
Noname manuscript No.
(will be inserted by the editor)

Modeling Production Networks with Discrete Processes by
Means of Communities of Autonomous Units

Hans-Jörg Kreowski · Sabine Kuske ·
Caroline von Totth

Received: date / Accepted: date

Abstract Communities of autonomous units are devices for the visual modeling of interac-
tive logistic processes. The framework is founded on rule-based graph transformation and
allows specifying autonomous units in such a way that they can run in parallel and make
their decision about future actions independently of each other. The usefulness of the frame-
work is demonstrated in this paper by modeling a new variant of production networks with
discrete production processes. One of the main results shows that the visual model is correct
with respect to a more traditional quantitative mathematical model.

Keywords Production networks · Autonomous units · Discrete production processes ·
Stability · Graph transformation

Mathematics Subject Classification (2000) 39A30 · 90B10 · 90B30 · 90C35

1 Introduction

Logistic systems and networks become more and more dynamic and structurally complex
due to the fast changes in customers’ demands, the wide spectrum of employed technolo-
gies, the growing globalization, and other such factors. Logistic processes with central con-
trol are not realistic and flexible enough to deal with this situation – in particular if parties
with different interests are involved. The use of interactive processes with decentralized and
autonomous control is more adequate and may solve the problem, but can also cause new
difficulties. How can one guarantee that the autonomous processes cooperate properly? How
can interactive processes be described in a suitable way? How can one analyze their behav-
ior and prove desired properties like conflict freeness, termination in time and reachability
of goals? To answer these questions, formal modeling methods for cooperating autonomous

The authors would like to acknowledge that their research is partially supported by the Collaborative Research
Centre 637 (Autonomous Cooperating Logistic Processes: A Paradigm Shift and Its Limitations) funded by
the German Research Foundation (DFG).

Hans-Jörg Kreowski, Sabine Kuske, Caroline von Totth
University of Bremen, Department of Mathematics and Computer Science, P.O. Box 330 440, 28334 Bremen,
Germany
Fax: +49-421-2184322
E-mail: {kreo, kuske, caro}@informatik.uni-bremen.de

2

processes are indispensable. In logistics, there are various modeling methods like business
process models, UML, Petri nets, multi-agent systems, particle swarms and systems of equa-
tions and inequalities. However, most of them do not provide both: a formal framework to
prove properties on one hand and features to express decentralization, interaction, cooper-
ation and autonomy on the other hand. Logistic modeling of today often relies on testing
and simulation which allow to track down unwanted behavior and to guarantee that a finite
collection of inputs works properly, but cannot make sure that desired properties hold for
the whole system and all its runs (cf., e.g., [12]).

As an alternative approach, we offer communities of autonomous units as devices for
formal and visual modeling of interacting logistic processes (cf. [10, 11, 13]). In this paper,
we demonstrate their usefulness by introducing and studying a new variant of production
networks where the usual mathematical models are accompanied by specifications as com-
munities of autonomous units.

Production networks are investigated in many variants in logistics and control theory
mainly with continuous production processes (cf.,e.g., [1–3,6,14–16]). A major topic is the
stability meaning that the quantities in a production network do not grow beyond any bound.
While there are many applications for which the assumption of continuous inflow, outflow,
production, and distribution is adequate, there are others for which a stepwise processing is
more realistic (e.g. if production and distribution are done from time to time only).

In this paper, we model production networks with discrete production processes in two
ways. We start with a quantitative mathematical model as it is quite usual in logistics. Based
on the mathematical model, two results can be proved that stress the basic properties of
these kind of production networks. The first result states that production processes are free
of loss because all quantities at all production sites that are delivered or put in during the
process are stored or distributed or put out eventually. The second result concerns determin-
istic production networks for which we can provide a stability criterion. But this sufficient
condition applies only to particular production networks. Therefore, one may wonder how
the other networks run and work. For this purpose, we propose a second model of production
networks by means of communities of autonomous units.

The modeling framework of communities of autonomous units offers the following fea-
tures of interest:

1. It is rule-based so that the operational semantics provides the running processes. In other
words, production processes do not have to be defined on a metalevel, but are given by
the framework. Moreover, the operational semantics is independent of any particular
implementation so that it is easier to understand than programming code.

2. As it is based on graphs, it is visual so that one can look at the running processes and see
what happens – at least in principle. In practice, one needs visual simulation tools which
are available for the framework in prototypical form (see Section 5 for more details).

3. It supports autonomy in form of control conditions. Each autonomous unit has a con-
trol condition to decide which rule is applied next out of all possible rule applications.
But one can also employ control conditions on the community level to coordinate the
interacting processes of the units and to avoid chaotic behavior in this way.

4. It provides parallelism so that autonomous units can run simultaneously. Parallel pro-
cessing may be possible or mandatory. In the latter case, synchronization is organized
by a special type of control condition. Moreover, the framework of graph transforma-
tion provides means to find out which activities can be performed in parallel without
conflicts and whether required parallelism is possible at all.

3

5. From the point of view of logistics, our framework provides the basic elements of a lan-
guage to model interactive logistic processes with autonomous control in a visual way.
This allows to enhance the usual simulation of processes by a visual simulation on graph
transformation tools. Furthermore, as the process semantics is formally defined, one can
prove properties of the running processes like termination and correctness. There is also
the future perspective of tool support because several research activities on automatic
verification of graph transformation are going on.

