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STOCHASTIC EQUILIBRIA OF AIMD COMMUNICATION
NETWORKS∗
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Abstract. In this paper tools are developed to analyse a recently proposed random matrix model
of communication networks that employ additive-increase multiplicative-decrease (AIMD) congestion
control algorithms. We investigate properties of the Markov process describing the evolution of the
window sizes of network users. Using paracontractivity properties of the matrices involved in the
model, it is shown that the process has a unique invariant probability, and the support of this
probability is characterized. Based on these results we obtain a weak law of large numbers for the
average distribution of resources between the users of a network. This shows that under reasonable
assumptions such networks have a well-defined stochastic equilibrium. ns2 simulation results are
discussed to validate the obtained formulae. (The simulation program ns2, or network simulator, is
an industry standard for the simulation of Internet dynamics.)
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1. Introduction. The dynamics of communication networks have attracted in-
creased attention in recent years. Networks of devices that employ additive-increase
multiplicative-decrease (AIMD) congestion control algorithms, such as the widely de-
ployed transmission control protocol (TCP), have become the focus of much of this
activity. Typically, the approach adopted by the community is to model such networks
by means of a fluid analogy and to employ techniques from control theory and convex
optimization in their analysis; see the recent book by Srikant [27] and the references
therein for an overview of this work. Recently, several authors have proposed an al-
ternative model of TCP dynamics using products of random matrices [2, 3, 24]. The
basic approach followed in these papers is to use ideas from hybrid systems theory to
model the dynamics of AIMD networks as a switched, or time-varying, discrete time
linear system. The approach adopted in [24] allows for techniques from the theory
of nonnegative matrices and Markov chains to be employed in the analysis of these
networks. The application of these techniques to the study of such networks and the
mathematical analysis of the model are the principal contributions of this paper.

Networks of unsynchronized sources and drop-tail queues have been the subject of
several other studies [1, 3, 5, 12, 16], and it has been documented by many authors that
networks of many AIMD flows exhibit extremely complex behavior. Consequently, it
is convenient to analyze such networks from a probabilistic viewpoint, as we shall do
in section 4. The novelty of our approach lies in the fact that we use positive matrices
to model network behavior. We shall see that this will enable us to use results from
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the theory of positive matrices to be employed to make predictions concerning the
behavior of AIMD networks.

Fluid analogy approaches to the modeling of networks of unsynchronized sources
have been the subject of wide study in the TCP community; see [6, 13, 14, 18, 19,
20, 21, 22, 15, 28, 17] and the accompanying references for further details. However,
several authors have recently developed hybrid system models of networks with a sin-
gle bottleneck link which employ AIMD congestion control mechanisms, most notably
Hespanha [11] and Baccelli and Hong [2]. We note that the model derived in [2] is
similar to the model presented here. However, whereas the model derived by Baccelli
and Hong is also a random matrix model, it has an affine structure. The correspond-
ing homogeneous (linear) part is characterized by matrices without any nonnegativity
structure. In [25, 24] the same model as the one presented here is discussed. The
paper [24] deals with the derivation of expected average throughputs and with the
question of model validation. In [25] implications of the model for network respon-
siveness and network fairness are discussed, and the model validation is carried one
step further in that the effects of background traffic are analyzed.

In section 2 we begin our discussion by giving an overview of AIMD congestion
control and by briefly reviewing the random matrix model of AIMD network dynamic
first derived in [24]. In section 3 a number of basic results are presented relating to
the set of matrices used in the model. It is shown that on a jointly invariant subspace
the matrices are paracontractive, which is used to show that with probability one, left
products of the matrices approach the set of rank-1 column stochastic matrices. This
ergodicity property plays a vital role in all the subsequent considerations. Section 4 is
devoted to the analysis of the Markov chain model of the AIMD process. It is shown
that the chain in question is an e-chain. Using the results of section 3 we obtain that
this chain has positive and aperiodic states. From this we obtain the unique existence
of an invariant probability and weak law of large number statements. Finally, the
support of the invariant probability is characterized. In section 5 we collect and
derive a number of results that are useful in characterizing the stochastic equilibria
of various types of communication networks that employ AIMD congestion control
mechanisms. In section 6 we apply these results to the study of networks employing
TCP congestion control. It is shown that the model is able to predict the average
behavior of TCP flows very accurately.

2. Column stochastic matrices and AIMD congestion control. A com-
munication network consists of a number of sources and sinks connected together
via links and routers. In this paper we assume that these links can be modeled as a
constant propagation delay together with a queue, that the queue is operating accord-
ing to a drop-tail discipline, and that all of the sources are operating an AIMD-like
congestion control algorithm. In AIMD congestion control each source maintains an
internal variable wi (the window size) which tracks the number of sent unacknowl-
edged packets that can be in transit at any time. When the window size is exhausted,
the source must wait for an acknowledgment before sending a new packet. Conges-
tion control is achieved by dynamically adapting the window size according to an
additive-increase multiplicative-decrease law. Roughly speaking, the source gently
probes the network for spare capacity by increasing the rate at which packets are
inserted into the network, and backs off rapidly the number of packets transmitted
through the network when congestion is detected through the loss of data packets.
More specifically, an individual source sends packets of data through the network to
a destination, and the transmission is deemed complete if an acknowledgment issued
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Fig. 2.1. Evolution of window size.

by the destination upon receipt of the packet is received by the source. As long as
transmission is successful, that is, as long as all acknowledgments are received, the
source increments wi(t) by a fixed amount αi upon receipt of an acknowledgment.
If an acknowledgment for a certain packet does not arrive at the sender, it is as-
sumed that there has been a packet loss due to congestion in the network. As a
consequence, the variable wi(t) is reduced in multiplicative fashion to βiwi(t), where
0 < βi < 1.

2.1. A model for AIMD dynamics. In [26] a model has been presented which
assumes that (i) at congestion every source experiences a packet drop; and (ii) each
source has the same round-trip time (RTT).1 In [24] this model has been extended
to a random model of unsynchronized networks, where sources have different RTTs.
We briefly describe the derivation of the model here. A standing assumption of the
model is that all sources compete for the capacity of a single bottleneck router, and
if packets are lost, this happens because the queue of that router is overflowing.

By a congestion event we describe the situation that more packets arrive at a
router than can be serviced and the queue of the router is already full. In this case,
necessarily some packets are lost. Without the assumption of synchronization, at
a congestion event not all sources are necessarily informed of this congestion. For
the moment uniform RTT is still assumed; we will weaken this assumption later on.
Let wi(k) denote the congestion window size of source i immediately before the kth
network congestion event is detected by the source.

