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Abstract 
To manage the increasing dynamics inside and outside a production system, a decentralised and 
autonomous control of shop floor logistics is a promising approach. For developing and benchmarking such 
autonomous control methods, dynamic models are essential. The paper introduces the idea of autonomous 
logistic processes and presents a dynamic simulation model of a shop floor with both a conventionally 
planned and an autonomously controlled scenario. The decentralised and autonomous control strategy bases 
on autonomous elements that are able to make decisions by themselves using distributed local information. 
The simulation model is used for analysing the system’s dynamics at varying workloads. The logistic 
performance is analysed by comparing throughput times for the different logistics situations and during 
expected and unexpected disturbances.  
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1 INTRODUCTION 
Due to increasing market dynamics, Production Planning 
and Control (PPC) has become more challenging for 
manufacturing companies. Today, production plans have 
to adapt quickly to changing market demands while 
conventional PPC methods cannot handle unpredictable 
events and disturbances in a satisfactory manner [1].  
One reason is that in practice the complexity of 
centralised architectures tends to grow rapidly with size, 
resulting in rapid deterioration of fault tolerance, 
adaptability and flexibility [2]. 
To solve this dilemma and to manage the dynamics inside 
and outside the production system the development of 
decentralised and autonomous control strategies is a 
promising research field [3]. Here autonomous control 
means a decentralised coordination of intelligent logistic 
objects (parts, machines etc.) and the routing through a 
logistic system by the intelligent parts themselves.  
Those intelligent items follow autonomously decision rules 
that are based on local information. The dynamics of such 
a system depends on the decision-making processes and 
produces a global behaviour of the system that has new 
emerging characteristics. Thereby the interactions and 
interdependencies between local and global behaviour 
are not trivial. Remember a colony of ants where a single 
ant has no idea about the whole colony. It only acts by a 
few simple rules but the entire colony consisting of 
thousands of ants is able to build gigantic nests, to find 
shortest paths between food and nest etc. This self-
organisation is a so-called emergent behaviour of a 
complex dynamic system and not derivable from single 
characteristics [4]. 
 
2 AUTONOMY IN PRODUCTION LOGISTICS 
The concept of autonomous control requires on one hand 
logistic objects that are able to receive local information, 
process this information, and make a decision about their 
next action. On the other hand, the logistic structure has 
to provide distributed information about local states and 
different alternatives to enable decisions generally. These 

features will be made possible through the development 
of Ubiquitous Computing technologies [5]. 
The application of autonomous control in production and 
logistics can be realised by recent information and 
communication technologies such as radio frequency 
identification (RFID), wireless communication networks 
etc. These technologies facilitate intelligent and 
autonomous parts and products which are able to 
communicate with each other and with their resources 
such as machines and transport systems and to process 
the acquired information. This leads to a coalescence of 
material flow and information flow and enables every item 
or product to manage and control its manufacturing 
process autonomously  [3]. The coordination of these 
intelligent objects requires advanced PPC concepts and 
strategies to realise autonomous control of logistic 
processes. To develop and analyze such autonomous 
control strategies dynamic models are required. In the 
following a shop floor scenario introduced by Scholz-
Reiter et al. [6] is modified and used to model 
autonomous processes in a flexible production scenario.   
  
3 SHOP FLOOR SCENARIO 
The considered shop floor scenario is a dynamic flow-line 
manufacturing system. It consists of n parallel production 
lines each with m machines Mij and an input buffer Bij in 
front of each machine (see Figure 1). Every line 
processes a certain kind of product A, B, … X by m job 
steps. The raw materials for each product enter the 
system via sources; the final products leave the system 
via drains.  
In this shop floor, two different logistic situations will be 
compared. In the first case, each line processes its 
associated product independently from the other lines. 
Here, the way of the single parts through the machines is 
pre-determined by a hierarchical planning process. This 
case will be called conventional planning in the following. 
In the second case, the production lines are coupled at 
every stage. Furthermore, every line is able to process 
every kind of product within a certain stage. The 
processing times for each product are higher on foreign 
lines than on their own. This structure allows the parts to 
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switch lines at every stage. The decision about changing 
the line is made by the part itself on the basis of local 
information about buffer levels and expected waiting times 
until processing. Thereby, the parts take into account that 
the processing times are higher on foreign lines than on 
their own. This logistic strategy will be called autonomous 
control because the parts are autonomous in their 
decision and there is no superior controller who decides in 
which way the parts will be processed [7].  
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Figure 1: mxn machines shop floor scenario. 