The paper is organized in the following way. In the following section, the basic notions
of production networks and their discrete processes are introduced by means of quantitative
modeling. In Section 3 a sufficient condition for the stability of deterministic production
networks in given. Section 4 treats production networks as communities of autonomous
units where this rule-based and visual modeling framework is introduced, too. In Section 5
it is discussed shortly how the visual simulation of production networks is implemented on
the graph transformation engine GrGen.NET (cf. [8]). Section 6 deals with a generalization
of production networks by rules that change distribution rates, which are constant in the
basic model. Section 7 concludes the paper by pointing out some topics of future research.

2 Production Networks and Discrete Production Processes

In this section, our most elementary notions of production networks and their processes
are introduced. It follows the concept of supply and production networks as studied, for
example, in [5, 9], but we replace continuous production processes by stepwise processing.

A production network consists of a set of production sites which are numbered from 1 to
n (without loss of generality). Some of them are also input sites, some output sites. Each site
has got a maximum production rate. Each input site has a maximum input rate in addition,
and each output site a maximum output rate accordingly. All of them serve as upper bounds.
But for greater flexibility, each of them may be infinite so that no restriction is imposed in
this case. The dynamics of a production network is given by production processes which
consist of stepwise inputs, changes of production states and outputs. A production state
provides a quantity per site. To change a current state, an input rate, a production rate and an
output rate are chosen for each site. The input rate is added to the current quantity, the output
rate is part of the production rate which is subtracted from the quantity, and the difference of
the production rate and the output rate is distributed. The fraction each site gets is established
by the distribution matrix of the network. This yields a follow-up state so that such steps
can be iterated. To start a process, an initial state is chosen. Moreover, some conditions
are required. The input rates, the production rates and the output rates should never exceed
their maxima. The production rates chosen for some next step should not exceed the current
quantities. And the distribution rates should make sure that the amount of site quantites that
is distributed equals the sum of fractions that arive at the sites. If one wants to emphasize the
network aspect, then one may consider the graph underlying a production network with the
sites as nodes and an edge from site i to site j whenever the (i, j)-entry of the distribution
matrix is greater than 0.

In a more concrete setting, one may think of production sites as various plants that
are connected by roads or tracks so that raw material is delivered, processed material is
transported from plants to other plants according to some distribution plan and finished
material is taken away by trucks or trains within a certain period of time. This establishes a
production cycle and the iteration of such steps defines a production process.

4

Before production networks and their processes are defined formally, some notational
conventions are needed.

The set of natural numbers is denoted by N, N\{0} is denoted by N>0 and [k] denotes
the subset {1, . . . ,k} of N. The set of real numbers is denoted by R; we use R+ to describe
the set of non-negative real numbers with 0.

Given a set X and n ∈ N, the set of all n-vectors x = (x1, . . . ,xn) with xi ∈ X for i ∈ [n]
is denoted by Xn. If X is ordered by ≤, then the order is extended to Xn where x ≤ y for
x,y ∈ Xn means xi ≤ yi for i ∈ [n]. Accordingly, the set of all infinite sequences y = (yi)i∈N
with yi ∈ X for i ∈ N is denoted by XN. The set of all n,n-matrices a = (ai j)i, j∈[n] with
ai j ∈ X for i, j ∈ [n] is denoted by Xn×n. The extra symbol ∞ denotes infinity and is greater
than every real number, i.e. r < ∞ for r ∈ R.

Definition 1 (Production Network) A production network PN consists of

• a set [n] of production sites for some n ∈ N,
• vectors maxin,max,maxout ∈ (R+ ∪ {∞})n the entries of which are called maximum

input rates, maximum production rates and maximum output rates respectively, and
• a distribution matrix d ∈ R

n×n
+ with

n

∑
j=1

di j = 1

for i ∈ [n].

Remarks

1. A production site j with maxinj > 0 is called an input site and, accordingly, an output
site if maxout j > 0.

2. The graph underlying PN is given by G(PN)) = ([n],E) with E = {(i, j)∈ [n]2 | di j > 0}
meaning that the sites are the nodes and there is an edge from site node i to site node j
whenever the distribution rate di j is greater than 0.

3. The introduced notion is oriented on the concepts of production networks in [5,9]. Many
variations and extensions are possible, like lower bounds for input, production and out-
put in addition to the upper bounds, or variable distribution rates rather than invariant
ones. This is further discussed in Sections 6 and 7.

Example 1 A sample production network sample is given by the components of Figure 1.
It has seven production sites. 2 and 5 are the input sites with 100 and 200 respectively as
maximum input rates. 1, 3 and 6 are the output sites with unbounded output. The distribu-
tion matrix and the vector of maximum production rates complete the quantitative model.
The underlying graph is depicted in Figure 2. It is extended in Section 4 where a visual
representation of entire production networks is presented.

Definition 2 (Production Process) Let PN be a production network.

1. A production state is a vector of site quantities q ∈ R
n
+.

5

production network sample

d=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 .25 .50 .25 0 0 0
.50 0 0 .50 0 0 0
0 0 .75 0 0 .25 0
0 .25 .25 0 .25 .25 0
0 0 0 .25 0 0 .75
0 0 0 0 0 1 0
0 0 .25 0 0 .75 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

maxin = (0, 100, 0, 0, 200, 0, 0)

maxout = (∞, 0, ∞, 0, 0, ∞, 0)

max = (100, 150, 150, 150, 250, 200, 200)

Fig. 1: An example of a production network

1

2 3

4

5 6

7

Fig. 2: The underlying graph of the production network sample

2. Let q be a production state, in, p,out ∈ R
n
+ vectors of input rates, production rates and

output rates respectively with in≤maxin, p≤ max,out ≤maxout and out ≤ p≤ q. Then
the follow-up state q′ is defined by

q′j = q j + in j − p j +
n

∑
i=1

di j(pi −outi) for j ∈ [n].

