROL

We next describe a nonlinear variant of the basic AIMD

algorithm, to which we refer as NAIMD. Specifically, NAIMD

coincides with the standard (linear) AIMD except that in the

AI phase the increase in the utilization-rate of each user i is

dictated by a nonlinear function of the state xi(k) that we

denote ai(xi(k)). In this paper we assume that ai(xi(k)) =
xi(k)κi(t(k + 1) − t(k)) where we assume that xi(k) > 0
and where κi ∈ R. This functional form is motivated by the

desire to make TCP more aggressive in high-speed and long

distance networks. The evolution of the utilization-rate of user

i between the kth and (k+1)st congestion points is then given

by

xi(k + 1) = βixi(k) + (xi(k))κi(t(k + 1) − t(k)), (6)

which replaces (3). This family of congestion control protocols

includes standard TCP when κ = 0, Scalable TCP when

κ = 1, and several other proposed algorithms for high speed

networks.

A slight and natural generalization is to use the function

ai(xi(k)) = cixi(k)κi(t(k+1)−t(k)) for some constants ci >
0. The results in the present paper can be easily generalized

to this more general situation. Namely, by introducing the

constants di = c1−αi
i and the transformed variables zi = dixi,

i = 1, . . . , n it is easy to see that the dynamic equation of z
are of the form (6). However, the constraint condition changes

to C =
∑

d−1
i zi, so that in full generality we have to study

(6) with a general linear constraint. The effect on the results

however is marginal and we therefore do not pursue this issue

here.

It has been recently shown by several authors that some

choices of the ai(t) lead to poor dynamic properties, including

the lack of stable utilization-rates; see [8]. It is therefore of

interest to determine the properties of networks with various

values of κ.

The next example illustrates the evolution of the utilization

rates in a 2-user system in which NAIMD is applied and to

which our forthcoming results apply.

Example 1: Consider a system with 2-users that apply

NAIMD with β1 = 0.25, β2 = 0.5 and κ1 = κ2 = 1. This is

Scalable TCP. The resulting network behaviour is unstable as

one user takes all of the resource.
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Fig. 1. Utilization-rates under NAIMD with κ = 1.

V. A POSITIVE SYSTEMS MODEL OF NAIMD ALGORITHMS

Throughout, the following notation is adopted: R denotes the

real numbers; R
n denotes the n-dimensional real Euclidean

space; R
n×n denotes the space of n × n matrices with real

entries; xi denotes the ith component of the vector x in R
n.

We denote the i-th unit vector by ei. The positive orthant is

denoted by R
n
+ := {x ∈ R

n | xi ≥ 0, i = 1, . . . , n} and we

write x > 0 if xi > 0, i = 1, . . . , n. The absolute value of a

vector x ∈ R
n is defined by |x| =

[ |x1| . . . |xn|
]T

.

We consider a network of n users each with a state xi(k),
competing for a shared resource. We assume that each user

behaves according to the following strategy. For each i ∈
{1, ..., n} source i adapts its window size according to

xi(k + 1) = βixi(k) + xi(k)κi(t(k + 1) − t(k)), (7)

subject to the constraint that
∑n

i=1 xi(k) = C for all k,

where βi ∈ (0, 1) and C > 0 denotes the capacity of the
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resource. The index k enumerates the time instances at which

the capacity constraint is reached and βi ∈ (0, 1) is the

backoff parameter applied when the i’th source is informed

of ‘congestion’. The constants κi, i = 1, . . . , n determine the

aggressiveness of each of the sources.

The time T between congestion event depends on the state at

the beginning of the event and is given by (t(k+1)− t(k)) =
T (x(k)), where

T (x) =
C − ∑n

j=1 βjxj∑n
j=1 x

κj

j

=

∑n
j=1(1 − βj)xj∑n

j=1 x
κj

j

. (8)

To write the overall map describing the system compactly we

introduce the diagonal matrix Dβ := diag (β1, . . . , βn) ∈
R

n×n and we write x·κ ∈ R
n defined by x =

(x1, . . . , xn)T �→ (xκ1
1 , . . . , xκn

n )T =: x·κ. With this we obtain

x(k + 1) = f(x(k)) , where (9)

f(x) = Dβx + T (x)x·κ .