Over the kth congestion epoch as depicted in Figure 2.1 three important events
can be discerned: ta(k), tb(k), and tc(k). The time ta(k) denotes the instant at which
the number of unacknowledged packets in flight equals βiwi(k); tb(k) is the time at
which the bottleneck queue is full; and tc(k) is the time at which packet drop is
detected by some of the sources, where time is measured in units of RTT.2 It follows
from the definition of the AIMD algorithm that the window evolution is completely
defined over all time instants by knowledge of the wi(k) and the event times ta(k),
tb(k), and tc(k) of each congestion epoch. We therefore only need to investigate the
behavior of these quantities.

1One RTT is the time between sending a packet and receiving the corresponding acknowledgment
when there are no packet drops.

2Note that measuring time in units of RTT results in a linear rate of increase for each of the
congestion window variables between congestion events.
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We assume that sources that lose a package at congestion are informed of this loss
one RTT after the queue at the bottleneck link becomes full; that is, tc(k)− tb(k) = 1.
Also,

wi(k) ≥ 0 and

n∑
i=1

wi(k) = P +

n∑
i=1

αi ∀k > 0,(2.1)

where P is the maximum number of packets which can be in transit in the network
at any time; P is usually equal to qmax + BTd, where qmax is the maximum queue
length of the congested link, B is the service rate of the congested link in packets per
second, and Td is the RTT when the queue is empty. At the (k + 1)th congestion
event

wi(k + 1) =

{
βs
iwi(k) + αi[tc(k) − ta(k)] if source i experiences congestion,

wi(k) + αi[tc(k) − ta(k)] else,
(2.2)

and we set

βi(k) ∈ {βs
i , 1} ,(2.3)

corresponding to whether the source experiences a packet loss or not. Then summing
the equations in (2.2) and using (2.1) we obtain

tc(k) − ta(k) =
1∑n

i=1 αi

[
P −

n∑
i=1

βi(k)wi(k)

]
+ 1,(2.4)

and using (2.2)–(2.4), it follows that

wi(k + 1) = βi(k)wi(k) +
αi∑n
j=1 αj

⎡
⎣ n∑
j=1

(1 − βj(k))wj(k)

⎤
⎦ .(2.5)

Thus the dynamics of an entire network of such sources is given by

w(k + 1) = A(k)w(k),(2.6)

where wT (k) = [w1(k), . . . , wn(k)], and, writing D(β(k)) = diag(β1(k), . . . , βn(k)),

A(k) = D(β(k)) +
1∑n

j=1 αj

⎡
⎢⎢⎣

α1

α2

· · ·
αn

⎤
⎥⎥⎦ [

1 − β1(k) · · · 1 − βn(k)
]
.(2.7)

As the entries of w(k) are nonnegative for all k ≥ 0 the equations (2.6) define
a positive linear system [4]. Using bi(s) ∈ (0, 1], i = 1, . . . , n, we also see that all
possible matrices that appear are column stochastic. In what follows we will call
column stochastic matrices of the form (2.7) AIMD matrices.

So far we have worked with the assumption of uniform RTT, which is quite
restrictive (although it may, for example, be valid in some long-distance networks
[29]). We now extend our approach to more general network conditions. As we will
see, the model that we obtain shares many structural and qualitative properties of
the model described above. To distinguish variables, the nominal parameters of the



STOCHASTIC EQUILIBRIA OF AIMD COMMUNICATION NETWORKS 707

k'th congestion epoch (T(k))

t
ai
(k) t

ci
(k)t

b
(k)

w
i
(k)

Time [secs]

Cwnd
(window evolution) wj(k)

w
j
(k+1)

t
q
(k)

wi(k+1)

Fig. 2.2. Evolution of window size over a congestion epoch. T (k) is the length of the congestion
epoch in seconds.

sources used in the previous section are now denoted by αs
i , β

s
i , i = 1, . . . , n. Here the

index s may remind the reader that these are the parameters that are chosen by each
source.

Consider the general case of a number of sources competing for shared bandwidth
in a generic dumbbell topology (where sources may have different RTTs and drops
need not be synchronized). The evolution of the window size wi of a typical source
as a function of time, over the kth congestion epoch, is depicted in Figure 2.2. As
before a number of important events may be discerned, where we now measure time
in seconds, rather than units of RTT. Denote by tai(k) the time at which the number
of packets in flight belonging to source i is equal to βs

iwi(k); tq(k) is the time at
which the bottleneck queue begins to fill; tb(k) is the time at which the bottleneck
queue is full; and tci(k) is the time at which the ith source is informed of congestion.
In this case the evolution of the ith congestion window variable does not evolve lin-
early with time after tq seconds due to the effect of the bottleneck queue filling and
the resulting variation in RTT; namely, the RTT of the ith source increases accord-
ing to RTTi(t) = Tdi

+ q(t)/B after tq, where Tdi is the RTT of source i when the
bottleneck queue is empty and 0 ≤ q(t) ≤ qmax denotes the number of packets in the
queue. Note also that we do not assume that every source experiences a drop when
congestion occurs. For example, a situation is depicted in Figure 2.2 where the ith
source experiences congestion at the end of the epoch, whereas the jth source does not.

Given these general features it is clear that the modeling task is more involved
than in the synchronized case. Nonetheless, it is possible to relate wi(k) and wi(k+1)
using a similar approach to the synchronized case by accounting for the effect of
nonuniform RTTs and unsynchronized packet drops as follows.

Due to the variation in RTT, the congestion window of a flow does not evolve
linearly with time over a congestion epoch. Nevertheless, we may relate wi(k) and
wi(k + 1) linearly by defining an average rate αi(k) depending on the kth congestion
epoch:

αi(k) :=
wi(k + 1) − βi(k)w(k)

T (k)
,(2.8)

where T (k) is the duration of the kth epoch measured in seconds. Equivalently we
have

wi(k + 1) = βi(k)wi(k) + αi(k)T (k) .(2.9)
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In the case when qmax � BTdi
, i = 1, . . . , n, the average αi are (almost) independent

of k and given by αi(k) ≈ αs
i/Tdi for all k ∈ N, i = 1, . . . , n. The situation when

αi ≈
αs
i

Tdi

, i = 1, . . . , n,(2.10)

is of considerable practical importance and such networks are the principal concern of
this paper. See [24] for a discussion of networks where this assumption is reasonable.

