
ARTICLE IN PRESS
0378-4371/$ - se

doi:10.1016/j.ph

�Correspond
E-mail addr

(M. Freitag), ja
Physica A 363 (2006) 104–114

www.elsevier.com/locate/physa
Autonomous control of production networks
using a pheromone approach

D. Armbrustera,c, C. de Beerb, M. Freitagb, T. Jagalskib, C. Ringhofera,�

aDepartment of Mathematics, Arizona State University, Tempe, AZ 85287-1804, USA
bDepartment of Planning and Control of Production Systems, University of Bremen, D-28359 Bremen, Germany

cDepartment of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, Netherlands

Available online 13 February 2006
Abstract

The flow of parts through a production network is usually pre-planned by a central control system. Such central control

fails in presence of highly fluctuating demand and/or unforeseen disturbances. To manage such dynamic networks

according to low work-in-progress and short throughput times, an autonomous control approach is proposed.

Autonomous control means a decentralized routing of the autonomous parts themselves. The parts’ decisions base on

backward propagated information about the throughput times of finished parts for different routes. So, routes with shorter

throughput times attract parts to use this route again. This process can be compared to ants leaving pheromones on their

way to communicate with following ants.

The paper focuses on a mathematical description of such autonomously controlled production networks. A fluid model

with limited service rates in a general network topology is derived and compared to a discrete-event simulation model.

Whereas the discrete-event simulation of production networks is straightforward, the formulation of the addressed

scenario in terms of a fluid model is challenging. Here it is shown, how several problems in a fluid model formulation (e.g.

discontinuities) can be handled mathematically. Finally, some simulation results for the pheromone-based control with

both the discrete-event simulation model and the fluid model are presented for a time-dependent influx.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Today, production plans that allocate jobs to machines have to adapt quickly to market dynamics and
changing production conditions while conventional production planning and control systems cannot handle
these dynamics and unpredictable events and disturbances in a satisfactory manner [1]. One reason is that in
practice the complexity of centralized architectures tends to grow rapidly with size, resulting in rapid
deterioration of fault tolerance, adaptability and flexibility [2]. To solve this dilemma and to manage the
e front matter r 2006 Elsevier B.V. All rights reserved.
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dynamics inside and outside the production system, the development of decentralized and autonomous control
strategies is a promising research field [3]. Here, autonomous control means a decentralized coordination of
intelligent logistic objects (parts, machines, etc.) and the allocation of jobs to machines by the intelligent parts
themselves. Those intelligent parts make autonomous decisions that are based on local information. The
dynamics of such a system depends on the local decision-making processes and produces a system’s global
behavior that has new emerging characteristics [4].

The application of autonomous control in production networks leads to a coalescence of material flow and
information flow and enables every part or product to manage and control its manufacturing process
autonomously [5]. To develop and analyze autonomous control strategies dynamic models are required. For
that two different modeling approaches are investigated regarding their abilities to describe an exemplary
scenario—an autonomously controlled production network. A discrete-event simulation model is compared to
a deterministic fluid model for a continuous product queue, both based on previous work in Refs. [6–9]. Here,
the term continuous denotes the continuous material flow in comparison to the flow of discrete parts in the
discrete-event simulation model. In literature, continuous flow models of production systems are often called
hybrid models (cf. Refs. [10–12]). That means the material flow is modeled as a continuous flow which is
controlled by discrete actions. This discrete control is typical for production systems and is applied here in
both the continuous and the discrete model.

In this paper, we develop models and control strategies based on the idea of pheromones. That is, the
decision which path to choose through the production network is not made by a manager or operator, but by
the individual part itself, based on the ‘experience’ of other parts of the same type. This ‘pheromone approach’
is therefore similar to, say, the organization of an ant colony, where workers leave chemical messages for the
following workers, thereby transmitting the optimal path to the food supply [13]. Clearly, in a very complex
network, where the a priori optimal choice becomes an NP-complete problem, this approach offers an
interesting alternative.

In Section 2 we encode the topology of a general network with adaptive routing into the language of
fluid models. Section 3 is devoted to the description of the discrete-event simulator. In Section 4 we derive
the fluid model, which incorporates multiple product flows with separate processing rates for different
products. In particular (Section 4.4), we show how to compute the pheromones in the context of a fluid
model.