All n equations can be written compactly in matrix form

x(k + 1) = A(x(k))x(k) , (10)

where

A(x) =

⎡
⎢⎢⎢⎣

β1 0 · · · 0
0 β2 0 0
... 0

. . . 0
0 0 · · · βn

⎤
⎥⎥⎥⎦ (11)

+
1∑n

j=1 x
κj

j

⎡
⎢⎢⎣

xκ1
1

xκ2
2

· · ·
xκn

n

⎤
⎥⎥⎦

[
1 − β1 · · · 1 − βn

]
.

It is readily verified that for each vector of network states

x the matrix A(x) is column stochastic, i.e it is a matrix

with nonnegative entries, whose columns sum to 1. We now

introduce the stability property of interest for networks of the

type that has been described.

We note that, unless κi = 0, the model prevents source i from

ever increasing its share, if the initial condition is xi(0) =
0. We will therefore always assume that the initial condition

satisfies x(0) > 0 and we are interested in the dynamics on

the invariant set

Σ̃ := {x ∈ R
n | x > 0,

∑
xi = C} .

In practice, in AIMD algorithms there is usually a special

“slow start” procedure which ensures that a source is sending

at a positive rate, before the actual AIMD algorithm is used.

We aim to analyse the dynamics of NAIMD and assume

therefore, that the system has already performed slow start.

We now present the definition of stability that is investigated

in this paper. From the perspective of network design it is

desirable, that the system has a unique fixed to which all initial

conditions converge. This is th egist of the following

Definition 5.1 (Stable Networks): A network given by dy-

namics of the form (7) on Σ̃ is called stable if

(i) system (7) has a unique equilibrium point w∗ ∈ Σ̃,

(ii) w∗ is a globally asymptotically stable fixed point of

(7) on Σ̃.

A network is said to be unstable if it is not stable. �
Remark 5.1: Thus by definition a network is unstable if at

least one user is starved of the resource asymptotically or if

at least one user does not asymptotically achieve a constant

share of the resource.

VI. FIXED POINTS, LINEARIZATION, STABILITY, AND

INSTABILITY RESULTS

In this section we perform the first step in our analysis and

identify the parameters for which there is a fixed point and

analyse the local stability properties of this fiped point with

linearization techniques.

A. Fixed Points

Let us first determine the fixed points of (9). Recall, that we are

under the assumption that if congestion occurs then
∑

j xj =
C > 0.

Proposition 6.1: Consider the system (9), (8). Then

(i) if (1 − κi)(1 − κj) > 0, for all i, j ∈ {1, . . . , n} then

there exists a unique fixed point w∗ ∈ Σ̃. This fixed point

is determined by the equations

w∗
i =

(
T (w∗)

(1 − βi)

)1/(1−κi)

, i = 1, . . . , n , (12)

where T (w∗) is the unique solution of

C =
n∑

j=1

(
T ∗

(1 − βj)

)1/(1−κj)

. (13)

(ii) if κi �= 1, i = 1, . . . , n and there are i, j ∈ {1, . . . , n},

such that (1 − κi)(1 − κj) < 0 then the system is

generically unstable, that is, there exists a constant C∗ >
0, such that the system (9), (8) has no fixed point in Σ̃,

if 0 < C < C∗ and multiple fixed points, if C > C∗.

(iii) if exactly one source i satisfies κi = 1, then there

exists a unique fixed point w∗ ∈ Σ̃ if and only if

C −
∑
j �=i

(
1 − βi

1 − βj

)1/(1−κj)

> 0 . (14)

(iv) if two or more sources sources i1, . . . , il have the

parameter κi1 = . . . = κil
= 1, then the network is

unstable. In particular,

(a) if βiν �= βiµ for some ν, µ ∈ {1, . . . , l} then the

system has no fixed points in Σ̃,

(b) if βi1 = . . . = βil
then the system has no or more

than one fixed point in Σ̃.

Remark 6.1: Note that the instability behaviour observed

in Example 1 is explained by the statement of Proposi-

tion 6.1 (iv) (a).

Proof: (i) Assume (1−κi)(1−κj) > 0, i, j = 1, . . . , n.