In view of (2.3) and (2.9) a convenient representation of the network dynamics is
obtained as follows. At congestion the bottleneck link is operating at its capacity B,
i.e.,

n∑
i=1

wi(k) − αi

RTTi,max
= B,(2.11)

where RTTi,max is the RTT experienced by the ith flow when the bottleneck queue
is full. Note that RTTi,max is independent of k. Setting γi := (RTTi,max)−1 we have
that

n∑
i=1

γiwi(k) = B +

n∑
i=1

γiαi .(2.12)

Using steps similar to the ones performed in (2.2)–(2.4) we obtain the model

wi(k + 1) = βi(k)wi(k) +
αi∑n

j=1 γjαj

⎛
⎝ n∑

j=1

γj(1 − βj(k))wj(k)

⎞
⎠ ,(2.13)

and the dynamics of the entire network of sources at the kth congestion event are
again described by w(k + 1) = A(k)w(k), where

A(k) = D(β(k)) +
1∑n

j=1 γjαj

⎡
⎢⎢⎣

α1

α2

· · ·
αn

⎤
⎥⎥⎦ [γ1(1 − β1(k)), . . . , γn(1 − βn(k))],(2.14)

and where βi(k) is either 1 or βs
i . The nonnegative matrices A2, . . . , Am are con-

structed by taking the matrix A1,

A1 =

⎡
⎢⎢⎢⎣

βs
1 0 · · · 0
0 βs

2 0 0
... 0

. . . 0
0 0 · · · βs

n

⎤
⎥⎥⎥⎦ +

1∑n
j=1 γjαj

⎡
⎢⎢⎣

α1

α2

· · ·
αn

⎤
⎥⎥⎦ [

γ1(1 − βs
1), . . . , γn(1 − βs

n)
]
,

and setting some, but not all, of the βi to 1. This gives rise to m = 2n − 1 matrices
associated with the system (2.13) that correspond to the different combinations of
source drops that are possible. These matrices are not AIMD matrices in the sense
we have defined above. However, by a small transformation we come back to our
original situation.

By considering the evolution of wT
γ (k) = [γ1w1(k), γ2w2(k), . . . , γnwn(k)] we ob-

tain the following description of the network dynamics:

wγ(k + 1) = Ā(k)wγ(k)(2.15)
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with Ā(k) ∈ Ā = {Ā1, . . . , Ām}, m = 2n − 1, and where the Āi are obtained by the
diagonal similarity transformation associated with the change of variables. As before
the nonnegative matrices Ā2, . . . , Ām are constructed by taking the matrix Ā1 and
setting some, but not all, of the βs

i to 1. It is easy to see that all of the matrices in
the set Ā are now AIMD matrices; for convenience we use this representation of the
network dynamics to prove the main mathematical results presented in this paper.
Note furthermore that the similarity transformation used to bring the matrices in
AIMD form depends only on the round-trip times RTTi and not on the αs

i , β
s
i .

2.2. Networks of flows whose parameters vary in time. Before proceeding
with our analysis we note that for some applications it is convenient to allow the
parameters of the matrix A(k) to vary in more general a manner than that described
in the previous two sections. Our model may be extended trivially to model networks
whose AIMD parameters vary with time: αi(k); βi(k). Such situations may arise in
applications where the protocol adapts its parameters to reflect prevailing network
conditions or in applications where variations in network delays lead to a consequent
variation in the AIMD parameters (for example, due to routing changes or in wireless
networks) [22]; in fact a number of AIMD networks of this type have recently been
proposed by a number of authors in the context of high-speed long-distance networks
[29]. We account for such behavior in this paper by defining the set M to be the union
of a finite number of matrix sets Āj , each of which is defined as above but which

corresponds to fixed AIMD parameters {αj
1, . . . , α

j
n} and {βj

1, . . . , β
j
n}, 1 ≤ j ≤ h,

with M =
⋃h

j=1 Āj , where h is some fixed integer.

3. Preliminaries. The principal objective of this paper is to collect and develop
analytic tools to analyze models of the form derived in section 2. We will see in section
5 that it is possible to characterize the stochastic behavior of the random variable w(k)
under certain assumptions. The derivation of these results is somewhat technical, and
to ease exposition we introduce here a number of definitions and preliminary results.

3.1. Basic notation. The following results are based on the theory of nonnega-
tive matrices. A matrix A or a vector x is said to be nonnegative if each of its entries is
a nonnegative real number and matrices or vectors are called positive if all their entries
are positive. We write A � B or A 	 B if A−B is positive, respectively, nonnegative.
The set of nonnegative matrices in R

n×n is denoted by R
n×n
+ . The componentwise

absolute value of A = (aij) ∈ R
n×m is defined by |A| := (|aij |) ∈ R

n×m
+ .

A special subset of R
n×n
+ are the column stochastic matrices. A matrix A ∈ R

n×n
+

is called column stochastic if for each of its columns the sum of the corresponding
elements is equal to 1. Denoting e := [1, 1, . . . , 1]T , it follows that eT is a left eigen-
vector of a column stochastic matrix corresponding to the eigenvalue 1. We denote
by R ⊂ R

n×n the set of all column stochastic matrices of rank-1 and the distance
between a matrix P ∈ R

n×n and the set R by dist (P,R) = inf{‖P − C‖ : C ∈ R},
where ‖ · ‖ is the induced l1-norm. Finally, the standard jth unit vector is denoted
by ej , so that e =

∑n
j=1 ej .

3.2. Basic assumptions. Our basic objective is to model the evolution of the
vector w(k) for networks of AIMD flows. We consider a set of AIMD matrices M =
{M1, . . . ,Mμ}, μ ≥ 1. Associated to this set we consider the deterministic system

x(k + 1) ∈ {Mx(k) | M ∈ M}(3.1)
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and a Markov chain model

w(k + 1) = A(k)w(k) ,(3.2)

where for each k the A(k) is a random variable with values in M. We recall that
by (2.1) the sum

∑
i wi(k) is a constant. We may thus restrict our attention to the

simplex

Σ :=

{
x ∈ R

n
+ | eTx =

n∑
i=1

xi = 1

}
,

and we will study the evolution of (3.2) on Σ. We assume that the random variables
A(k), k = 0, 1, . . . , are independent and identically distributed (i.i.d.) and denote

P (A(k) = Mi) = ρi , i = 1, . . . , μ .

As we are dealing with probabilities, necessarily, we assume
∑

i ρi = 1. With this
setup the sequence {w(k)}k∈N is a Markov process. The random variable of a product
of length k is denoted by Π(k) = A(k)A(k − 1) . . . A(0).

Clearly, w(k) = Π(k)w(0), and consequently the behavior of w(k), as well as
the network fairness and convergence properties, are governed by the asymptotic
properties of the matrix product Π(k) as k → ∞.

Assumption 3.1. Let M = {M1, . . . ,Mμ} be a set of matrices of the form (2.7).
We assume that the probability that A(k) = Mi in (3.2) is independent of k and equals
ρi > 0.

