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Abstract: In complicated shop floor environments of hundreds of machines it
is difficult to organize an effective and robust central control strategy for all
processing parts, buffers and machines. We consider a production line for several
types of products produced in parallel lines of machines. For this problem we
derive a continuous model using ordinary differential equations and discuss the
corresponding optimal control problem. Here optimality criteria concern the
idle time of machines, work-in-process as well as the total throughput of the
production. To develop a robust and close to optimal control mechanism we
study the case where the individual parts waiting for a processing step have the
capability to choose a machine themselves. We discuss different strategies for this
decision, depending on the desired optimization objective, and their advantages in
comparison to simple parallel production and globally optimized solutions. These
strategies may be interpreted as local autonomous control. The main advantages
of the approach lie in the comparatively simple implementation of the control
mechanism as well as in the added robustness, when compared to a pre-planned
production schedule.
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1. INTRODUCTION

In complicated shop floors consisting of hundreds
of machines it is difficult to organize an effective
and robust central control strategy for all pro-
cessing parts, buffers and machines. In this paper
we consider some simple production scenarios to
demonstrate the idea of a possible autonomous
production. Similar configurations have been sim-
ulated with stochastic models in (Scholz-Reiter et

al., 2004), where the advantages of an autonomous
control are discussed.

We are interested in the following scenario. Con-
sider a shop floor with n production lines. Each
of the lines is optimized to the processing of a

specific type of parts. However, in case a certain
line is idle, this line can be used to process an-
other type of parts, albeit with reduced efficiency.
Thus there are kinds of parts indexed by i =
1, . . . , n that each arrive with a time-dependent
rate ai(t), i = 1, . . . , n. The i-th kind part can
be processed by the j-th production line with a
production rate of bij , i, j = 1, . . . , n. We assume
for all i, j = 1, . . . , n that bii > bij , j 6= i, and also
that bii > bji. These two assumptions mean that
the i-th line produces the i-th kind product more
efficiently than any other line does and that also
the i-th production line does not process parts of
another kind faster than the i-th one.
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In principle, we can think of production lines con-
sisting of several stages, where the output of each
stage becomes the input of the next stage. As the
output of the previous stage may be interpreted
as the arrival of parts to be processed, we concen-
trate here of a one-stage scenario. In a first step
we describe a continuous model for the previous
setup. For this an obvious optimal control strategy
can be presented. We will argue that the imple-
mentation of this approach is impractical for large
shop floors. It is the aim of the present paper to
discuss distributed, local control strategies, that
may be interpreted as autonomous regulation.

We now present a continuous model for this situa-
tion. Continuous models, also called fluid models,
see e.g., (Kleinrock, 1975), (Armbruster, 2004).
They allow to describe the material flows in terms
of differential equations.

The arrival of the i-th raw material is governed
by the time dependent function ai(t), which we
assume to be a piecewise continuous, nonnegative
function. The raw materials (parts) are stored in a
single central buffer. The state vector of the buffer
is given by x(t) = (x1(t), . . . , xn(t)), where xi(t)
denotes the amount of the i-th raw material stored
in the buffer. The time derivatives of the i-th state
is given by

ẋi(t) = ai(t) − fi(ai(t), xi(t))−
∑

i6=j

gij(a(t), x(t)) . (1)

Here the function fi describes the reduction in the
i-th raw material due to the production process in
the i-th production line, whereas the functions gij

denote the reduction in the stored raw material
due to processing of the i-th part by the j-th line
for i 6= j.

If we want to maximize the throughput, then as
the i-th machine works in an optimal manner with
the i-th part. Then as long as there is a supply of
the i-th raw material it is optimal to use the i-
th production line exclusively for this. That is we
define

fi(ai, xi) =

{

bii , if xi > 0
min{ai, bii} , if xi = 0

. (2)

The terms gij are used to distribute material for
the i-th product to the j-th production line in
case this line still has some capacity. We assume
that a, x are given and let i1, . . . , im denote indices
for which xil

= 0, l = 1, . . . ,m. (If there are no
such indices, then all production lines work with
their corresponding product, and there is nothing
to discuss.) The optimal way to do this is given
by the solution of the following linear program.