3. This construction is called a production step from q to q′ and is denoted by

q −−−−→
in,p,out

q′.

4. A production process is an infinite sequence of production states q ∈ (Rn
+)

N such that,
for every k ∈ N>0 there are vectors ink, pk,outk ∈ R

n
+ with qk−1 −−−−−−→

ink ,pk ,outk
qk .

6

Remarks

1. It should be noted that, given a production state, a production step is always defined
for any choice of input rates, production rates and output rates. Therefore, it causes no
problems to assume that production processes run forever.

2. But if one is interested in finite processes, then one can consider just the prefixes q0, . . . ,qk

of a production process q ∈ (Rn
+)

N for some k ∈ N.
3. In particular, one may consider production processes q ∈ (Rn

+)
N as finite if there is an

activity bound k ∈ N such that all input, production and output rates for l > k are 0
and the quantity vectors become invariant, i.e. ql = qk . Then only the sequence up to k
matters at all and qk can be considered as final state.

4. In a production step, the difference of the production rate and the output rate is dis-
tributed to the neighbor sites. Hence it may be called distribution quantity.

Example 2 Given the production network sample of Example 1, it may start with the initial
state (0,0,0,0,0,0,0), put in the maximum input in each step, choose always each current
quantity as production rate, put this out at site 1 and 6 and half of it at site 3. Then one gets
a production process with the following first three steps:

(0,0,0,0,0,0,0)→ (0,100,0,0,200,0,0)

→ (50,100,0,100,200,0,150)

→ (50,125,62.5,100,225,137.5,150)

As in each step of a production process each quantity is partly kept, partly put out, and
partly distributed, one may expect that the overall quantity in a production network is fully
established by the initial quantities, all the inputs and all the outputs and that there is no
loss. To state this precisely, some notations are needed concerning the summation of inputs,
outputs and site quantities.

Let q ∈ (Rn
+)

N be a production process with qj−1 −−−−−−→
in j ,p j ,out j

q j for j ∈ N>0. Then Qk =

n
∑
j=1

qk j denotes the overall quantity of state qk for k ∈ N. And, for k ∈ N>0, Ink =
k
∑
j=1

n
∑

i=1
in ji

and Outk =
k
∑
j=1

n
∑

i=1
out ji denote the cumulated inputs and the cumulated outputs respectively

up to step k. Moreover, In0 = Out0 = 0.

Theorem 1 Let q ∈ (Rn
+)

N be a production process with qj−1 −−−−−−→
in j,p j ,out j

q j for j ∈ N>0.

Then the following holds:

Qk = Q0 + Ink −Outk for all k ∈ N.

The proof is omitted. The theorem can be shown by induction on the number of steps of a
production process.

Our notion of production networks covers various special cases one encounters in the
literature like networks with a single input site or a single output site (or both) and like
acyclic networks where distributed quantities never come back to the distributing site. One
may also get rid of the bounds and of the restrictions they impose on the free choice of input

7

rates, production rates and output rates by setting them to ∞. Or one may require additional
properties of production processes like constant input rates or output rates proportional to
the production rates, or exhaustive production rates that use up the site quantities up to the
maximum production rates. These three properties together define a kind of deterministic
production network that is further considered in the next section.

Instead of restrictions, one may also relax the notion of production networks. For ex-
ample, the condition that the distribution rates of one site to all sites sum up to 1 may be
replaced by

n

∑
j=1

di j ≤ 1.

This would mean that a certain part of the distribution quantity gets lost in each step.
Or the condition may be dropped completely allowing the increase of quantities while dis-
tributed. There may be even cases where negative quantities are meaningful.

There are at least two further aspects that could be subject to generalization. Instead of
having only one quantity per site and step meaning that only one kind of material or goods is
measured, one may consider a vector of quantities reflecting a variety of products. Moreover,
it may be meaningful to replace the static distribution matrix by a dynamic one.The latter
case is further discussed in Section 6.

3 Deterministic Production Networks and Stability

In most applications of production networks, a site has a bounded storage capacity so that the
question of stability becomes important. A production network is stable if the site quantities
of each production process do not exceed a fixed bound. It will be shown in this section
that deterministic production processes are stable if a certain system of linear equations has
non-negative solutions.

In this context, a production network is called deterministic if its inputs are constant,
its production rates are chosen exhaustively meaning that the site quantities are used up to
the limit of the maximum production rates, and if its outputs are certain fractions of the
production rates.

Definition 3 Let PN be a production network.

1. A production process q∈ (Rn
+)

N in PN is stable if there is an upper bound vector m∈R
n
+

such that qk ≤ m for each k ∈ N.
2. PN is stable with respect to an upper bound vector m ∈ R

n
+ if each production process

q ∈ (Rn
+)

N in PN with q0 ≤ m is stable.
3. PN is deterministic with respect to some vector of output factors a ∈R

n
+ with aj ≤ 1 for

j ∈ [n] if every production process q ∈ (Rn
+)

N with qk −−−−−−−−−−→
ink+1,pk+1,outk+1

qk+1 for k ∈ N is

subject to the following further conditions:
• ink+1 = maxin,
• p(k+1) j = min(qk j,max j) for j ∈ [n], and
• out(k+1) j = a j · p(k+1) j for j ∈ [n].

8

Remarks

1. This means that the input is constant, the production rates are uniquely determined and
the output rates are fixed if the output factors are fixed such that there is only a single
production process for each initial state.