2. The topology

The considered production network is a flow-line manufacturing system producing P different products at
the same time. Each of the products has to undergo S production stages. For each of these production stages,
we have K parallel production lines available. The raw materials for each product enter the system via sources;
the final products leave the system via drains. The production lines are coupled at every stage and every line is
able to process every type of product within a certain stage. Thus, at each production stage s ¼ 1; . . . ;S, we
have to make P decisions, into which of the lines k ¼ 1; . . . ;K to direct product p ¼ 1; . . . ;P in the next stage.
Therefore, the production network consists of KS machines. For simplicity, we assume that the service rule for
the different products is first in–first out (FIFO). So, each machine has one input buffer in front of it,
containing items of P product types. The generalization to the case, where not all products have to go through
the same number of production stages, is straightforward, and will not be considered here for reasons of
notational simplicity. If all machines at a given production stage would treat each product the same way, then
the optimal strategy would be one where each part would choose the line with the currently minimal buffer
length. We assume instead, that different product lines are more suitable for certain products. That is, we
assume that each machine at each stage has different processing times for each product. Let therefore the
processing time for machine ðk; sÞ and product p be given by Tpks. To formulate the topology for a continuous
model, we have to encode this scenario in terms of the fluid variables, namely the work-in-progress within a
buffer–machine system and the fluxes. Let W pksðtÞ denote the work-in-progress of product of type p in the
stage s of production line k at time t, i.e., the number of parts in the buffer plus the number of parts currently
processed by the machine. Let f in

pksðtÞ denote the corresponding influx of type p product into the buffer in front
of line k at stage s. Finally, let f out

pksðtÞ denote the outflux of type p product out of the ðk; sÞ machine. The
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corresponding fluid model is then of the form

d

dt
W pksðtÞ ¼ f in

pksðtÞ � f out
pksðtÞ, (1)

expressing the conservation of product. The in- and outfluxes in the network are connected by Kirchhoff’s law
[14] via

f in
pks ¼

X
p0k0s0

Aðp; k; s; p0; k0; s0Þf out
p0k0s0 þ lpksðtÞ, (2)

where the connectivity matrix Aðp; k; s; p0; k0; s0Þ denotes the percentages of the outflux of ðp0; k0; s0Þ going into
ðp; k; sÞ. Because of mass conservation, assuming a 100% yield for simplicity, we have to haveX

pks

Aðp; k; s; p0; k0; s0Þ ¼ 1; p0 ¼ 1; . . . ;P; k0 ¼ 1; . . . ;K ; s0 ¼ 1; . . . ;S � 1, (3)

i.e., all product has to go somewhere, except for the last stage, where it just flows out. The term lpks in (3)
denotes the external influx. So lpks will only be nonzero for s ¼ 1 andX

k

lpk1ðtÞ ¼ fpðtÞ

will hold, where fp denotes the total influx of product p, which is somehow distributed to the lines k ¼

1; . . . ;K at stage s ¼ 1. The product flow is controlled by choosing the connectivity matrix A in (2). We
introduce a ‘choice variable’ apsðtÞ, which determines which line product p is directed into at stage s. So, we
have

Aðp; k; s; p0; k0; s0Þ ¼
1 for k ¼ ap0s0 ðtÞ;

0 else:

�
(4)

Similarly, the influx vector lpks is given by the choice at stage s ¼ 1:

lpk1ðtÞ ¼
fpðtÞ for k ¼ ap1ðtÞ;

0 else:

�
(5)

This determines the structure of the network. What is left is to model the flux functions f in;out
pks and the choice

function apsðtÞ. Note, that, in this setting, all of product p from all lines is directed into line k ¼ aðp; sÞ in the
next stage. The line aps for product p at stage s will be chosen such that it minimizes the throughput time of
previously processed type p parts. How this throughput time is computed in the context of a fluid model is
explained in Section 4.4.
3. The discrete-event simulation model

3.1. Description of the discrete-event simulation model

Following the topology as given in Section 2, a discrete-event simulation is set up using the simulation
software eM-Plant, where the necessary components, i.e., sources, buffers, machines and drains are
predefined. The sources define the entrance of parts to the system following an arrival function that determines
the time between the arrival of two parts. The discrete parts queue up in the buffers while they are waiting in
front of a machine. They are withdrawn following the queuing policy FIFO. At a machine, the parts are
transformed from one status to another which takes a certain processing time Tpks depending on the part and
machine types. After having passed through all the processing stages the parts leave the system via the drains.
As described above the parts have to render a decision at each stage on which flow line they will undertake the
next production step. Therefore every machine has to be connected to all the machines on the next stage. The
choice function a is modeled as a decision rule every part has to follow to render their decisions. This rule is
coded within the simulation tool and runs every time a part leaves a source or a machine.
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3.2. Pheromone-based decision rule