Maximize

n
∑

i6=j=1

gij (3)

subject to

gij ≥ 0 , i, j = 1, . . . , n , i 6= j , (4)

n
∑

j=1,j 6=i

gij ≤ ai − fi(ai, xi), i = i1, . . . , im, (5)

n
∑

i=1,i 6=j

b−1
ij gij ≤

(

1 −
fj(aj , xj)

bjj

)

, j = 1, ..., n.(6)

The constraints represent to positivity constraint
on the gij , the constraint that not more than ai −
fi(ai, xi) can be processed of the i-th product, in
case that the buffer for the i-th product is empty,
and finally, that the total capacity of the j-th
machine may not be exceeded.

This optimization problem needs to be solved
whenever some of the buffers become empty. In
this way the amount of material delivered to a
machine is exactly equal to the amount that can
be processed, so that there is no build up of
material other than in the buffer. Also it is easy
to see that at each time instant the throughput is
maximized and idle times are minimized. This is
the content of the following statement.

Proposition 1. Consider the production line de-
scribed by the equations (1), i = 1, . . . , n with
a distribution according to (2) and the linear pro-
gram (3)–(6). Then for all T > 0 this distribution
maximizes the throughput, which is given by

n
∑

j=1

∫ T

0

fj(aj(t), xj(t)) +
n

∑

i=1,i6=j

gij(a(t), x(t))dt .

Furthermore, the distribution procedure mini-
mizes the total idle times of the production lines.

While the described approach yields an optimal
solution, the described method has several draw-
backs, so that it is not feasible in shop floors
characterized by a large number of production
lines. First of all, the solution of the linear pro-
gram may be cumbersome and it requires full
information concerning the states of all machines
and the total work-in-process. Secondly, the com-
mon buffer may be impractical depending on the
circumstances, or in case of a virtual buffer further
communication needs may be undesirable.

In the following we will investigate decentralized
control strategies. We present indications that so-
lutions close to optimal may be obtained using
autonomous control concepts. For ease of presen-
tation we restrict ourselves to the case of two
production lines. In the following Section 2 we
present three different scenarios for this case. In
Section 3 some discrete event simulations for these



scenarios are discussed. Finally, in Section 4 we
present continuous models for these situations and
discuss some optimal control problems.

2. THE CASE OF TWO PRODUCTION LINES

Let us consider a production of two kinds of
products in two lines. There are two kinds of
parts to be processed coming from two sources
(scenario 1, see Fig. 1) with rate a1 and a2 (parts
per unit time), respectively. The processing rate
of machines is denoted by b11 and b22 respectively.
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Fig. 1. Scenario 1
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Fig. 2. Scenario 2

In the case that ai > bii, i = 1, 2 the queues in the
buffers grow linearly with time. If ai < bii, the
machines idle periodically. Now let a1 < b11 and
a2 > b22 (a1 > b11 and a2 < b22 is symmetric).
In this case the first machine idles periodically
whereas the second has to proceed a growing
queue.

To save the idle time of the machine 1 one can
allow parts to choose another machine if this
machine idles (scenario 2, Fig. 2) . Let us denote
bij the processing rate of the machine i busy with
part from the source j.

We consider also the following scenario 3. The
parts arrive first to a common buffer and then
decide to which machine to go (Fig. 3), whereby
a part has a preference to go to the machine with
a highest processing rate for it.

To demonstrate the advantages of the last two
scenarios we perform a discrete event simulation.
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Fig. 3. Scenario 3

3. DISCRETE EVENT SIMULATION

We normalize the maximal arrival rate of source
2 to a2 = 1. It is clear, that the interesting
case is a1 < b11 and a2 > b22. The critical case
occurs when the processing times are significantly
smaller then possible arrival rates of one of the
servers. Thus we set a1 = 1/24, b11 = b22 =
1/16, b12 = b21 = 1/20 and vary 1/16 < a2 < 1,
as smaller values of a2 lead to scenarios similar
to the previous one. The simulation time period
is 500 units. The parts of the kind i go to the
machine j 6= i if and only if it idles.

On following figures dash, solid and dotted lines
correspond to scenario 1, 2 and 3 respectively. The
total amount of parts processed by both machines
is presented on the Fig. 4.
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Fig. 4. Total throughput versus inter-arrival time
1/a2

As one can expect the three lines coincide if inter-
arrival time 1

a2
> 16, i.e, for low arrival rates.