 
In the following the dynamics and performance of both the 
conventionally planned and the autonomously controlled 
shop floor will be analysed using a dynamic simulation 
model. 
 
4 DISCRETE-EVENT SIMULATION MODEL 
To handle the complexity of the shop floor the described 
scenario is reduced to 3x3 machines, i.e. three production 
lines each with three stages. Every line processes a 
certain product A, B, and C by three job steps. This shop 
floor structure is modelled using a discrete-event 
simulation software tool. 
 

4.1 Conventional Planning 
The first case to be investigated is the conventional 
situation where the lines work independent from each 
other and a plan determines which job step will be done at 
which machine. Each line is balanced i.e. every machine 
within a line has the same processing rate of 0.5 parts per 
hour. From these processing rates result processing 
times of 2 hours for processing one part at one machine. 
The processing times and the resulting processing rates 
are shown in Table 1.  
To analyse the system’s behaviour at varying demand 
and workload fluctuations, an arrival function 8(t) is 
defined and set as a sine function:  

)sin()( ϕαλλ +⋅+= tt m  (1) 

 

 
Processing times [h:min] and 

processing rates [1/h] 
 at production line n 

Stage m 1 2 3 

1 2:00 / 0.5 2:00 / 0.5 2:00 / 0.5 

2 2:00 / 0.5 2:00 / 0.5 2:00 / 0.5 

3 2:00 / 0.5 2:00 / 0.5 2:00 / 0.5 

 Table 1: Processing times and resulting processing rates 
of the 3x3 machine model. 

 
Here, 8m is the mean arrival rate, " is the amplitude of the 
sine function, and ϕ indicates a phase shift.  
The mean arrival rate 8m has to be equal or lower than the 
total processing rate : to guarantee stable system 
behaviour with finite buffer levels: 

µλ ≤m . (2) 

For the described 3x3 machine model, the mean arrival 
rate has to be chosen to: 

hm
15.0≤λ . (3) 

Due to a usual workload of about 80 % in real production 
systems, a mean arrival rate 8m = 0.4 1/h and amplitude 
of " = 0.15 1/h are chosen: 

)sin(15.04.0)( ϕλ +⋅+= tt . (4) 

The arrival functions for the three product types A, B and 
C are identical except for the phase shift ϕ = 1/3 period. 
This phase shift is chosen to simulate a seasonal varying 
demand for the three different products. Figure 2 shows 
the three arrival functions. Here, the arrival rate is plotted 
against the simulation time for one simulation period.  
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Figure 2: Arrival rate for the three part types. 

 
To analyse the system’s performance, the throughput 
times (TPT) for the three different part types are 
examined. Figure 3 shows these throughput times. 
Because of the identical arrival functions for each part 
type, the time series of the throughput times have the 
same shape with a phase shift of 1/3 period. 
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Figure 3: Throughput times for the three different part 

types in case of conventional planning. 
 
During the periods of overload, the throughput times rise 
because the buffer levels at the first stage machines rise 
and the parts have a higher waiting time before they are 
processed. When the arrival rate drops below 0.5 1/h, the 
buffer levels and the waiting times decline until the 
minimum throughput time of 6 h is reached. 
For all three part types the maximum throughput time in 
this case is 19:48 h and the mean throughput time is 
9:55 h with a standard deviation of 5:08 h (see Table 3). 
To understand the impact of seasonal demand 
fluctuations on the system’s behaviour, the amplitude of 
the sinusoidal arrival rate is varied like shown in figure 4. 
The amplitude rises here from " = 0.0 1/h to " = 0.2 1/h.  
The resulting throughput times are shown in figure 5. For 
amplitudes lower than 0.1 1/h, the throughput time 
remains constantly 6 h which is the total processing time 
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Figure 4: Varying amplitudes of the arrival function for 