The rule is called ‘pheromone-based’ because it is modeled analogue to the way social insects communicate
with the help of pheromones. Comparable to other pheromone concepts (cf. Refs. [5,15,16]), the
communication does not take place directly but locally via the environment. Social insects leave an
evaporating substance called pheromone on their way and the following insects follow the trail with the
strongest pheromone concentration. In contrast to approaches from ant colony optimization (cf. for example
Ref. [5]), there is no self-reinforcing guided search process to an optimal solution (e.g. a shortest path in a
graph) as in this model the parts have to be able to access updated information about throughput time only.
The rule the parts follow in the discrete-event simulation model is to compare the time previous parts had to
spend waiting in the buffer plus the processing time on the respective machine. This time will be called total
throughput time. So, basically the total throughput time of each part on each buffer–machine system will be
stored and made available for parts to render their decision. The decision is then based on the mean total
throughput time for the respective part type on the respective machine. To model the evaporation of the
pheromone, older data will be replaced. That means that only a certain amount of previous parts will be taken
into account for calculation. The number of parts describes the rate of evaporation. This pheromone concept
differs from previously proposed concepts for manufacturing control (cf. for instance Ref. [15]), because no
reinforcement of the pheromone trail takes place as there is no equivalent to ants returning their way back to
the nest. The parts disappear after completing the production steps. Furthermore, this pheromone concept is
different from concepts for ant-based routing and load balancing (cf. for example Ref. [16]), as crowding as a
consequence of limited capacity is not addressed.

4. The flow model

In this section, we define the continuous model for the machines in the network, i.e., we model the
dependence of the outfluxes f out

pks in (1) on the influxes f in
pks and the work-in-progress W pks. To do so, we use a

simple deterministic model for a queue. We assume that each machine has a service rate mks.

4.1. The aggregate fluid model

Let q̄ks denote the length of the queue in front of the machine ðk; sÞ, containing all the P different product
types. Let ḡks denote the total flux from the queue into the machine. Breaking down the queue length and the
fluxes into different product types, we have

q̄ks ¼
XP

p¼1

qpks; ḡks ¼
XP

p¼1

gpks; k ¼ 1; . . . ;K ; s ¼ 1; . . . ;S,

where qpks and gpks denote the portion of the queue and the flux due to the product of type p. We start by
defining a deterministic model for the aggregate queue length q̄ks. The evolution of the queue q̄ks should switch
between the following two types of dynamics:
�
 If the queue is full (q̄ðksÞa0) then the evolution should be given by q̄0ksðtÞ ¼ f̄
in

ks � mks, where f̄
in

ks ¼
PP

p¼1 f in
pks

denotes the aggregate influx into the machine ðk; sÞ.

�
 If the queue is empty (q̄ks ¼ 0), the outflux should be given by ḡks ¼ f̄

in

ks.

The problem with the above is, that the switch from one type of dynamics to the other has a discontinuous
dependence on the queue length q̄ks. Therefore, special admissibility conditions would have to be imposed in
order to define a unique solution [17]. We avoid this problem by smoothing out the discontinuity in the
following way. We define the flux ḡks from the queue into the machine by

ḡks ¼ min mks;
q̄ks

e

� �
,
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where e denotes a small smoothing parameter (e51), and model the evolution of the aggregate queue by

d

dt
q̄ks ¼ f̄

in

ks � ḡks ¼ f̄
in

ks �min mks;
q̄ks

e

� �
. (6)

The evolution equations (6) represent a smoothed out version of the discontinuous model, which replaces zero
queue lengths by queue lengths of order OðeÞ. This can be seen by considering the following scenario:
�
 If q̄ks ¼ Oð1Þ (for the full queue) we have, because of e51, the equation ðd=dtÞq̄ks ¼ f̄
in

ks � mks.