From the fixed point equations

w∗
i = βiw

∗
i + T (w∗)w∗

i
κi , i = 1, . . . , n (15)

we obtain the condition

w∗
i =

(
T (w∗)

(1 − βi)

)1/(1−κi)

, i = 1, . . . , n . (16)
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In addition to (16) the fixed point has to satisfy the condition∑n
j=1 w∗

j = C. Thus the constant T ∗ := T (w∗) has to satisfy

C =
n∑

j=1

w∗
j =

n∑
j=1

(
T ∗

(1 − βj)

)1/(1−κj)

. (17)

Now by assumption the powers 1/(1 − κj), j = 1, . . . , n are

either all negative or all positive. In both cases, the map

T �→
n∑

j=1

(
T

(1 − βj)

)1/(1−κj)

is a homeomorphism of (0,∞) so that for all C > 0 there is a

unique T ∗ satisfying (17). This together with (16) determines

a unique fixed point in Σ̃.

(ii) As in (i) we obtain the conditions (16) and (17) for a fixed

point. Consider again the map

T �→
n∑

j=1

(
T

(1 − βj)

)1/(1−κj)

.

As there are now indeces i, j such that 1/(1−κi), 1/(1−κj)
have a different sign, this means that this map tends to infinity

for T → 0 and T → ∞. Denoting

C∗ := min
T>0

n∑
j=1

(
T

(1 − βj)

)1/(1−κj)

this shows that for 0 < C < C∗ there is no solution of (16)

and (17), whereas for C > C∗ there is more than one solution

of these conditions.

(iii) We now assume that κ1 = 1, κi �= 1, i = 2, . . . , n.

Assuming that there is a fixed point w∗ ∈ Σ̃ the fixed point

equation (15) for i = 1 reduces to

T (w∗) = (1 − β1) . (18)

Thus we obtain from (16) that for i = 2, . . . , n we have

w∗
i =

(
1 − β1

1 − βi

)1/(1−κi)

.

Now w∗ ∈ Σ̃ in conjunction with
∑n

j=1 w∗
j = C is possible,

if and only if (14) holds, as desired.

(iv) Assume now, that κ1 = . . . = κl = 1, κi �= 1, i =
l +1, . . . , n. Arguing just as before, we obtain from (18), that

if a fixed point w∗ ∈ Σ̃ exists, then T (w∗) = (1−β1) = . . . =
(1− βl). This shows part (a) of the claim. Assuming that the

βi, i = 1, . . . , l coincide we see that a necessary condition for

the existence of a fixed point in Σ̃ is that

d := C −
n∑

j=l+1

(
1 − β1

1 − βj

)1/(1−κj)

> 0 .

If this is not the case no fixed point in Σ̃ exists. Otherwise

any choice of w1, . . . , wl > 0 such that
∑l

j=1 wj = d leads

to a fixed point, so that the fixed points in Σ̃ are not unique.

We note for further reference that from (16) it follows for all

κi, that if a fixed point w∗ in Σ̃ exists then

(1 − βi) = T (w∗)w∗
i

κi−1 , i = 1, . . . , n . (19)

B. Linearization and local stability results

In the analysis of the existence of fixed points we have seen,

that there is essentially only one situation of interest, which is

the case that (1−κi)(1−κj) > 0 for all i, j = 1, . . . , n. In all

other cases, either the system cannot be stable, as there are no

or many fixed points in Σ̃, or sometimes by a particular choice

of C, or by allowing exactly one user to use the parameter

κi = 1 a unique fixed point is obtained. As the latter cases

are not particularly relevant (how would one pick that one user

for instance?) we do not discuss these any further.

We now investigate local stability of the unique fixed point,

that exists, if the condition (1−κi)(1−κj) > 0 for all i, j =
1, . . . , n is satisfied. In the following statement we abbreviate

p :=
w∗·κ∑n

j=1 w∗
j

κj
∈ R

n ,

and we introduce

γi := βi + (1 − βi)κi , γ :=
[
γ1 . . . γn

]T
,(20)

Dγ = diag (γ1, . . . , γn) ∈ R
n×n .

In the sequel we assume without loss of generality, that the

γi are ordered

γ1 ≤ γ2 ≤ . . . ≤ γn .

Note that p > 0 is a stochastic vector, i.e. its entries sum to

1.