part type A 
 
at all three machines. For amplitudes higher than 0.1 1/h, 
the temporary overload results in an increased throughput 
time caused by an additional waiting time in the first 
buffer. This effect shows the system’s inability to react on 
demand fluctuations. Notice the maximum throughput 
time of 37:24 h for the amplitude " = 0,2 1/h. 
To analyse the robustness of the conventionally planned 
system, a machine failure at machine M21 and a downtime 
for 12 h is modelled. Due to this single breakdown, the 
complete production line is blocked for 12 h. The arriving 
parts pile up in the second buffer and no products leave 
the line. 
Figure 6 shows the effect of this breakdown on the 
throughput time for product type A. The abrupt rise can be 
interpreted as system’s inability to react to unexpected 
disturbances and changing constraints. 
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Figure 5: Throughput time of product type A for rising amplitudes in the sinusoidal arrival rate. 
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Figure 6: Throughput time for product type A during a 

breakdown of machine M21. 
 

4.2 Autonomous Control 
The second case to be analysed is the autonomous 
control situation. Here, the parts are autonomous in their 
decision which machine to choose. They take into 
account the fact that the processing times are different for 
each product type. The processing times are on foreign 
lines higher than on their own line. Table 2 shows the 
processing times and the resulting processing rates for 
the three different product types on the three production 
lines.  
 

 
Processing times [h:min] /  

Processing rates [1/h] 
 at production line n 

Part Type 1 2 3 

Type A 2:00 / 0.5 2:30 / 0.4 3:00 / 0.33 

Type B 3:00 / 0.33 2:00 / 0.5 2:30 / 0.4 

Type C 2:30 / 0.4 3:00 / 0.33 2:00 / 0.5 

Table 2: Processing times and resulting processing rates 
of the 3x3 machine model. 

 
The parts have the lowest processing times on their own 
line and have higher processing times if they change the 
line. The decision about changing the line is made by the 
part itself on the basis of local information about buffer 
levels, i.e the expected waiting time until processing and 
the processing time itself. Thereby, the parts take into 
account that the processing times are higher on foreign 
lines than on their own. At each production stage the 
parts compare the future processing times of the parts in 
the buffers and their own processing time on the 
respective machine and choose the machine with the 
minimal time for being processed. 
Like the conventionally planned system, the mean arrival 
rate 8m has to be equal or lower than the total processing 
rate : to guarantee stable system behaviour with finite 
buffer levels. Unfortunately, the mean arrival rate cannot 
be determined trivially by equation (2) because of the line 
switching of the parts i.e. the number of parts that switch 
the line and the different processing times at different 
lines.  
For description of the relation between arrival rate and 
processing rate, the workload is defined as:  

µ
λ

=W . (4) 

where 8 is the arrival rate and : the processing rate. The 
workload of the machines at the first stage is defined by:  
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where 8i is the arrival rate at source i, :Xij is the 
corresponding processing rate for the different part types 
(see Table 2) and wij is the switching rate from line i to 
line j.  
Because of the interdependencies between the switching 
rates wij and the dependencies from the arrival rates 8i, 
the workload problem is not analytically solvable. 
Therefore the stability condition in this case is not trivial to 
define. Nevertheless, the mean arrival rate still has to be 
equal or smaller than the processing rate. But due to 
reduced processing rates, the maximum mean arrival rate 
is not anymore 8m,max = 0.5 1/h.  
In high workload situations, the systems total processing 
rate :total is a function of the arrival rate because a high 
arrival amplitude causes line switching and therefore a 
changing total processing rate.  

))(( tftotal λµ =  (7) 

Thus, the stability of the system for different mean arrival 
rates and amplitudes is tested by analysing the amount of 
work-in-process (WIP) after a simulation run. If the 
system reaches the instable area the work-in-process 
rises to infinity.  
The simulation results for different mean arrival rates and 
different amplitudes are shown in figure 7.  
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Figure 7: Work-in-process against the mean arrival rate 

for different amplitudes. 
 
Each point indicates the total work-in-process (WIP) after 
one simulation run for a certain mean arrival rate. The 
four different curves denote four different amplitudes. For 
each curve, a critical mean arrival rate 8c is observed 
beyond which the system becomes instable. 
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Figure 8: Critical mean arrival rate against the amplitude. 

 
Figure 8 shows these critical arrival rates 8c for different 
amplitudes. A linear falling trend between the amplitude 
and the critical mean arrival rate is observed. This means 
that in case of autonomous control i.e. the admittance of 
line switches, the maximum mean arrival rate 8m,max 
depends on the demand variance i.e the amplitude " of 
the arrival rate.  