�
 As soon as q̄ks becomes small, because the service rate has exceeded the influx for some time, the system

switches to ðd=dtÞq̄ks ¼ f̄
in

ks � ðq̄ks=eÞ, which, on an Oð1=eÞ time scale relaxes against q̄ksðtÞ ¼ ef̄
in

ksðtÞ with an

outflux ḡksðtÞ ¼ q̄ksðtÞ=e � f̄
in

ksðtÞ. This solution only holds of course as long as q̄ks=eomks or f̄
in

ksomks holds.

As soon as the aggregate influx exceeds mks, the system will revert to ðd=dtÞq̄ks ¼ f̄
in

ks � mks.

System (6) can be interpreted as the discretization of a fluid dynamic model for supply chains, presented and
analyzed in Ref. [6], by a single Godunov cell, and has been verified extensively against deterministic discrete-
event simulations [6].

4.2. The FIFO policy

In order to model the queue lengths and fluxes for the individual product types, we treat the queue as a
mixture of different fluids. Thus, we write

q̄ks ¼
XP

p¼1

qpks; ḡks ¼
XP

p¼1

gpks; k ¼ 1; . . . ;K ; s ¼ 1; . . . ;S.

The FIFO policy stipulates that the individual fluid components qpks are processed at the same rate as the
whole fluid q̄ks. Rewriting (6) as

d

dt
q̄ks ¼ f̄

in

ks � ḡks; ḡks ¼ Rksq̄ks; Rks ¼ min
mks

q̄ks

;
1

e

� �
,

where Rks denotes the processing rate, the equations for the different components of the fluid are therefore
given by

d

dt
qpks ¼ f in

pks � gpks; gpks ¼ Rksqpks; p ¼ 1; . . . ;P.

The outflux of product type p from machine ðk; sÞ is given by a time delay, due to the processing time. Thus we
have in (1)

f out
pksðtÞ ¼ gpksðt� TpksÞ ¼ min

mksqpks

q̄ks

;
qpks

e

� �
jt�Tpks

.

4.3. The service rate

One remaining difficulty is modeling the service rate mks of the machines. This problem arises due to the fact
that different products will have different processing times, and therefore also different service rates in the
same machine. We make the approximation that 1=mks, the time between service, is a weighted average of the
times between service given by the service rates for the individual products. We assume a given service rate mpks

if the buffer ðk; sÞ would only contain products of type p, and compute the average time between service as the
average of the ‘pure’ service times with weighting factors given by the mass fractions qpks=q̄ks. So we have

1

mksðtÞ
¼
X

p

qpks

q̄ksmpks

.
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So, cf. if there are two products competing for the machine ðk; sÞ, with ‘pure’ service rates m1ks ¼ 1; m2ks ¼
1
2
,

and they appear in a ratio of 3 to 1 q1ks ¼ 3; q2ks ¼ 1; q̄ks ¼ 4, the average time between service is given
by 1=mks ¼

3
4
þ 2

4
¼ 5

4
and the corresponding service rate is mks ¼

4
5
. So, the total model for a machine with a

FIFO buffer with P products with individual processing times and service rates Tpks; mpks; p ¼ 1; . . . ;P is then
given by

ðaÞ W pksðtÞ ¼ qpksðtÞ þW
proc
pks ðtÞ, (7)

ðbÞ
d

dt
qpks ¼ f in

pks � gpks; gpks ¼ Rksqpks; Rks ¼ min
1PP

j¼1qjks=mjks

;
1

e

( )
,

ðcÞ
d

dt
W

proc
pks ¼ gpks � f out

pks; f out
pksðtÞ ¼ gpksðt� TpksÞ.

So, the total work-in-progress W pks of the queue-machine system is the sum of the number of parts qpks

currently in the queue, and W
proc
pks , the number of parts currently being processed. Formula (7)(b) has the effect

of distributing the total service rate mks onto the different product types according to the mass fractions
qpks=q̄ks. Note, that for a single lot batch processing system, where one part is processed at a given time, and all
machines are always running, we have mpks ¼ 1=Tpks.

4.4. Throughput time pheromones

To observe the throughput time of parts having just left the machine ðk; sÞ, it is necessary to consider the
history of the problem. This is done by using so called Newell-curves (N-curves) [18], the antiderivatives of flux
functions. We introduce the N-curves

F̄
in

ksðtÞ ¼

Z t

�1

f̄
in

ksðrÞdr; ḠksðtÞ ¼

Z t

�1

ḡpksðrÞdr ¼

Z t

�1

RksðrÞq̄pksðrÞdr.