Proposition 6.2: Consider the system (9), (8) and let (1 −
κi)(1 − κj) > 0, for all i, j ∈ {1, . . . , n}. Then the Jacobian

Jf of f in the unique fixed point w∗ of (9) is given by

Jf(w∗) = Dγ − pγT . (21)

Proof: Considering (9), calculation of the Jacobian of f
in x leads to

Jf(x) = Dβ + T (x) diag (κ1x
κ1−1
1 , . . . , κnxκn−1

n )
+x·κ∇T (x)

= Dβ + T (x) diag (κ1x
κ1−1
1 , . . . , κnxκn−1

n )

+
x·κ∑n

j=1 x
κj

j

([−β1 . . . −βn

]

−T (x)
[
κ1x

κ1−1
1 . . . κnxκn−1

n

])
,

where we have used (8). Inserting the fixed point w∗ into this

equation we obtain (21) using (19) and (20).

We note that the column sums of Jf(w∗) are all equal to 0,

thus 0 is an eigenvalue of Jf(w∗) with associated left, resp.

right eigenvectors [
1 . . . 1

]
,

and (if γi �= 0, i = 1, . . . , n)

[ p1
γ1

. . . pn

γn

]T
.

We will now investigate the location of the eigenvalues of

Jf(w∗).
Theorem 6.1: Consider the system (9), (8) and let (1−κi)(1−
κj) > 0, for all i, j ∈ {1, . . . , n}. The following statements

hold:

(i) The spectrum of Jf(w∗) is real.
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(ii) The spectral radius r(Jf(w∗)) satisfies

r(Jf(w∗)) ∈ (γn−1, γn) , if γn ≥ |γ1| ,
r(Jf(w∗)) ∈ (|γ2|, |γ1|) , if γn ≤ |γ1| .

Proof: We prove the result under the assumption, that

γi �= 0, i = 1, . . . , n. As the entries of Jf(w∗) depend

continuously on γ it then follows using perturbation results,

that the statements also hold for the case, that some γi vanish.

(i) We first note that if η = γj = . . . = γj+l for some j =
1, . . . , n, l > 0 then η is an eigenvalue of multiplicity l of

Jf(w∗). To see this consider constants aj , . . . , aj+l not all

zero, such that
∑l

m=0 aj+m = 0. Then for the nonzero vector

y :=
∑l

m=0 aj+mej+m we have

Jf(w∗)y = Dγy − pγT y = ηy + p(η
l∑

m=0

aj+m) = ηy ,

where we have used, that γj = η for all indices j for which

yj �= 0. The dimension of the space of vectors y which can

be constructed in this manner is l, showing the first assertion.

Consider now the eigenvalue equation

(Dγ − pγT )x = λx

If γT x = 0, this implies that x is an eigenvector of Dγ , so

that λ = γi for some i. Assume now that γT x �= 0, so that

we may assume it is equal to 1. Then the eigenvalue equation

reads in componentwise form

γixi − pi = λxi , i = 1, . . . , n . (22)

From this we see that λ = γi for some i if and only if pi =
0, i = 1, . . . , n, which contradicts p > 0. Thus the assumption

γT x �= 0 implies, that λ is different from the γi. Thus (22) is

equivalent to

xi =
pi

γi − λ
, i = 1, . . . , n .

As we have the condition γT x = 1 we obtain

1 =
∑

γixi =
∑ γipi

γi − λ
=: q(λ) .

By these consideration we see, that λ is an eigenvalue different

from the γi, if and only if q(λ) = 1.

Clearly, the rational function q has poles in γ1, . . . , γn.

Note that as η approaches γi from above we have q(η) →
−sign (γi)∞ and for η approaching γi from below, it holds

that q(η) → sign (γi)∞. Thus if sign (γi) = sign (γi+1) we

have that q maps the interval (γi, γi+1) to R and consequently,

there is a γi < λ < γi+1 with q(λ) = 1, so that λ is an

eigenvalue of Jf(w∗). If sign (γi) �= sign (γi+1), that is,

if γi < 0 < γi+1, then the eigenvalue 0 is in the interval

(γi, γi+1). Thus in total every interval (γi, γi+1) contains an

eigenvalue, if we set (γi, γi+1) = {γi+1} for the degenerate

case γi = γi+1.