2. As the production rates use up the site quantities up to the maxima, they are called
exhaustive.

Deterministic production networks are of particular interest because a sufficient condition
can be given to guarantee stability. Such networks are stable if a system of linear equa-
tions associated to the distribution matrix and the vector of output factors has non-negative
solutions.

Theorem 2 Let PN be a deterministic production network with the constant input vector
in = maxin, the distribution matrix d and the vector of output factors a. Let m ∈ R

n
+ be a

solution of the system of linear equations

(E − (d(a))T) · x = in

where E is the unit matrix, d(a) is given by d(a)i j = di j(1−ai) for i, j ∈ [n] and (d(a))T is
the transposed matrix. Let q ∈ (Rn

+)
N be a production process of PN with q0 ≤ m ≤ max.

Then PN is stable.

Again, the proof is omitted. It can be carried out by induction on the number of production
steps.

Remarks

1. It is worth noting that the unique production process of the deterministic production
network becomes constant if the initial state is chosen as the solution of the system of
linear equations. In other words, one can show qk = m for all k ∈ N.

2. Moreover, Theorem 2 still holds if one relaxes the assumption of constant inputs. Let PN
be an arbitrary production network and q∈ (Rn

+)
N be a production process with the input

vectors ink for k ∈N>0, exhaustive production rates and output rates that are determined
by a vector a of output factors. Furthermore, let m be chosen as in the theorem. In other
words, the assumptions of the theorem are fulfilled up to the constant input condition.
Production networks with variable input turn out to be stable if all other assumptions are
fulfilled.

Example 3 Consider the production network sample of Example 1 as a deterministic one
with the constant input vector maxin and the vector a = (1,0,0.5,0,0,1,0) of output factors.
Then Theorem 2 applies to sample . Its matrix E −(d(a))T and constant input vector in are

E − (d(a))T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −.5 0 0 0 0 0
0 1 0 −.25 0 0 0
0 0 .625 −.25 0 0 −.25
0 −.5 0 1 −.25 0 0
0 0 0 −.25 1 0 0
0 0 −.125 −.25 0 1 −.75
0 0 0 0 −.75 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

in =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
100
0
0

200
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

9

and the solution of the corresponding system of linear equations is given by:

m1 =
850
13 ≈ 65.38, m2 =

1700
13 ≈ 130.77,

m3 =
1540
13 ≈ 118.46, m4 =

1600
13 ≈ 123.08,

m5 =
3000
13 ≈ 230.77, m6 =

2280
13 ≈ 175.38,

m7 =
2250
13 ≈ 173.08.

Stability is a very important property of a production network because it makes sure
that there will never be a shortage of storage capacity provided that the capacity is chosen
according to the stability bound. If a network is unstable, it means that the input quantities
are not distributed in such a way that all input is put out eventually, so that it piles up
at some of the sites. To avoid this effect, the distribution rates should be adaptable to the
waiting quantities at the receiving site following the principle that a site should get less
input whenever its current quantity is high. The idea to readjust distribution rates and to
get a more balanced distribution of quantities in this way is further considered in Section 6
where the production sites can decide about the quantities they deliver to neighbor sites in
dependence of the quantities that are present there. For this purpose, we remodel production
networks as communities of autonomous units in Section 4, which allow to dynamize the
distribution rates of each site by adding new rules to the site unit.

4 Production Networks as Communities of Autonomous Units

In this section, we show how production networks can be modeled as communities of au-
tonomous units introduced in [10]. Communities of autonomous units are rule-based and
graph-transformational devices to model interactive processes that run independently of
each other in a common environment. An autonomous unit has a goal that it tries to reach, a
set of rules the applications of which provide its actions, and a control condition which reg-
ulates the choice of actions to be performed actually. Each autonomous unit decides about
its activities on its own right depending on the state of the environment and the possibility
of rule applications, but without direct influence of other ongoing processes.

The autonomous units of a community can act sequentially, in parallel, or concurrently
(cf. [11, 13]). For modeling production networks by communities of autonomous units, a
parallel semantics is suitable because each production site of a network can be naturally
modeled by an autonomous unit that acts in parallel with all other units. More precisely, in
every production step of a production process each unit performs the following actions:

1. Choose: Choose an input, an output, and a production rate subject to the conditions of
Definition 2.

2. Output: Subtract the output rate from the production rate.
3. Distribute: Distribute the remaining distribution quantity to the neighbor sites according

to the distribution matrix.
4. Calculate the new quantity as follows:

(a) Subtract: Subtract the production rate from the actual quantity q.
(b) Add: Add to the obtained quantity the input rate as well as all amounts obtained

from the neighbors in their distribution steps.

Production networks together with their actual states can be modeled as graphs in a
natural way where the production sites are represented as nodes labeled with their actual

10

quantities and the non-zero values di j of the distribution matrix di j are represented as edges
from i to j labeled with di j. Consequently, the steps of production processes can be modeled
as graph transformations. Since the common environments of communities are graphs and
the actions of units are graph transformation rules, communities of autonomous units are
well-suited to specify production networks so that the described behavior of the sites can be
directly modeled by the autonomous units of the community.

More precisely, the ingredients of autonomous units are taken from an underlying graph
transformation approach providing a class G of graphs, a class R of graph transformation
rules together with an operator =⇒ that specifies how to apply the rules to graphs, a class
C of control conditions, and a class X of graph class expressions for specifying goals or
environment properties, i.e., every expression x of X specifies a set SEM(x) of graphs in G .
The environments that are transformed by communities belong to G ; the actions performed
by the units correspond to applications of rules in R; the decisions of the units are made
according to control conditions in C , and the goals are specified with an expression from
X . This leads to the following definition.