In this case all three scenarios work in the same
parallel way. For higher arrival rates we see that
with the exception of two points a = 1

8 and
a = 1

12 the throughput in the second scenario is
bigger as in the first one. The third scenario has
a bigger throughput than in scenarios 1 and 2 or
all 1

a2
< 16 as we expect from Proposition 1.

The sum of the idle time over both machines is
presented on the Fig. 5.
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Fig. 5. Total idle time versus inter-arrival time
1/a2
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Fig. 6. Mean work-in-process versus inter-arrival
time 1/a2

Again we see, that with the exception of the same
two points the second scenario has less total idle
time and the third scenario has less idle time than
both scenarios 1 and 2 for all 1

a2
< 16.

Figures 6 and 7 show the mean and the maximum
work-in-process, i.e. the amount of parts in both
buffers in the first two scenarios.
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Fig. 7. Maximum work-in-process versus inter-
arrival time 1/a2

We see that nearly the same buffer capacities are
required in all three cases. However, the last two
production scenarios have advantages in that the
idle time is less and the total throughput is bigger.

4. CONTINUOUS MODELS

4.1 Scenario 1

As before let ai(t) be the time dependent rate of
arrivals from the source i and bii be the processing
rate of the machine i. Let xi(t), i = 1, 2 be the
amount of parts waiting in the first and second
buffer. As there is no cross transfer of raw material
(1) reduces to

·
xi (t) = ai(t) − fi(ai(t), xi(t)), i = 1, 2 , (7)

with processing rates fi given by (2).

The total throughput and idle time as well as
the queue length of the buffers can be calculated
easily. There are no controls in this scenario.
It is clear, that the non-interaction between the
different production lines may lead to solutions
that are far from optimal. In particular, idle times
occur whenever a buffer becomes empty and these
idle times cannot be used for other purposes, so
that also the throughput is reduced. We do not
discuss this simple case further.

4.2 Scenario 2

Let ai(t) and bij be as above. Let x1(t), y1(t) be
the number of parts in the buffer 1 coming from
the source 1 and 2 respectively and let x2(t), y2(t)
be the number of parts in the buffer 2 coming
from source 2 and 1 respectively. Let 0 ≤ αi(t) ≤ 1
be two time dependent parameters controlling the
rate of parts arrived from the source i and going
to the machine 1. Then the evolution of the buffer
queues can be described by the following system:

·
x1 (t) = α1a1(t) − b1(t)

x1(t)

x1(t) + y1(t)
, (8)

·
y1 (t) = α2a2(t) − b1(t)

y1(t)

x1(t) + y1(t)
, (9)

·
x2 (t) = (1 − α2)a2(t) − b2(t)

x2(t)

x2(t) + y2(t)
,(10)

·
y2 (t) = (1 − α1)a1(t) − b2(t)

y2(t)

x2(t) + y2(t)
,(11)

where b1(t) and b2(t) are the production rates of
the machine 1 and 2 respectively. They can be
calculated as follows: Consider the first machine
and the queue (x1 + y1) in the first buffer. If
(x1 + y1) > 0, then let ε(x1 + y1) be a small
portion of the queue processed by this machine.

The time spent for this portion is
(

εx
b11

+ εy

b12

)

.

Then it follows

b1(t) =
ε(x1(t) + y1(t))

εx1(t)
b11

+ εy1(t)
b12

. (12)



With the same arguments for the second machine
one can conclude:

bi(t) =
xi(t) + yi(t)
xi(t)
bii(t)

+ yi(t)
bij(t)

, i 6= j. (13)

For x1 + y1 = 0, i.e. x1(t) = y1(t) = 0 we
conclude in the same way that

b1 =
α1a1 + α2a2
α1a1

b11
+ α2a2

b12

if the machine does not idle and b1 = α1a1 +
α2a2 otherwise (i.e., for small arrival rates). So
we obtain

b1(t) = min
(

α1a1 + α2a2,
α1a1 + α2a2
α1a1

b11
+ α2a2

b12

)

, (14)

for x1(t) = y1(t) = 0;

b2(t) = min
(

(1 − α1)a1 + (1 − α2)a2,

(1 − α1)a1 + (1 − α2)a2

(1−α1)a1

b12
+ (1−α1a2)

b22

)

, (16)

for x2(t) = y2(t) = 0.

The control parameters αi should be chosen to
reach an optimal solution.