In all we have seen up to now, that n−1 of the eigenvalues of

Jf(w∗) are real, which implies that all eigenvalues of Jf(w∗)
are real, because the matrix is real.

(ii) To complete the proof, note that the n− 1 eigenvalues we

have accounted for lie in the interval [γ1, γn].

If γ1 > 0, then the eigenvalue 0 is an additional eigenvalue,

so that all eigenvalues lie in the interval [0, γn] and one eigen-

value is in the interval [γn−1, γn]. This eigenvalue is equal to

the spectral radius r(Jf(w∗)), which shows the claim in this

case. Similarly, if γn < 0, then 0 is the remaining eigenvalue

and the spectral radius satisfies r(Jf(w∗)) ∈ [ |γ2|, |γ1| ].
Finally, if γ1 < 0 < γn, then there is an index i, such that

γi < 0 < γi+1. We will show that in this case there are two

eigenvalues in the interval (γi, γi+1) which again shows the

claim concerning the spectral radius. In this case either |γ1| or

γn could be the upper bound for the spectral radius depending

on their relative size.

To show, that there are two eigenvalues in the interval

(γi, γi+1), note that for η lower than γi we have q(η) →
∞, because sign (γi) = −1 and for η greater than γi+1

we have q(η) → ∞. Note that q(0) = 1, so that

−∞ < minη∈(γi,γi+1) q(η) ≤ 1. If minη∈(γi,γi+1) q(η) <
1, then necessarily q(λi) = 1 for two different values

λ1, λ2, as q approaches ∞ at both ends of the interval.

If minη∈(γi,γi+1) q(η) = 1, then we can again argue by

perturbation analysis: As λ = 0 is a minimum, we have that

0 =
d

dη
q(η)η=0 = −

n∑
j=1

pj

γj
. (23)

By considering γ̃i := γi + ε, we see, that (23) does not hold

for γ̃ := γ + ε ei for all ε > 0 small enough (because p > 0).

Applying the previous considerations, the matrix Dγ̃ −pγ̃ has

two distinct eigenvalues in the interval (γ̃i, γi+1). Letting ε →
0 it follows that Jf(w∗) has two eigenvalues in the interval

(γi, γi+1), as desired.

From these inequalities we obtain the following stability and

instability results. Again note, that we only need to concern

ourselves with the case (1 − κi)(1 − κj) > 0 for all i, j =
1, . . . , n, in which case we may speak of the unique fixed

point of the system.

Corollary 6.1: Consider the system (9), (8) and let βi ∈
[0, 1), i = 1, . . . , n and C > 0.

(i) If κi > 1, i = 1, . . . , n, then the fixed point w∗ =
(w∗

1 , . . . , w∗
n) given by (12) is unstable. In particular, the

network is unstable.

(ii) If −(1 + βi)/(1 − βi) ≤ κi < 1, i = 1, . . . , n, then

the fixed point is locally asymptotically stable.

(iii) If κi < 1, i = 1, . . . , n, and κj < −(1 + βi)/(1−βi)
for two values of j ∈ {1, . . . , n} then the fixed point is

unstable. In particular, the network is unstable.

Proof: (i) This is an immediate consequence of Theo-

rem 6.1 (ii), as r(Jf(w∗)) > γ2 = β2 + (1 − β2)κ2 > 1,

which follows using κ2 > 1.

(ii) Note that −(1+βi)/(1−βi) ≤ κi < 1 if and only if γi =
βi + (1 − βi)κi ∈ (−1, 1). This implies by Theorem 6.1 (ii),

that r(Jf(w∗)) ≤ max{|γ1|, γn} < 1, so that r(Jf(w∗)) is

Schur stable.

(iii) By assumption γ2 < −1 and thus using Theorem 6.1 (ii) it

follows that r(Jf(w∗)) > 1. Thus the fixed point is unstable.

Remark 6.2: (i) Summarizing the only set ups, in which a

unique fixed point is achieved, that is locally asymptotically
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stable, are given by the choices −(1+βi)/(1−βi) ≤ κi < 1,

i = 1, . . . , n.