Definition 4 (Autonomous Units) An autonomous unit is a system aut = (g,R,c) where
g ∈ X is the goal, R ⊆ R is a set of graph transformation rules, and c ∈ C is a control
condition.

Autonomous units are meant to work within a community of autonomous units that
modify the common environment together. Every community is composed of an overall
goal that should be achieved, an environment specification that specifies the set of initial en-
vironments the community may start working with, a set of autonomous units, and a global
control condition to restrict the possibilities of interaction among the units. The overall goal
may be closely related to the goals of the autonomous units in the community. Typical exam-
ples are the goals admitting only successful semantic sequences w.r.t. one or all autonomous
units in the community.

Definition 5 (Community) A community is a system Com = (Goal, Init,Aut,Cond), where
Goal ∈ X is a graph class expression called the overall goal, Init ∈ X is a graph class
expression called the initial environment specification, Aut is a set of autonomous units, and
Cond ∈ C is a control condition called the global control condition.

Communities for production networks consist of one unit per production site. The initial
environment specification specifies production networks whose number of sites corresponds
to the number of units in the community. The control condition requires to run all units
infinitely long in parallel. In this paper the goal specifies stability.

In the following, we present a concrete graph transformation approach that is suitable
for modeling production networks.

4.1 A class of graphs for production networks

Production networks can be suitably represented as edge-labeled directed graphs consisting
of nodes connected via directed labeled edges. More precisely, let Σ be a set of labels. An
edge-labeled directed graph over Σ is a system G = (V,E,s, t, l), where V is a set of nodes,
E is a set of edges, s, t : E → V are the source and target mappings which assign to each
edge its source and target node, respectively, and l : E → Σ is a mapping assigning a label
to each edge in E .

11

max

maxin

maxout

q

j

36.0

12.0

15.5

5.0

(a)

j:Site

q=5.0
max=36.0
maxin=12.0
maxout=15.5

(b)

Fig. 3: A production site as a directed edge-labeled graph (left) and its compacted depiction
(right).

For representing production networks, we must require that Σ contains the elements of
R+ as well as the symbols ∞, maxin, max, maxout and q. A production site j together with
its maximum input rate maxinj , its maximum production rate maxj, its maximum output
rate maxout j , and its current quantity qj is represented by the edge-labeled graph shown on
the left of Figure 3 where maxinj , max j, maxout j , and qj are chosen as 12, 36, 15.5, and
5, respectively. The graph consists of a node equipped with a j-labeled loop and for every
x ∈ {maxin,max,maxout,q} there is an x-edge pointing to a node equipped with a loop
labeled with a real number (or with ∞) representing the quantity of x. Since the drawing of
large production networks would lead to rather complex graphs we choose the more compact
graphical representation of production sites on the right of Figure 3. There, the site attributes
are listed in the site-node itself.

Accordingly, the representation of a production network PN with respect to a production
state q ∈ R

n
+ is the edge-labeled graph env(PN)(q) that is constructed in the following way.

1. Take the underlying graph G(PN) defined in the remarks after Definition 1 where an
edge (i, j) has i as source, j as target and di j as label.

2. Extend each site node as described above.

Using the compacted representation, the example production network sample of Sec-
tion 2 is represented by the graph in Figure 4.

4.2 A rule class for modeling the actions of production sites

The class R of graph transformation rules chosen in this paper is based on the double
pushout approach which is well studied in the literature (cf., e.g., [4,7]). Every graph trans-
formation rule of this class consists of three edge-labeled directed graphs L, K, and R such
that K is a subgraph of L and R. Formally, a graph G = (V,E,s, t, l) is a subgraph of a
graph G′ = (V ′,E ′,s′, t ′, l′), denoted by G ⊆ G′, if V is a subset of V ′, E is a subset of E ′,
s(e) = s′(e), t(e) = t ′(e), and l(e) = l′(e) for all edges e in E . The graphs L, K and R are
called left-hand side, gluing graph and right-hand side respectively. Rules are depicted in
the form L → R where the nodes and edges of the gluing graph K are indicated by identical
positions and node colors.

12

1:Site

q = 0
max = 100
maxin=0
maxout=∞

2:Site

q = 0
max = 150
maxin=100
maxout=0

3:Site

q = 0
max = 150
maxin=0
maxout=∞

4:Site

q = 0
max = 150
maxin=0
maxout=0

5:Site

q = 0
max = 250
maxin=200
maxout=0

6:Site

q = 0
max = 200
maxin=0
maxout=∞

7:Site
q = 0

max = 200
maxin=0
maxout=0

.25

.50

.25

.50

.50

.25

.25

.25

.25

.25

.25

.75

.25

.75

.75

1.0

Fig. 4: The compacted graph for the example production network of Section 2

An example of a graph transformation rule is the rule choose(j) in Figure 5. Its left-hand
side and its gluing graph consist of the production site j. The right-hand side consists of the
same site plus additional values for an input rate in, an output rate out, and a production rate
prod. On the right of the rule the constraints that must be satisfied by the values of in, out,
and prod are listed.

A second example of a rule is output(j) given in Figure 6. All three graphs of the rule
consist of the production site j plus a chosen production rate p and a chosen output rate
o. Additionally, the right-hand side contains a node the value of which corresponds to the
distribution quantity of site j because it is the difference of the production rate and the output
rate.