The criteria for the optimal solution can be for
example:

• maximizing the total throughput over a time
interval [0, T ]

T
∫

0

(b1(s) + b2(s))ds → max; (17)

• minimizing the total work-in-process

x1(t) + y1(t) + x2(t) + y2(t) → min; (18)

• minimizing the total idle time of the first ma-
chine:

T −

T
∫

0

α1(t)a1(t) dt

b11
−

T
∫

0

α2(t)a2(t) dt

b21
→ min;

(19)

Then an optimal control problem (Macki and
Strauss, 1982), (Fleming and Rishel, 1975) can be
formulated as follows:

Find α1, α2 such that the solution of (8-16) yields
an optimal return for the functional (17), (18) or
(19), respectively.

We note, that bi(t) is discontinuous at xi(t) =
yi(t) = 0, hence the uniqueness of the solution of
the system (8-11) is not clear at that point. To
investigate this case we do the following transfor-
mation:

u = x1 + y1

v = x1 − y1

ξ = x2 + y2

η = x2 − y2

⇒

·
u= α1a1 + α2a2 − b1
·
v= α1a1 − α2a2 − b1

v

u
·

ξ= (1 − α2)a2 + (1 − α1)a1 − b1
·
η= (1 − α2)a2 − (1 − α1)a1 − b2

η

ξ
where now b1 may be discontinuous only if u =
v = 0 and b2 may be discontinuous only if ξ = η =
0. The initial conditions now are u(0) = 0, v(0) =
0, ξ(0) = 0, η(0) = 0.

Let (u1, v1, ξ1, η1) and (u2, v2, ξ2, η2) be two solu-
tions of this system, then

(u1 − u2)
· = 0 (20)

(v1 − v2)
· = b1

( v1

u1
−

v2

u2

)

(21)

(ξ1 − ξ2)
· = 0 (22)

(η1 − η2)
· = b2

(η1

ξ1
−

η2

ξ2

)

(23)

with (u1 − u2)(0) = 0, (v1 − v2)(0) = 0, (ξ1 −
ξ2)(0) = 0, (η1 − η2)(0) = 0. Firstly, it follows
that u1 − u2 ≡ 0, v1 − v2 ≡ 0, then

ξ1 − ξ2 = C1 exp(

∫

b1

u1
dt), (24)

η1 − η2 = C2 exp(

∫

b2

ξ2
dt). (25)

With homogeneous initial conditions it follows
ξ1−ξ2 ≡ 0, η1−η2 ≡ 0. The uniqueness is proved.

In order to maximize the throughput we now
describe how to find αi(t) that instanteneously
maximize the production rate, i.e. b1(t) + b2(t).
We consider the system in different buffer states:
Obviously, α1(t) = 1 and α2(t) = 0 for x1(t) +
y1(t) > 0 and x2(t)+y2(t) > 0, i.e., the machine i
receives the parts only from the source i, i = 1, 2.

Let be x1(t) + y1(t) = 0 and x2(t) + y2(t) > 0.
Then α1(t) = 1, since the second machine is busy.
If a1 ≥ b11, i.e., arrival rate is higher then it can be
processed, then it follows α2(t) = 0. Otherwise if
a1 < b11, the first machine can process some parts
from the second source and having empty buffer.
To find the appropriate α2(t) we use the condition
of empty buffer: let us consider a small time
interval ∆t. During that time a1∆t parts have
arrived from the first source. The first machine
has spent a1∆t

b11
time units processing them. The

remaining time ∆t− a1∆t
b11

can be used for the parts
of the second machine which are processed with
the rate b12. It follows that

(

∆t −
a1∆t

b11

)

b12 = α2a2, (26)

if a2(t) > 0 is big enough, such that there is no
idle time. Finally

α2(t) = min
( (b11(t) − a1(t))+b12(t)

b11(t)a2(t)
, 1

)

,



where we use the notation a+ = max(0, a).

The case x1(t) + y1(t) > 0 and x2(t) + y2(t) = 0
can be treated similarly to obtain

α1(t) = max
(

0, 1 −
(b22(t) − a2(t))+b21(t)

b22(t)a1(t)

)

,

and α2(t) = 0.