(ii) Note that the bound r(Jf(w∗)) ≤ max{|γ1|, γn} also

provides easily computable bounds for the local attraction rates

in the case, the fixed point is locally stable.

(ii) We note that in [2, Section 4] also nonlinear protocols

of the form (9) are briefly studied. A remark in that section

suggests in a heuristic manner that stability of the network

will hold for all negative values of the exponent. We see from

(iii) in the previous Proposition, that this statement does not

hold up to careful scrutiny. In fairness, it has to be admitted,

that this remark is only a minor comment in the paper [2],

and the authors do not claim to put forward a general result

concerning this question.

VII. GLOBAL STABILITY

We have so far obtained conditions for the existence of a

unique fixed point of the network in terms of the κi, namely

all κi have to be chosen such that the sign of 1 − κi is

fixed, (ignoring a few special cases, that are of no particular

relevance to the general design of protocols). We have also

obtained conditions on the κi that guarantee that unique

fixed points are locally exponentially stable using linearization

theory. To speak of a stable network, however, we would like

to achieve global stability. This is the topic of this section.

We now show that this fixed point is asymptotically stable if

the constants κi all coincide.

Proposition 7.1: Let κ ∈ [0, 1), κi = κ, βi ∈ [0, 1), i =
1, . . . , n and C > 0. Then the fixed point w∗ = (w∗

1 , . . . , w∗
n)

given by (12) is asymptotically stable.

Proof: Let c := w∗. Instead of the evolution of x(k) we

study the system in the new variable z defined by xi = cizi.

This leads to the equations

zi(k + 1) = βizi(k) +
cκ−1
i zi(k)κ∑n

j=1 cκ
j zj(k)κ

n∑
j=1

(1 − βj)cjzj(k) .

(24)

Note that by definition the fixed point of (24) is z∗ :=[
1 . . . 1

]T
. Let M(k) = max{zi(k) | i = 1, . . . , n} and

m(k) = min{zi(k) | i = 1, . . . , n}. We will show that if

m(k) < M(k) then we have for all i = 1, . . . , n that

(1 − βi)m(k) <
cκ−1
i zi(k)κ∑n

j=1 cκ
j zj(k)κ

n∑
j=1

(1 − βj)cjzj(k)

< (1 − βi)M(k) .

(25)

Together with (24) this shows for all i = 1, . . . , n that

zi(k + 1) ∈ (m(k),M(k)) , (26)

or in other words m(k) < m(k + 1) < M(k + 1) < M(k).
It then follows using standard arguments from the theory of

Lyapunov functions that M(k) − m(k) → 0, or equivalently

z(k)T → [
1 . . . 1

]T
. This however, is equivalent to x(k) →

w∗.

Thus it remains to show that (25) holds. In the following we

suppress the dependence of k for the sake of succinctness.

Using (19) the left hand side of (25) is equivalent to

T ∗cκ−1
i m <

cκ−1
i zκ

i∑n
j=1 cκ

j zκ
j

n∑
j=1

T ∗cκ−1
j cjzj ,

which is equivalent to

n∑
j=1

cκ
j

zκ
j

zκ
i

<
n∑

j=1

cκ
j

zj

m
. (27)

Thus the proof of the lower inequality is complete, if we

can show that zκ
j /zκ

i ≤ zj/m for j = 1, . . . , n with strict

inequality for at least one j. We note that zi ≥ m so that

if zj ≥ zi, then we have zκ
j /zκ

i ≤ zj/zi ≤ zj/m. Strict

inequality occurs whenever zj > zi or when zi > m. One

of these has to hold (for an appropriate j), as otherwise

M = m. On the other hand zj/m ≥ 1, so that if zj ≤ zi,

then zκ
j /zκ

i ≤ 1 ≤ zj/m. Again it is easy to see that strict

inequality has to hold for some j, if m < M . Hence (27)

holds. The proof for the right hand equation in (25) follows

exactly the same lines.

VIII. CONCLUSIONS

In this paper we have studied stability properties of heteroge-

neous networks in which different users implement different

versions of nonlinear AIMD algorithms with different levels

of aggressiveness. It has been shown that if the level of

aggressiveness κi is bigger or equal than 1, then this results

in an unstable situation. This applies in particular to Scalable

TCP, in which users set their aggressiveness to κ = 1.
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