A third example of a graph transformation rule is the rule distribute(j, i) given in Fig-
ure 7. The left-hand side and the gluing graph contain the two production sites j and i that
are connected with a dji-edge where dji is the corresponding entry in the distribution ma-
trix. The distribution quantity dq of site j is given in the left-hand side, the gluing graph,
and the right-hand side. The right-hand side consists of the same production sites, but site i
is additionally equipped with a value g which corresponds to the fraction dji ·dq.

13

rule choose(j)

L R constraints

j:Site

q
max
maxin
maxout

j

q
max
maxin
maxout

prod:Prod

p

in:Gain
g

out:Out
o

p≤ min(q,max)
g ≤maxin
o≤maxout
o≤ p

Fig. 5: Rule choose(j)

rule output(j)

L R

j:Site

q

prod:Prod

p

out:Out
o

j

q

prod

p

out
o

:Dist

dq: p − o

Fig. 6: Rule output(j)

rule distribute(ij)

L R

j:Site

distq:Dist

dq

i:Site j

distq

dq

i

:Gain

g:dji ·dq

dji dji

Fig. 7: Rule distribute(ij)

Graphs are transformed via applications of graph transformation rules. Roughly spoken,
a rule r = (L ⊇ K ⊆ R) is applied to a graph G by replacing an image of the left-hand side
L with the right-hand side R such that the image of the common part K is not changed.
Formally, the image of a graph L in G is the image of a graph morphism g from L to G.
More precisely, for two graphs H = (VH ,EH ,sH , tH , lH) and G = (VG,EG,sG, tG, lG), a graph

14

morphism g : H →G is a pair of structure-preserving mappings gV : VG →VH and gE : EG →
EH , i.e., gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE (e)) = lG(e) for all e ∈
EG. The image g(G)⊆ H is also called a match of G in H.

In more detail, an application of a rule r = (L ⊇ K ⊆ R) to a graph G consists of the
following steps:

1. A graph morphism g : L → G is selected subject to the following two application condi-
tions:
(a) the dangling condition: the removal of g(L)−g(K) from G yields no dangling edges,

and
(b) the identification condition: if two nodes or two edges of L are identified (i.e.,

mapped to the same graph element) in the match of L, they must be in K.
2. g(L)−g(K) is removed from G, yielding the graph Z.
3. R is added to Z yielding H by merging K with g(K). This means that every item of R

that is also in the gluing graph K is merged with its image in Z and the rest of R is added
disjointly so that sources, targets and labels are kept.

For example, for j = 2 the rule choose in Figure 5 can be applied to site 2 of the pro-
duction network in Figure 4 by selecting a value p for the production rate, a value o for the
output rate, and a value g for the input rate such that the conditions of the rule are satisfied.
If one chooses p = 10.7, o = 0 and g = 100, the resulting graph is depicted in Figure 8. This
rule application models the step choose mentioned before, i.e., it models the choice of an
input, an output, and a production rate by site 2.

To the graph in Figure 8 rule output(2) can be applied and afterwards rules distribute(2,1)
and distribute(2,4) (because only sites 1 and 4 are neighbors of site 2). An application of
rule distribute(j, i) models the distribution of the amount dji ·dq from site j to site i where
dq is the distribution quantity calculated in the application of the rule output(j).

For modeling production processes adequately, the rule choose should be applied in
each production step in parallel to each site. This is possible by combining rules to parallel
rules by building the disjoint unions of their respective components. Formally, for rules
r1, . . . ,rn with ri = (Li ⊇ Ki ⊆ Ri), their parallel composition r1 + · · ·+ rn yields the rule
(L1+ · · ·+Ln ⊇ K1 + · · ·+Kn ⊆ R1 + · · ·+Rn) where + denotes the disjoint union of graphs
and the inclusions are the natural extensions of the inclusions in the rules r1, . . . ,rn.

For example, the parallel rule r1 + · · ·+ r7 where r j = choose(j) for j = 1, . . . ,7 can be
applied to the production network in Figure 4. This application models the parallel choice
of the rates for each production site.

The presented rules model the above explained steps choose, output and distribute of a
production step. The step subtract that subtracts the production rate from the current quan-
tity is modeled with the rule subtract(j) given in Figure 9. The step add which adds the
quantities from the neighbors and the input rate to the current quantity is modeled by the
rule add(j) given in Figure 10.

It is worth noting that since the left-hand sides of choose(j), output(j), and distribute(j, i)
are equal to the corresponding gluing graphs, nothing is deleted in their applications. Rules
with deletion are subtract(j) and add(j).

4.3 Graph class expressions for initial production networks and goals

Graph class expressions serve to specify the set of initial environments of a community and
the goals.

15

1:Site

q = 0
max = 100
maxin=0
maxout=∞

2:Site

q = 0
max = 150
maxin=100
maxout=0

3:Site

q = 0
max = 150
maxin=0
maxout=∞

4:Site

q = 0
max = 150
maxin=0
maxout=0

5:Site

q = 0
max = 250
maxin=200
maxout=0

6:Site

q = 0
max = 200
maxin=0
maxout=∞

7:Site
q = 0

max = 200
maxin=0
maxout=0

.25

.50

.25

.50

.50

.25

.25

.25

.25

.25

.25

.75

.25

.75

.75

1.0

prod:Prod

p = 10.7

in:Gain
g =
100.0

out:Out

o = 0.0

Fig. 8: A graph resulting from an application of the rule choose(j)

Typical examples of graph class expressions are concrete single graphs, sets of graphs
or sets of labels. Every graph as well as every set of graphs specifies itself and every set Δ
of labels specifies all graphs that are only labeled with symbols in Δ .