Comment 3.2. In other words Assumption 3.1 says that the probability that the
network dynamics are described by w(k+1) = A(k)w(k), A(k) = Mi over the kth con-
gestion epoch is ρi and that the random variables A(k), k ∈ N are i.i.d. Furthermore,
we assume that we only have matrices in the set M which occur with positive proba-
bility. Without this assumption there is little insight to be gained into the dynamics of
the Markov chain (3.2) by studying the deterministic system (3.1). This assumption
implies no loss of generality because we may simply remove matrices with 0 probability
from the set M.

Given the probabilities ρi for Mi ∈ M, one may then define the probability λj

that source j experiences a backoff at the kth congestion event as follows:

λj =
∑

ρi ,

where the summation is taken over those i which correspond to a matrix in which the
jth source sees a drop. To put it another way, the summation is over those indices i
for which the matrix Mi is defined with a value of βj �= 1.

Assumption 3.3. Let M = {M1, . . . ,Mμ} be the set of AIMD matrices defining
(3.2) and assume that P (A(k) = Mi) = ρi, i = 1, . . . , μ. We assume that λj > 0 for
all j ∈ {1, . . . , n}.

Simply stated, by Assumption 3.3 all flows must see a drop almost surely at some
time (provided that they live for a long enough time).

3.3. Column stochastic matrices. Column stochastic matrices will play a
central role in the discussion in section 5. We begin by collecting some results. The
following two are immediate consequences of the definition of a column stochastic
matrix.
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Lemma 3.4. A matrix A ∈ R
n×n
+ is column stochastic if and only if eTA = eT .

Any product of a finite number of column stochastic matrices is a column stochastic
matrix (i.e., the set of column stochastic matrices is a semigroup).

It is sometimes convenient to consider the subspace orthogonal to e, which we
denote by

S := {z ∈ R
n | eT z = 0} .

The subspace S is an invariant subspace for all column stochastic matrices. Given a
column stochastic matrix A we denote by Ã : S → S the linear operator obtained by
restricting A to S. Furthermore, we denote by ‖ · ‖ the 1-norm and the corresponding
induced matrix norm.

Lemma 3.5. For any column stochastic matrix A it holds that ‖A‖ = 1 and
‖Ã‖ ≤ 1. If A is positive, then ‖Ã‖ < 1 .

Proof. The first claim is immediate from the standard characterization of the
induced 1-norm as the column-sum norm. The second claim follows as ‖Ã‖ ≤ ‖A‖
using the definition of induced norms. Finally, if A is positive, then for a vector
z ∈ S, ‖z‖ = 1 it holds that −A|z| ≺ |Az| ≺ A|z| as z has positive and negative
entries due to eT z = 0. This implies for z ∈ S, ‖z‖ = 1 that

‖Ãz‖ = ‖Az‖ = ‖ |Az| ‖ < ‖A|z| ‖ = 1 .

This shows the assertion.
A feature in the proof of our main results is the observation that products of

our AIMD matrices converge to a certain compact subset of the rank-1 idempotent
matrices (in the sense that the distance to this set goes to zero). We use the following
lemma to estimate the distance of a matrix product from the set R defined at the
beginning of this section.

Lemma 3.6. Let A ∈ R
n×n
+ be column stochastic; then dist (A,R) ≤ 2‖Ã‖.

Proof. Let A1 = A − AeeT /n. Note that AeeT /n is a rank-1 column stochastic
matrix. Then dist (A,R) = inf{‖A−C‖ : C ∈ R} ≤ ‖A−AeeT /n‖ = ‖A1‖. We are
proving that ‖A1‖ ≤ 2‖Ã‖. So let x = z + te, where z ∈ S, t ∈ R are arbitrary. Then

A1x = (A−AeeT /n)(z + te) = Az = Ãz ,

so

‖A1x‖ ≤ ‖Ãz‖ ≤ ‖Ã‖‖z‖ .

To complete the proof we show that ‖z‖ ≤ 2‖z + te‖. Indeed, if z1, z2, . . . , zn are the
components of z ordered such that z1 ≥ z2 ≥ · · · ≥ zr ≥ 0 > zr+1 ≥ · · · ≥ zn, then
‖z‖ = |z1|+ |z2|+ · · ·+ |zn| = 2(|z1|+ |z2|+ · · ·+ |zr|). On the other hand for t ≥ 0,

‖z + te‖ =
n∑

j=1

|zj + t| ≥
r∑

j=1

|zj + t| ≥
r∑

j=1

|zj | =
1

2
‖z‖ ,

thus ‖z‖ ≤ 2‖z + te‖. For t < 0 a similar argument applies.
Recall that the similarity transformation described to obtain (2.15) is applied

simultaneously to the matrices from (2.14). Thus each matrix M ∈ M can be written
in the form

diag(β1, β2, . . . , βn) +
1∑n

j=1 αjγj
[α1γ1, . . . , αnγn]T [(1 − β1), . . . , (1 − βn)] ,(3.3)
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where αj(M) are positive, and all βj(M) are positive and not greater than 1. The
parameters γj are also positive and independent of M ∈ M, as they are determined
by the RTTs of the sources; see (2.15). Thus the matrices in M are column stochastic.
Note that if the jth column of M ∈ M is not strictly positive, then that column is
equal to ej . Using the assumptions given in section 3.2, we now aim to prove certain
convergence results for the restriction of A(k)A(k − 1) · · ·A(1) to S. To this end we
employ the notion of paracontractivity [7, 10] from the theory of nonhomogeneous
matrix products. A linear operator A on R

n is called paracontractive with respect to
the norm ‖ · ‖ if

Ax �= x ⇒ ‖Ax‖ < ‖x‖.(3.4)

We will employ the following three results to show that almost surely products of
matrices from M converge to the set R. The following result is proved in [7].

Theorem 3.7. Let ‖ · ‖ be a norm on R
n and let F ⊂ R

n×n be a finite set of
linear operators which are paracontractive with respect to ‖ · ‖. Then for any sequence
{Ak}k∈N ⊂ FN, the sequence of left products {AkAk−1 . . . A1}k∈N converges.

The second result shows that all matrices from M are paracontractive with respect
to the 1-norm on S.

Lemma 3.8. Let A ∈ M. Then Ã is paracontractive on S with respect to the
1-norm.

Proof. As before, let ‖ · ‖ denote the 1-norm. For x ∈ S we want to show
(3.4). We know that any matrix from M can be written in the form (3.3), where
βi ∈ (0, 1], i = 1, . . . , n, and βj < 1 for some j ∈ {1, . . . , n}. Also αi > 0 and γi > 0
for i = 1, 2, . . . , n. Without loss of generality, assume that β1 = β2 = · · · = βq = 1 for
q < n and βi < 1, i = q + 1, . . . , n. In this case our matrix A is of the form

A =

[
Iq A12

0 A22

]
,

where Iq is the identity matrix of order q and where A12, A22 � 0 are such that the

elements of each column of A sums to 1. Pick x ∈ S. If we partition x =
[
zT1 zT2

]T
accordingly, we have

Ax =

[
z1 + A21z2

A22z2

]
.