The last possible state is that both buffers are
empty, i.e. x1(t)+y1(t) = 0 and x2(t)+y2(t) = 0.
Straightforward calculations yield in this case

α1(t) = min

(

1,
(

1 − (b22(t)−a2(t))+b21(t)
b22(t)a11(t)

)

+

)

,

α2(t) = max
(

0, (b11(t)−a1(t))+b12(t)
b11(t)a2(t)

)

.

For this α1(t), α2(t) the solution x1(t), y1(t),
x2(t), y2(t) can be found solving the system (8-
11).

4.3 Scenario 3

Now consider the third scenario. Again let ai(t),
bij(t) be as above. Let x(t) and y(t) denote the
number of parts waiting in the buffer arrived from
the source 1 and 2 respectively. Let 0 ≤ αi ≤
b1i, 0 ≤ βi ≤ b2i denote the rate of arrival of
parts coming from the source 1 and 2 respectively
and going to the machine i. The evolution of x(t)
and y(t) is then given by:

·
x = a1(t) − α1(t) − α2(t), (29)
·
y = a2(t) − β1(t) − β2(t). (30)

Since the parts go to a machine from the buffer
only if it becomes empty, i.e., the arrival rate is
equal to the processing rate. Then

αi(t) + βi(t) = bi(t), i = 1, 2 (31)

where b1(t) and b2(t) are the processing rates of
the machine 1 and 2 respectively. Using (31) the
system (29-31) is equivalent to

·
x (t) = a1(t) − α1(t) − (b2(t) − β2(t)) (32)
·
y (t) = a2(t) − (b1(t) − α1(t)) − β2(t) (33)

b2
1(t) = α1(t)b11(t) + (b1(t) − α1(t))b12(t) (34)

b2
2(t) = (b2(t) − β2(t))b21(t) + β2(t)b22(t) (35)

and one has only two independent control func-
tions α1(t) and β2(t).

Let us find α1(t), α2(t), β1(t), β2(t) minimizing the
work-in-process (x + y): First we treat the case of
empty buffers x = 0, y = 0. Analyzing the Fig. 8
and with the same arguments as in case of scenario
2 one the following solution is obtained

α1 = min(b11, a1),

A
A

A
A

A
A

HHHHHH

b11 (b11 + b12)

(b22 + b21)

b22

a2

a1

6

-

Fig. 8. Area of arrival rates variation

α2 = min
((

1 −
a2

b22

)

+
b21, a1 − b11

)

,

β1 = min
((

1 −
a1

b11

)

+
b12, a2 − b22

)

,

β2 = min(b22, a2),

where we use the notation a+ = max(0, a).

In case x > 0, y > 0 it follows that α1 = b11, α2 =
0, , β1 = 0, β2 = b22.

For x > 0, y = 0 one has α1 = b11, β1 = 0, β2 =
min(b22, a2) and

α2 = min
((

1 − a2

b22

)

+
b21, a1 − b11

)

,

and for x = 0, y > 0 we have α1 =
min(b11, a1), β1 = 0, β2 = b22 and

α2 = min
((

1 − a2

b22

)

+
b21, a1 − b11

)

.

We have found optimal controls αi for all cases,
with these data the evolution of the buffer queue
x(t), y(t) is given by (29-31).

5. CONCLUSION

Several scenarios of shop floor control have been
considered and it has been demonstrated that
scenarios with autonomous control strategies, in
which parts can decide locally which machine to
go to, can be more effective than conventional pre-
planned schedules where parts are handed over to
the next machine in line according to a production
plan.

The scenarios have been described by means of
analytical models in form of differential equa-
tions and control functions in order to analyze
the performance of distributed autonomous con-
trol systems. Several criteria of optimality, such
as minimum idle times of machines, minimum
work-in-process and maximum throughput have
been stated. The optimal control functions can
be found by solving the corresponding optimal
control problem.



Moreover it has been shown that autonomous
shop floor control is more robust in the case of
machine breakdowns. Here, simple rules of local
decision-making allow jobs to be transferred to an-
other machine. These advantages have also been
confirmed by simulations described in (Scholz-
Reiter et al., 2004) using a different modeling
approach.

The presented research on decentralized and au-
tonomous control scenarios has established a theo-
retical foundation for further research. The results
have proven that it is promising to focus on more
complex shop floor structures. In such a scenario
the autonomy of a single part is more important as
far as its influence on the performance in terms of
less idle times of machines, higher throughput and
less total work-in-process as well as the system’s
robustness is concerned.
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