The initial environment of a community modeling the processes of a production network
PN consists of the edge-labeled graph representing PN where each site has an arbitrary
initial quantity. Concretely, for a production network PN with the components [n], maxin,
max, maxout, and d we use the graph class expression env(PN) = {env(PN)(q) | q ∈ R

n
+}

where env(PN)(q) are the edge-labeled graphs introduced in Subsection 1. For each node
i ∈ [n], its set of neighbors is defined by N(i) = { j ∈ [n] | di j > 0}.

The goal of each autonomous unit modeling a production site j can be specified with the
graph class expression boundj where bound ∈R

n
+ is some fixed vector. It specifies all graphs

env(PN)(q) where the quantity of site j does not exceed boundj , i.e., SEM(boundj) =
{env(PN)(q) | qj ≤ boundj}. A transformation of the unit is said to be successful if the
resulting graph meets the goal.

In the presented modeling of production networks, the global goal of the community
expresses stability. It requires that the goal of every unit will be fulfilled after every run of
the unit, i.e., after every step of a production process. This is expressed by the term stable

16

rule subtract(j)

L
R

j:Site

q

prod:Prod

p

out:Out
o

distq:Dist

dq

j

q: q − p

Fig. 9: Rule subtract(j)

rule add(j)

L R

j:Site

q

gain:Gain

g

j

q: q + g

Fig. 10: Rule add(j)

with SEM(stable) =
⋂

j∈[n] SEM(boundj) where n is the number of units in the community.
It is worth noting that one can guarantee successful production processes if one models
deterministic networks, takes a non-negative solution of the equation system in Theorem 2
as bound and chooses the initial state q and the maximum production rate max such that
q ≤ bound ≤ max.

4.4 Control conditions for a correct behavior of production networks

In many cases, rule application is highly nondeterministic — a property that is generally
not desirable. On one hand, there can be several rules that are applicable to the current
graph. On the other hand, there may be several matches for one and the same rule. Hence,
a graph transformation approach provides a class of control conditions so that the degree of
nondeterminism of rule application can be reduced. Typical examples of control conditions
are regular expressions over rules. It is well known that each regular expression over rules
specifies a possibly infinite set of rule sequences. Hence, every regular expression reg over
rules can be used as a control condition of an autonomous unit that allows all transformation
processes in which the rules are applied in the same order as they occur in at least one of the
rule sequences specified by reg.

For modeling the behavior of production sites, regular expressions are augmented by the
condition as long as possible and the parallel composition operator +. More concretely,

17

community C(PN)

goal: stable

units: site(j) for j ∈ [n]

init: env(PN)

control: (site(1)|| · · · || site(n))∞

Fig. 11: Community C(PN)

the regular expression r (where r is some rule of an autonomous unit) means to apply r
exactly once. The operator as long as possible denoted by an exclamation mark can be
applied to single rules with the effect that the rule must by applied as long as possible.
The parallel composition operator + is applied to a set R of rules and requires to apply all
rules in this set in parallel which corresponds to the application of the parallel rule ∑r∈R r.
Sequential composition of control conditions is denoted by a semicolon, i.e., the expression
c1; . . . ;ck prescribes to execute the control conditions c1, . . . ,ck exactly in this order. Finally,
nondeterministic choice is expressed by the symbol |, i.e., the expression c1| · · · |ck means to
apply one of the conditions c1, . . . ,ck.

Concretely, the behavior of production site j can be modeled by applying the rules of
the previous subsection according to the control condition

choose(j);out put(j); ∑
i∈N(j)

distribute(j, i);subtract(j);add(j)!

where N(j) ⊆ [n] is the set of neighbors of site j as defined in the previous subsection. In
words, this control condition prescribes to apply at first the rule choose(j) and then the rule
output(j). Afterwards the rule distribute(j, i) is applied in parallel to all neighbors i of site
j. In the next step subtract(j) is applied and then add(j) as long as possible. It can be shown
that the transformation processes that obey this control condition model the above described
steps choose, output, distribute, subtract, and add in the required order.

Apart from the autonomous units of a community, the community itself may be pro-
vided with a global control condition. As global control conditions we use the parallel op-
erator || and infinite sequential composition. More concretely, the global control condition
aut1|| · · · ||autk requires that the autonomous units aut1, . . . ,autk run in parallel each one
exactly once. Moreover the control condition c∞ prescribes to apply the control condition
infinitely often. The combination of both control conditions is used in the community pre-
sented in the following subsection.

4.5 The community for production networks

Based on the ingredients presented in the previous subsection we can now define the com-
munity C(PN) for a production network PN in a straightforward way as in Figure 11,
i.e., C(PN) = (stable,env(PN),{site(j) | j ∈ [n]}) where for j ∈ [n] the autonomous unit
site(j)= (boundj ,{choose(j),out put(j),subtract(j),add(j)}∪{distribute(j, i) | i∈N(j)},
c j) with c j = choose(j);out put(j);Σi∈N(j)distribute(j, i);subtract(j),add(j)! is given in
Figure 12.

18

unit site(j)

goal: bound j

rules: choose(j), output(j), distribute(ji), subtract(j), add(j) for i ∈N(j)

control: choose(j); output(j); ∑
i∈N(j)

distribute(ji); subtract(j); add(j)!

Fig. 12: The autonomous unit site(j)

Summarizing, the following observation relates a running step in the community with a
process step in the mathematical model.

Observation. A running step of the community C(PN) has the form

env(PN)(q)=⇒env(PN)(q′)

where q′ is obtained from q by q′j = q j + in j − p j +∑n
i=1 di j(pi −outi) for j ∈ [n].

As a consequence of this observation, we get the following result.