By Lemma 3.5 it follows that ‖Ax‖ ≤ ‖x‖. If ‖Ax‖ = ‖x‖, then in each entry of Ax
the summands have the same sign, because otherwise ‖Ax‖ < ‖A|x|‖ ≤ ‖|x|‖ = ‖x‖, a
contradiction. For 1 ≤ j ≤ q, this implies that for (Ax)j = xj+ajq+1xq+1+· · ·+ajnxn

the signs of the summands coincide. Similarly for q + 1 ≤ j ≤ n the signs of the
summands of (Ax)j = ajq+1xq+1 + · · ·+ ajnxn coincide. This implies xixj ≥ 0 for all
i = 1, 2, . . . , n and all j = q + 1, q + 2, . . . , n. If we fix j ≥ q + 1, we have

0 = xje
Tx = xj(x1 + · · · + xn) ≥ x2

j .(3.5)

We conclude that z2 = 0, which also means that Ax = x. Thus for x ∈ S, we have
‖Ax‖ ≤ ‖x‖ with equality if and only if Ax = x, as desired.

Our third result is purely technical and is stated as a separate lemma to aid
exposition of Theorem 3.10.

Corollary 3.9. If A ∈ M is such that its not strictly positive columns are
indexed by i1, i2, . . . , iq and x ∈ S is such that Ax = x, then x lies in the subspace
spanned by the vectors ei1 , ei2 , . . . , eiq .
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Proof. This follows from the previous proof, as we have seen that Ax = x implies
that xj = 0 for j = q + 1, . . . , n. In other words, x ∈ span{e1, . . . , eq}. The general
statement follows by permutation.

Given the three previous results it is now possible to show that almost all products
of matrices from M approach the set R.

Theorem 3.10. Let {Ak}k∈N be a sequence of matrices from M. Assume that
for all i ∈ {1, 2, . . . , n} there is a matrix Ti ∈ M with positive ith column which occurs
infinitely often in {Ak}k∈N. Then

lim
k→∞

{ÃkÃk−1 · · · Ã1} = 0 .

In particular under Assumption 3.3, we have for the stochastic process {A(k)}k∈N that
limk→∞ Ã(k)Ã(k − 1) · · · Ã(0) = 0 almost surely.

Proof. By Lemma 3.8, the matrices Ãk, k ∈ N, are paracontractive with re-
spect to ‖ · ‖. Using Theorem 3.7 it follows that {ÃkÃk−1 · · · Ã1}k∈N is conver-
gent. To prove that the limit is 0 let s ∈ S. Then there exist y ∈ S such that
y = limk→∞ AkAk−1 · · ·A1s. We will prove that y = 0 from which the first assertion
follows. For fixed i let {Ank

}k∈N be a subsequence of {Ak}k∈N with Ank
= Ti. Then

y = lim
k→∞

Ank
Ank−1 · · ·A1s = Ti lim

k→∞
Ank−1 · · ·A1s = Tiy.

Thus Tiy = y ∈ S since s ∈ S. By Corollary 3.9 the ith coordinate of y is zero.
Since i is arbitrary, it follows that y = 0.

By Assumption 3.3 for each j ∈ {1, . . . , n} the probability that matrices with
positive jth column occur infinitely often in a realization of the process is equal to 1.
Thus limk→∞ Ã(k)Ã(k − 1) · · · Ã(0) = 0 with probability 1.

The next result shows that the expected distance between A(k)A(k − 1) · · ·A(1)
and R decreases exponentially; a fact of independent interest.

Proposition 3.11. Let {A(k)}k∈N be a sequence of random variables satisfying
Assumptions 3.1 and 3.3. Let d(k) := E(dist (A(k)A(k − 1) · · ·A(1),R)). Then there
exist η < 1 and C ≥ 1 such that for all k it holds that

d(k) ≤ Cηk.(3.6)

Proof. Let θ = 1 − minj=1,n λj < 1 and let l be an integer such that 1 > nθl.
At first, note that the jth column of the product of several matrices from M

is positive if and only if one of these matrices has positive jth column, otherwise it
is equal to ej . Consider the products of length l: Π(l) = A(l)A(l − 1) · A(1). The
probability that the jth column of Π(l) is not strictly positive is oj := (1 − λj)

l ≤
θl. For the probability ql that at least one column of Π(l) is not strictly positive,
we have that ql ≤ o1 + o2 + · · · + on ≤ nθl. Thus the probability pl that Π(l) is
positive satisfies pl = 1 − ql ≥ 1 − nθl > 0. Let k = dl + r, where 0 ≤ r < l. We
can split the product Π(k) = A(k)A(k − 1) · · ·A(1) into the product of the first r
terms D0 = A(k)A(k − 1) · · ·A(k − r + 1) and the product of d blocks of length l:
Di = A(il)A(il−1) · · ·A(l(i−1)+1) for i = 1, 2, . . . , d. So Π(k) = D0Dd · · ·D1. Note
that for all i = 0, 1, . . . , d, Di, as a product of column stochastic matrices, is column
stochastic, and therefore ‖Di‖ = 1 and ‖D̃i‖ ≤ 1. With this notation we have

dist (Π(k),R) ≤ 2‖Π̃(k)‖ = 2‖D̃0D̃d · · · D̃1‖ ≤ 2‖D̃d · · · D̃1‖ .

Define

δ := max{‖T̃‖ : T = AlAl−1 . . . A1 > 0, A1, A2, . . . , Al ∈ M} < 1 .(3.7)
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Since the set in (3.7) is finite, the maximum exists and is strictly less than 1 by
Lemma 3.5. For any j ∈ {0, 1, 2, . . . , d} the probability that exactly j of the matrices
D1, D2, . . . , Dd are positive is equal to zj =

(
d
j

)
pjl (1 − pl)

d−j . We also know that if j

of matrices D1, D2, . . . , Dd are positive, then ‖(DdDd−1 · · ·D1) ˜ ‖ = ‖D̃d · · · D̃1‖ ≤
‖D̃d‖ · · · ‖D̃1‖ ≤ δj . Thus we obtain

d(k) ≤ 2E(‖D̃d‖ · · · ‖D̃1‖) ≤ 2

d∑
j=0

zjδ
j

= 2

d∑
j=0

(
d

j

)
(plδ)

j(1 − pl)
d−j = 2(1 + plδ − pl)

d ≤ Cηk ,

where for the last inequality we choose

η := (1 − pl + plδ)
1/l < 1 and C := 2/ηl .(3.8)

This shows the assertion.