So, F̄
in

ks; Ḡks is the number of parts having entered/left the queue ðk; sÞ at time t. Since F̄
in

ks and Ḡks are
monotone they have functional inverses, defined by

F̄
in

ksðtÞ ¼ s () t ¼ ðF̄
in

ksÞ
�1
ðsÞ; ḠksðtÞ ¼ s () t ¼ Ḡ

�1

ks ðsÞ.

Since ḠksðtÞ is the (continuous) number of the part leaving the queue at time t, Ḡ
�1

ks ðsÞ is the time the part
number s leaves the queue. Therefore, the time part number s spent in the queue is given by

t ¼ Ḡ
�1

ks ðsÞ � ðF̄
in

ksÞ
�1
ðsÞ.

This definition is the same for all part types, because of the FIFO policy. The waiting time in the queue, for a
part, leaving the queue at time t is

twait
ks ¼ Ḡ

�1

ks ðḠksðtÞÞ � ðF̄
in

ksÞ
�1
ðḠksðtÞÞ ¼ t� ðF̄

in

ksÞ
�1
ðḠksðtÞÞ.

The total throughput time through the queue–machine system of a part of type p, which leaves the queue at
time t is therefore this expression plus Tpks, the processing time for the part. This gives for the total time spent
in the queue–machine system by a part leaving the queue at time t

tpksðtÞ ¼ twait
ks þ Tpks ¼ t� ðF̄

in

ksÞ
�1
ðḠksðtÞÞ þ Tpks,

and the total throughput time through the queue–machine system of a part of type p, which leaves the machine

at time t is the above, retarded by Tpks, the time it takes to get through the machine, giving

tpksðtÞ ¼ t� ðF̄
in

ksÞ
�1
ðḠksðt� TpksÞÞ. (8)

The quantity tpksðtÞ constitutes the ‘pheromone’, the experience transmitted back to following parts. So, the
line choice variable in (4) and (5) aps is chosen to minimize tpks over all possible lines k ¼ 1; . . . ;K , and we have

tp;aps ;s ¼ minftpks; k ¼ 1; . . . ;Kg; p ¼ 1; . . . ;P; s ¼ 1; . . . ;S. (9)



ARTICLE IN PRESS
D. Armbruster et al. / Physica A 363 (2006) 104–114110
5. Simulation results

To demonstrate the pheromone-based control approach, the general network topology is reduced to 2� 3
machines, i.e., two production lines each with three stages producing two different products. Considering two
parallel lines—each able to process both types of products—gives us on one hand the minimum degree of
flexibility necessary to apply the proposed autonomous control. On the other hand, this keeps the parts’
decision-making and the resulting buffer levels comprehensible. For special practical application, this
configuration can be extended arbitrarily especially by using the discrete-event simulation model.

5.1. Parameter settings

For the 2� 3 machines production network, P ¼ 2; K ¼ 2; S ¼ 3 holds. We consider a scenario where the
production line k ¼ 1 prefers product p ¼ 1 and the line k ¼ 2 prefers product p ¼ 2, i.e., the processing times
for product 1 are shorter in line 1 and vice versa. We choose the processing times Tpks as

T11s ¼ 1; T21s ¼ 2; T12s ¼ 2; T22s ¼ 1; s ¼ 1; 2; 3.

We consider a single batch system, so mpks ¼ 1=Tpks holds. So, both lines together would have a capacity of 3
2

for each product, if the other product were not present. Conversely, we can reach a steady state when the
combined influx of both products does not exceed 3

2
. We choose an influx for product 1 which is above this

capacity for a while, as the influx for product 2 oscillates. After a while we keep the influx constant at a level
allowing for a steady state. The influx for both products is shown in Fig. 1.