)(max, αλ fm =  (8) 

From the data points plotted in figure 8 equation (9) for 
the maximum mean arrival rate is extrapolated.  

5,05,0max, +⋅−= αλm  (9) 

To analyse the performance of the system the time series 
of throughput times for the three different product types 
for a mean arrival rate 8m = 0.4 1/h with an amplitude " = 
0.15 1/h are shown in figure 9. Again identical shaped 
time series of the throughput times of each lot type are 
observed but the maximum and the mean throughput 
times have been significantly reduced in comparison to 
the conventionally planned system. 

Obviously, this effect occurs because in case of work 
overload the parts switch to other lines even if the 
processing time is higher there. In this case the maximum 
throughput time is reduced by 36 % to 12:17 h and the 
mean throughput time is reduced by 30 % to 6:46 h with a 
standard deviation of only 1:07 h (see Table 3). 
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Figure 9: Throughput times for the three different part 

types in case of autonomous control. 
 
To understand the impact of seasonable demand 
fluctuations on the system’s behaviour, the amplitude of 
the sinusoidal arrival function with a mean arrival rate 
8m = 0.4 1/h is varied like shown in figure 4. The resulting 
time series of the throughput time are shown in figure 10. 
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Figure 10: Throughput time of product type A for rising amplitudes in the sinusoidal arrival rate. 
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The autonomous control effects start at amplitude of 
0.1 1/h. The time series show the more complex 
dynamics, but a significantly reduced throughput time in 
maximum, mean, and variance. Notice the maximum 
throughput time of 12:00 h for the amplitude of 0.2 1/h 
before beginning to destabilise. 
In the upper right corner, a beginning destabilisation is 
observed. For higher amplitudes, the throughput time 
rises to infinity because of the system’s overload (see 
also figure 8 and equation 9). 
To analyse the robustness of the autonomously controlled 
shop floor, a machine failure at machine M21 and a 
downtime for 12 h is modelled. Figure 8 shows the 
resulting throughput times for autonomously switching 
parts. 
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Figure 11: Throughput times for the three part types 

during a breakdown of machine M21. 
 
One can see a sudden rise of the throughput time of part 
type A which reaches a maximum of 21:00 h. But this high 
throughput time is quickly reduced and again the parts are 
distributed between the lines. In this case the mean 
throughput time for parts of type A rises to 7:00 h with a 
standard deviation of 1:34 h (see Table 3) while the mean 
throughput times for type B rises to 6:55 h respectively to 
6:52 h for parts of type C.  
 

 
Min 
TPT 

[h:min] 

Max 
TPT 

[h:min] 

Mean 
TPT 

[h:min] 

SDV 
TPT 

[h:min] 

 
Conventional 

planning 
 

6:00 18:42 9:42 4:42 

 
Autonomous 

control 
 

6:00 12:17 6:46 1:07 

Conventional 
planning and 

machine failure 
(only type A) 

6:00 30:42 11:23 7:35 

Autonomous 
control and 

machine failure 
(only type A) 

6:00 21:00 7:00 1:34 

Table 3: Performance measures of the 3x3 machine 
model. 

 

Table 3 summarises the results for a sinusoidal arrival 
function with a mean arrival rate 8m = 0.4 1/h and an 
amplitude " = 0.15 1/h. These results underline the 
benefits of a autonomous control of shop floor logistics. 
Although the highest possible workload for the system is 
reduced, the ability to react autonomously to varying 
conditions like demand fluctuations or unexpected 
disturbances like machine failures is extremely improved. 
 
5 SUMMARY AND OUTLOOK 
Summarising one can say that by introduction of 
alternative processing capacities and autonomous control 
strategies based on local information and local decision-
making of intelligent parts, the shop floor can adapt itself 
to changing work loads and can autonomously react to 
unexpected disturbances. This motivates further research 
in this area. In particular it will be interesting to analyse 
the impact of set up times, dynamic lot sizing and a 
dynamic capacity control. This will increase the level of 
autonomy in the system. It will be interesting to 
investigate which combination of the different autonomous 
strategies results in what kind of global behaviour. 
Furthermore the higher level of autonomy will produce a 
more complex dynamic that could be analysed using tools 
from the field of nonlinear dynamics. 
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