4. Invariant measures. In this section we study the existence of invariant mea-
sures of the Markov process {w(k)}k∈N. Throughout we assume that Assumptions 3.1
and 3.3 are satisfied. Our considerations are based on the results presented in [23], to
which we refer the reader for further background material. We briefly present some
basic properties for the Markov chain {w(k)}k∈N on the simplex Σ. By B(Σ) we
denote the Borel σ-algebra of Σ.

Associated with our Markov chain there is a transition kernel P (x,X) for x ∈
Σ, X ∈ B(Σ), which gives the probability to reach the set X from the point x. This
transition kernel acts on continuous functions h : Σ → R through

Ph(x) =

∫
Σ

h(y)P (x, dy) =

μ∑
i=1

ρih(Mix) .(4.1)

It is obvious that Ph is continuous for continuous h, so that P is (weak) Feller.
Furthermore we have ‖Ai‖ ≤ 1, i = 1, . . . , μ, so that ‖Ai(x − y)‖ ≤ ‖x − y‖. Using
the uniform continuity of h it follows that for any continuous function h : Σ → R, the
sequence

P kh , k ∈ N ,

defined inductively through repeated application of (4.1), is equicontinuous. Markov
chains whose transition kernel have this property are called e-chains; see [23].

An important notion in the study of Markov chains are invariant probabilities.
Recall that a probability measure π is called invariant for a Markov process if

π(X) =

∫
Σ

P (x,X)dπ(x) ∀X ∈ B(Σ),

that is, intuitively, the distribution of mass on Σ given by the probability measure π
is not changed if it is rearranged according to the evolution of the Markov process.

As we are considering an e-chain, we obtain from [23, Theorem 12.0.1] that an
invariant probability exists in our case. We aim to show its uniqueness. To this end
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we first study the possible support of invariant measures. We introduce the set of
sequences

L := {{Ak}k∈N ∈ MN | {Ak}k∈N satisfies the conditions of Theorem 3.10}.

By Theorem 3.10 we know that the left products of a sequence {Ak}k∈N ∈ L approach
the set of rank-1 column stochastic matrices. We define the set of limit points of such
sequences by

RL := {R ∈ R | ∃{Ak}k∈N ∈ L, kl → ∞ : lim
l→∞

Π(kl) = R} .

As the matrices R ∈ R are column stochastic and of rank 1 they can be represented
in the form R = zeT , where z 	 0 and ‖z‖ = 1. Thus the set RL naturally defines a
subset of the simplex Σ by

C := {z ∈ Σ | zeT ∈ RL} .(4.2)

We note the following properties of C.
Proposition 4.1. Consider a finite set of AIMD matrices M and the associated

deterministic system (3.1) and the Markov chain (3.2). Let C be defined by (4.2).
Then

(i) C is forward invariant under (3.1);
(ii) for any solution {x(k)}k∈N, x(0) ∈ Σ of (3.1) the distance

dist (x(k), C)

is nonincreasing;
(iii) for any z ∈ C and any open neighborhood U ⊂ Σ of z there is a k0 > 0 such

that P k(x, U) > δ > 0 for all k ≥ k0 and all x ∈ Σ;
(iv) for any initial condition w0 ∈ Σ we have almost surely

lim
k→∞

dist (w(k), C) = 0 .

Proof. (i) Let x ∈ C, B ∈ M. By definition there exists a sequence {Ak}k∈N ∈ L
and kl → ∞ such that

Π(kl) = Akl
Akl−1 . . . A1 → zeT .

We write Π(kl) = zeT + Δk, where ‖Δk‖ → 0. Now we define a new sequence by
repeating our initial sequence and inserting B, i.e., we consider the sequence

{A1, A2, . . . , Ak1 , B,A1, A2, . . . , Ak2 , B,A1, . . . , Ak3 , B,A1, . . . } .

Denoting products of length l of this sequence by Ψ(l) we have

Ψ

⎛
⎝l +

l∑
j=1

kj

⎞
⎠ = BΠ(kl)Ψ

⎛
⎝(l − 1) +

l−1∑
j=1

kj

⎞
⎠ = B(zeT + Δk)Ψ

⎛
⎝(l − 1) +

l−1∑
j=1

kj

⎞
⎠

= BzeT + BΔkΨ

⎛
⎝(l − 1) +

l−1∑
j=1

kj

⎞
⎠ ,
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where we have used that all matrices are column stochastic in the last step. As
‖Δk‖ → 0, this implies that Ψ(l +

∑l
j=1 kj) → BzeT as l → ∞. The constructed

sequence clearly lies in L so that Bz ∈ C, which is what we wanted to show.
(ii) Let x ∈ Σ. Pick a z ∈ cl C such that dist (x, C) = ‖x − z‖. Then for A ∈ M

it follows using (i) that

dist (Ax, C) ≤ ‖Ax−Az‖ ≤ ‖x− z‖ = dist (x, C) .

This shows the assertion.
(iii) Fix z ∈ C and let U ⊂ Σ be an open neighborhood of z. Then we may choose

ε > 0 such that x ∈ Σ, ‖x− z‖ < ε implies x ∈ U . By definition of C there exists a k0

and a product Π(k0) such that ‖Π(k0) − zeT ‖ < ε. This implies for any x ∈ Σ that

‖Π(k0)x− z‖ = ‖(Π(k0) − zeT )x‖ < ε ,

so that Π(k0)x ∈ U and, consequently, P k0(x, U) > δ > 0 for all x ∈ Σ. As this
probability is independent of x we see in particular that P k(z, U) > δ > 0 for all
k ≥ k0 by considering the transition from k − k0 to k.

(iv) This is an immediate consequence of Theorem 3.10.
In the terminology of Markov chains, we have proved in Proposition 4.1(iii) that

each z ∈ C is positive and aperiodic for the Markov chain {w(k)}k∈N. For a general
definition of positive and aperiodic states of an e-chain, see [23, pp. 456, 459]. Using
the existence of positive and aperiodic states we obtain the following fundamental
statement from [23, Theorem 18.0.2] and [8].

Theorem 4.2. Consider a finite set of AIMD matrices M and the associated
Markov chain (3.2). Then

(i) there exists a unique invariant probability π;
(ii) for every x ∈ Σ and every continuous function h : Σ → R we have that if

w(0) = x, then

lim
k→∞

1

k

k−1∑
j=0

h(w(j)) =

∫
Σ

h(y)dπ(y) almost surely;

(iii) for every x ∈ Σ and every continuous function h : Σ → R we have∫
Σ

h(y)P k(x, dy) →
∫

Σ

h(y)dπ(y) as k → ∞ .