5.2. Implementation

To actually implement the pheromone-based decision rule, outlined in the previous sections, we require a
slight modification of the algorithm. Once a preferred line is chosen, and all items are directed into this line,
there would be no further updates in the throughput time estimator for the other lines, since no items of the
same product type can be observed there. Therefore, the algorithm has to be modified slightly, so as to always
direct a small amount of ‘test items’ into all possible lines to test the throughput time. In the fluid model, this is
done by replacing (4) by

Aðp; k; s; p0; k0; s0Þ ¼
1� ðK � 1Þo for k ¼ ap0s0 ðtÞ;

o else;

(
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Fig. 1. Influx: solid: product p ¼ 1, dashed: product p ¼ 2.
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for some small parameter o. Thus, a certain portion o of the flow is always directed into all possible channels,
allowing for a continuous estimation of the throughput time according to Section 4.4. Another issue is the
frequency with which the pheromone estimator is evaluated, i.e., how often to observe the pheromone traces.
In the discrete-event simulations this is done every five items and in the fluid model this is done in time
intervals of Dt ¼ 7:5—the average processing time of five items. Finally, since it is not sensible to evaluate local
in time quantities in a fluid model, which necessarily compute averages, we evaluate estimator (8) for the
throughput time as a rolling average over the time window Dt.

5.3. Discrete-event simulation model

The discrete-event simulation model is simulated for 0ptp1500 and the chosen lines for each product are
observed (cf. Fig. 2). One realizes that the system is slowly reacting. Once a buffer is overloaded the two part
types react equally on the rising throughput time because it takes some time until the mean total throughput
time of a certain part type is significantly higher than the other. The change of the mean throughput time is not
very fast as it is only updated when a part of the same type is finished and the mean is calculated over the last
five parts. Therefore, only very few line changes take place. Because of this slowly reacting system the
adaptation process to changing situations is not that fast and the parts stay for a longer period on the wrong
line. Therefore, the simulation shows a high work-in-progress within the simulation time especially in the first
stage and a steady state is not reached within the simulation time. The corresponding work-in-progress of each
buffer–machine system at each stage are shown in Fig. 3.

5.4. Fluid model

We simulated the fluid model up to t ¼ 1500 and observe convergence to steady state. Steady state in the
fluid model is defined by gpks ¼ f in

pks in (7)(b), and the products constantly choosing their preferred lines, i.e.,
a1sðtÞ ¼ 1; a2sðtÞ ¼ 2; s ¼ 1; 2; 3 in (4). The choice functions aps in (4) and (9) for each stage in the buildup
phase are shown in Fig. 4. The corresponding work-in-progress of each buffer–machine system at each stage
are shown in Fig. 5:
�

Fig

pro
We observe some moderate amount of switching in the beginning since product 1 learns from the faster or
slower throughput times in line 2 depending on how much flux there is of product 2.
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Fig. 4. Line choice apsðtÞ using the fluid model and the pheromone estimator (9) for the different stages. Left panel: product 1, Right panel:

product 2.
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Fig. 5. Work-in-progress (WIP) in the different stages for the fluid model and the pheromone estimator. Left panel: product 1, Right

panel: product 2. Solid: line k ¼ 1. Dashed: line k ¼ 2.
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�
 Roughly at t ¼ 1000 the system settles into steady state, with product p ¼ 1 constantly choosing its
preferred line k ¼ 1 and product p ¼ 2 choosing line k ¼ 2.

�
 While the fluid model reacts more quickly to changes in the observed throughput time, and therefore the
line choices in Fig. 4 are slightly more oscillatory then in Fig. 2, the corresponding work-in-progress in Figs.
5 and 3 agree, more or less, quantitatively. Differences between the discrete-event simulation and fluid
model results have to be explained by the approximate choice of the service rate in the fluid model in
Section 4.3 and by the averaging of the observed throughput time in Section 5.2.

6. Conclusions

The pheromone-based decision rule is a possible tool for autonomous control of production networks. It is
a heuristic learning algorithm based on local (in space and time) evaluation of the throughput time. The paper
shows results of the simulation of a fluid model and a discrete-event model of this pheromone-based decision
rule. Fluid models require some additional heuristic assumptions in the case that the throughput times of
individual machines differ for different product types. This, together with the usual difficulties of comparing
discrete and continuous models, such as having to build rolling time averages accounts for some of the
quantitative differences.

While they will always have to be verified against discrete-event simulations, one of the advantages of fluid
models lies in the fact that they are amenable to an analysis of the underlying dynamics. This will be of major
importance in the actual evaluation of the pheromone concept against more classical control strategies.
Questions to be addressed, using the groundwork laid in this paper, are:
�
 The analysis of the stability of steady states and time periodic solutions.

�
 The influence of random inputs and random service rates (i.e., machine breakdowns).

�
 A comparison of the efficiency of the pheromone concept (possibly using more complex pheromones) with
classical optimal control strategies and model predictive control algorithms.
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