The previous result can be sharpened by using the special structure of the set of
AIMD matrices M.

Theorem 4.3. Consider a finite set of AIMD matrices M and the associated
Markov chain (3.2) with its unique invariant probability π. Then

suppπ = cl C .

Proof. We first show that C ⊂ suppπ. Assume to the contrary that x ∈ C \
suppπ. Then there exists an open neighborhood V of x with V ∩ suppπ = ∅. By
Proposition 4.1(iii) it follows for all y ∈ suppπ that P k(y, V ) > 0 for some k large
enough, which contradicts x /∈ suppπ.

To show suppπ ⊂ cl C, let ε > 0 and consider the set

Uε := {x ∈ Σ | dist (x, C) > ε} .
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As the distance of w(k) to C is nonincreasing for every sample path by Proposi-
tion 4.1(ii), this shows that P (x, Uε) > 0 implies x ∈ Uε. Thus

π(Uε) =

∫
Σ

P (x, Uε)dπ(x) =

∫
Uε

P (x, Uε)dπ(x) .

If π(Uε) > 0, this shows that with probability 1 any evolution starting in Uε stays in
Uε. This is a contradiction to dist (w(k), C) → 0 with probability 1, which we know
by Proposition 4.1(iv). This shows π(Uε) = 0, and as ε > 0 was arbitrary, we obtain
the assertion.

The interesting point of the previous result is that the support of the invariant
probability π is determined by the set of matrices M, and only the distribution of
mass on that set changes under variation of the probabilities ρi. In the next section we
show that in some cases the expected values of the average can be elegantly expressed
in terms of the data, without the knowledge of the invariant probability π.

5. Long term averages. From a practical point of view, we now present the
main results of the paper. For the system defined in section 3.2 we know that the
stochastic process {w(k)} satisfies the strong law of large numbers. An important
consequence of this result is that the vector of window sizes w(k), averaged over time,
converges in probability to a well-defined stochastic equilibrium. It is of interest to
know what this equilibrium is given the data of the system.

Recall that Π(k) is the random variable defined by Π(k) = A(k − 1)A(k −
2) . . . A(0). It is prudent at this point to note that it follows from the discussion
that the expectation of the random variable A(k) is independent of k and is equal to

E(A(k)) = E(A(1)) =

μ∑
i=1

ρiMi.(5.1)

Given Assumption 3.3, this immediately implies that matrix E(A(1)) is a positive
column stochastic matrix and consequently has a unique Perron3 eigenvector xp given
by E(A(1))xp = xp, x

T
p y = 1. Using the independence of the random variables A(k),

this shows the following statement.
Proposition 5.1. Consider a finite set of AIMD matrices M and let {A(k)}k∈N

be an i.i.d. stochastic process satisfying Assumptions 3.1 and 3.3. Then the expectation
of Π(k) is given by

E(Π(k)) =

(
μ∑

i=1

ρiMi

)k

, and we have lim
k→∞

E(Π(k)) = xpe
T ,(5.2)

where the vector xp � 0 is uniquely determined by(
μ∑

i=1

ρiMi

)
xp = xp , eTxp = 1 .(5.3)

We are now interested in the long-term average of the window size. To this end
we define the random variable w(k) by

w(k) :=
1

k + 1

k∑
i=0

w(i) =

(
1

k + 1

k∑
i=0

Π(i)

)
w(0) = Π(k)w(0) .

3Recall that for any column stochastic matrix V � 0 with Perron eigenvector xp, it holds that
limk→∞ V k = xpeT [4].
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Corollary 5.2. Consider a finite set of AIMD matrices M, and let {A(k)}k∈N

be an i.i.d. stochastic process satisfying Assumptions 3.1 and 3.3. Then the expectation
of w(k) is given by

E(w(k)) =
1

k + 1
(I + E(A(1)) + E(A(1))2 + · · · + E(A(1))k)w(0),

and with xp defined by (5.3) we have

lim
k→∞

E(w(k)) = xpe
Tw(0) .

Proof. This follows since E(A(1))k → xpe
T as k → ∞.

The following theorem shows how the average distribution of network capacities
can be characterized.

Theorem 5.3. Consider a finite set of AIMD matrices M and the associated
Markov chain (3.2). Let Assumptions 3.1 and 3.3 be satisfied. Then, almost surely,

lim
k→∞

w(k) = xpe
Tw(0),(5.4)

where the vector xp is defined by (5.3).
Proof. This is a consequence of Theorem 4.2 and Corollary 5.2. To be precise, by

Theorem 4.2(ii) we have that if w(0) ∈ Σ, then

w(k) →
∫

Σ

wdπ(w) =: Eπ(w)

almost surely. (To obtain the desired result for vectors from the scalar results pre-
sented in Theorem 4.2, it suffices to consider the projections onto each coordinate.) If
w(0) 	 0 is not in Σ, this equation scales by eTw(0) by linearity. Thus in particular
E(w(k)) → Eπ(w)eTw(0). As by Corollary 5.2 we have E(w(k)) → xpe

Tw(0), which
implies (5.4).

To summarize, the previous result says that the average distribution of the re-
sources of the network is given by the vector xp, which can be simply obtained by
finding the dominant eigenvalue of

∑
ρiMi � 0.

5.1. Stochastic equilibria of AIMD networks. Proposition 5.1 and Theo-
rem 5.3 provide remarkable insights into the behavior of communication networks em-
ploying AIMD congestion control. In principle, they relate the asymptotic properties
of such networks to the Perron eigenvector of E(A(1)). Since E(A(1)) is easily com-
putable, it is possible not only to predict but also to control the asymptotic properties
of such networks through judiciously manipulating the AIMD parameters and/or the
probabilities ρi. In this context it is natural to ask whether the Perron eigenvector
of E(A(1)) can be directly related to the AIMD parameters of the network. We now
discuss some examples, where the calculation of E(A(1)) is particularly simple.

(i) Time-invariant networks. By this we mean that the network parameters can-
not change in time and that there is a unique set of AIMD parameters ((α1, . . . , αn),
(β1, . . . , βn)) that is used in the construction of all matrices M ∈ M. In this case it
is readily shown that

E(A(1)) = diag(δ1, . . . , δn) +
1∑n

i=1 αiγi
[α1γ1, . . . , αnγn]T [1 − δ1, . . . , 1 − δn],(5.5)
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where δi = 1 − λi(1 − βi). Further, it follows directly by inspection that the Perron
eigenvector of E(A(1)) is given by

xp =

[
α1γ1

λ1(1 − β1)
, . . . ,

αnγn
λn(1 − βn)

]T
.

Consequently, the network convergence properties and the rates of convergence of
E(w(k)) can be controlled directly by manipulating the network parameters (αi, βi, ρi).
Clearly, such networks are of great interest since most practical wireline networks (in-
cluding those employing TCP) fall into this category. A more detailed discussion of
such network types can be found in [24].

(ii) Time-varying networks. Here we assume that there is a finite set of AIMD
parameters ((αl

1, . . . , α
l
n), (βl

1, . . . , β
l
n)), l = 1, . . . ,m, and all matrices in M ∈ M

are constructed as an AIMD matrix corresponding to one of these parameters. In
this case it is convenient to consider two cases: (a) networks where the αi = αl

i are
independent of l and the βl

i vary; and (b) networks where both αl
i and βl

i vary.

In the first case it is again readily shown that

E(A(1)) = diag(δ1, . . . , δn) +
1∑n

i=1 αiγi
[α1γ1, . . . , αnγn]T [1 − δ1, . . . , 1 − δn],(5.6)

where δi = E(βi) < 1. As before xp can be found by inspection and is given by

xp =

[
α1γ1

1 − δ1
, . . . ,

αnγn
1 − δn

]T
.(5.7)

In the more general case it appears to be difficult to derive explicit formulae
for xp. One simplification occurs when the following situation prevails. The matrix
E(A(1)) can be written as

E(A(1)) =

h∑
j=1

∑
Mi∈Āj

ρiMi =

h∑
j=1

Zj .(5.8)

In the case when the Zj are positive matrices with a common Perron eigenvector
xp, it follows that xp is also the Perron eigenvector of E(A(1)) and the stochastic
equilibria of the corresponding communication network is defined by xp. Hence, it
follows that time-varying networks constructed by switching between networks with a
common equilibrium results in a constituent network with the same equilibrium state
(although the rate of convergence to this equilibrium is difficult to bound).

6. Experimental results. The mathematical results derived in section 5 are
surprisingly simple when one considers the potential mathematical complexity of the
unsynchronized network model (2.6). The simplicity of these results is a direct conse-
quence of Assumptions 3.1 and 3.3. The objective of this section is therefore twofold:
(i) to validate the unsynchronized model (2.6) in a general context; and (ii) to validate
the analytical predictions of the model and thereby confirm that the aforementioned
assumptions are appropriate in practical situations.

6.1. Networks of two unsynchronized flows: Ensemble averages. We
first consider the behavior of two TCP flows in the dumbbell topology shown in
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Fig. 6.1. Dumbbell topology.
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Fig. 6.2. Evolution of window size: Predictions of the network model compared with packet-
level ns2 simulation results. Key: ◦ = flow 1 (model), ♦ = flow 2 (model), dashed line = flow 1
(ns2), solid line = flow 2 (ns2). Network parameters: B = 100Mb, qmax = 80 packets, T̄ = 20ms,
T0 = 102ms; T1 = 42ms; no background web traffic.

Figure 6.1. Our analytic results are based upon two fundamental assumptions: (i)
that the dynamics of the evolution of the source congestion windows can be accurately
modeled by (2.6); and (ii) that the allocation of packet drops among the sources at
congestion can be described by random variables. We consider each of these assump-
tions in turn.

(i) Accuracy of dynamic model. A comparison of the predictions made by the
model (2.6) against the output of a packet-level ns2 simulation is depicted in Figure
6.2. Here, the pattern of packet drops observed in the simulation is used to select the
appropriate matrix A(k) from the set M at each congestion event when evaluating
(2.6). As can be seen, the model output is very accurate. In Figure 6.3 we also plot
the evolution of the linear combination

∑n
i=1 γiwi, where the γi are defined in (2.12).

It can be seen that
∑n

i=1 γiwi has the same value at each congestion event thereby
validating the constraint (2.12) used in the model.

(ii) Validity of random drop model. It is well known that networks of TCP flows
with drop-tail queues can exhibit a rich variety of deterministic drop-behaviors [9].
However, most real networks carry at least a small amount of web traffic. It is shown
in [25] that already a small amount of background web traffic is enough to disrupt the
coherent structure associated with phase effects and other complex phenomena pre-
viously observed in simulations of unsynchronized networks [9]. This is confirmed by
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Fig. 6.3. Evolution of
∑n

i=1 γiwi. Network parameters: B = 100Mb, qmax = 80 packets,
T̄ = 20ms, T0 = 102ms; T1 = 42ms; no background web traffic.
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Fig. 6.4. Variation of ensemble mean wi(k) with congestion epoch in dumbbell topology of
Figure 6.1. Key: + = ns2 simulation result (average over 200 runs); solid line = Proposition
5.1. Network parameters: B = 50Mb, qmax = 50 packets, T̄ = 20ms, T0 = 102ms, T1 = 2ms;
approximately 0.5% bidirectional background web traffic.

statistical tests of this measured data, which confirm the validity of Assumptions 3.1
and 3.3.

By performing repeated packet-level simulations with different random seed val-
ues for the web traffic generator, the ensemble average congestion window can be
estimated. We can also determine from the simulation results the proportion of con-
gestion events corresponding to both flows simultaneously seeing a packet drop, flow
1 seeing a drop only, and flow 2 seeing a drop only. Using these estimates of the
probabilities ρi, the ensemble average congestion window can also be estimated from
Proposition 5.1. An example of the resulting estimates are shown in Figure 6.4. Here,
we run simulations for 250 seconds with one flow started at 0 seconds and a second
TCP flow started after 50 seconds (giving the first flow the opportunity to reach its
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Fig. 6.5. Variation of ensemble mean wi(k) with congestion epoch in dumbbell topology of Fig-
ure 6.1. Key: + = ns2 simulation result (average over 200 runs); solid line Proposition 5.1. Network
parameters: B = 50Mb, qmax = 50 packets, T̄ = 20ms, T0 = 2ms, T1 = 42ms; approximately 0.5%
bidirectional background web traffic.

steady state). A small amount of bidirectional background web traffic is also included
and slow-start is switched off to allow us to focus on the congestion avoidance be-
havior. The average congestion window evolution, estimated from 200 runs of the
simulation, is plotted in Figure 6.4 together with the predictions of Proposition 5.1.
It can be seen that the agreement is remarkably good. Not only is the long-term
average accurately captured, but so is the manner in which the flows converge to this
long-term average. That is, the model accurately describes the dynamic evolution
over time, on average, of the TCP flows and thereby is useful for the analysis of both
short and long-lived flows. The results shown in Figure 6.4 are for a single choice
of network conditions, but the model remains accurate for other conditions; see, for
example, Figure 6.5. As can be seen from the figures, the predictions of Proposition
5.1 and the ns2 simulations are consistently in close agreement.
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