Theorem 3 Each production process q in PN corresponds to an infinite run of the commu-
nity C(PN), i.e., for every k∈N>0 there are vectors ink, pk,outk ∈R

n
+ with qk−1 −−−−−−→

ink ,pk ,outk
qk

if and only if env(PN)(qk−1) =⇒env(PN)(qk).

This shows that C(PN) models PN correctly.

Remark. The production process q is stable if for every k ∈ N>0 the graph env(PN)(qk) is
in SEM(stable).

4.6 Modeling deterministic production networks

Deterministic production networks can be modeled by replacing the constraints on the right
side of rule choose in Figure 5 with the properties of deterministic networks presented in
Definition 3. Obviously, in this case, all modeled processes are stable if a solution of the
equation system in Theorem 2 is chosen for bound and if this solution is between the state
q0 of the initial environment env(PN)(q0) and the maximum production rate max of PN,
i.e., q0 ≤ bound ≤ max.

5 Visual Simulation

In order to simulate deterministic process runs on the sample production network in Figure 1
we have implemented the general production community C(PN) (cf. Figure 11) using the
graph transformation engine GrGen.NET (cf. [8]).

19

Fig. 13: Community C(sample) in GrGen.NET: all sites have reached their saturation point
after 41 steps

The GrGen.NET graph model is based on typed, attributed, directed multigraphs with
inheritance. The base types at the core of this model are Node and Edge, and the primitive
attribute data types int, float, double, string, boolean and object, the latter denoting a .NET
object.

We made use of the subpattern matching capability of GrGen.NET, using the iterated
subpattern in order to simulate parallel rule application. GrGen.NET also does not provide
autonomous units; however, it allows to structure rule application by embedding imperative
calls to other rules into the declarative right-hand-side of a rule. Furthermore, such calls
may be controlled using, for example, regular expressions. We made use of this feature to
emulate autonomous units very closely to our original specification.

The simulation runs very fast, with our example network sample completing 41 steps
and reaching the maximal production rate at all seven sites in 156 milliseconds on an Intel
Core i5 M520 CPU with 2.40 GHz and 6 GB of RAM, having found 1920 matches (many of
these being parallel matches across the network) and performed 1920 graph rule applications
in that time (see Figure 13).

In order to simulate production runs on larger networks we have written an additional
graph grammar which creates random production networks for test purposes (cf. Figure 14).
A graph with 402 nodes is generated in 655 ms; 3000 production steps are completed after
another 21840 ms (i.e., some 21 seconds), with over 4 million matches found and rewrite
steps executed in that time.

20

This type of simulation is valuable as a visual way to model and debug production net-
works or detect flaws in existing ones, altering them until they become stable. In particular,
the simulation includes a visual debugger which allows to view in detail every step per-
formed by the system, from the matching of rule patterns to nodes to the assignment of
new values to variables. Additionally, the declarative nature of graph transformation rules
makes the modeling less error-prone, and the production process model easily scalable, e.g.,
by introducing different material types. Other possible extensions to the current model are
sketched in the conclusion.

Fig. 14: A network with 400 nodes in GrGen.NET after 3000 production steps

6 Production Networks with Variable Distribution Rates

In this section, the notion of production networks is extended by allowing to change the dis-
tribution rates such that the distribution matrix becomes variable. This serves two purposes.
On one hand, the modeling of production networks becomes more flexible and more realis-

21

tic. On the other hand, it is demonstrated how the modeling framework of communities of
autonomous units can be used to specify aspects of autonomy.

An autonomous unit decides about its next action by choosing a rule application out of
all possible ones. The decision depends on the control condition which may be the conjunc-
tion of several conditions of different kinds. A typical case is a condition that establishes
some order or priority among the rules. For example, the control condition of the unit site(j)
requires that first choice must be applied then output followed by distribute, and finally sub-
tract followed by some add’s. Consequently, the order of rule applications is fixed by this
condition. But the rules are generic since they contain variables that must be instantiated
before the actual application can take place. While the actual values of the left-hand side
variables are uniquely determined by the match of the rule in the environment, the unit can
choose and decide about the values of the right-hand side variables. A second kind of control
condition is given by constraints for these values. So far, we have used only two extreme
cases: Either the choice is totally free within certain limits like the choice of p,q,g, and o in
the rule choose, or it is computed uniquely like p−o in output and q− p in subtract. How
further decisions inbetween the two extreme cases can be designed and used is demonstrated
in the following.

To make the distribution matrix variable, we enrich each production site by a new rule
the application of which changes the current distribution rates of the edges outgoing of the
considered site. The new distribution rates are chosen due to proper constraints. To allow a
variety of possibilities, the new rule is designed in a generic way. And some examples of
constraints are provided. The first one is free choice. The second one reflects the quantities
that wait for processing at the neighbor sites. The third one takes the maximum production
rates into account additionally. In the latter two cases, the intention is to deliver the distri-
bution quantities in such a way that the waiting time is reduced meaning that the further
processing is not delayed for too long and that the chance for stability is improved.

rule adjust(j)

L R

j:Site

i1:Site

Var1

ik:Site

Vark

...
j

i1

ik

...

dji1

djik

d̂ji1

d̂jik

Fig. 15: Rule adjust(j)

22

6.1 The rule to change the distribution rates

Let j ∈ [n] be some production site and i1, . . . , ik for some k ∈ N be its neighbors that can
be reached from j by a transport edge each. Then the rule adjust(j) has the form given
in Figure 15. The left-hand side contains the sites j, i1, . . . , ik and the connecting edges.
Moreover, for each neighbor il there is a set of variables Varl in the left-hand side so that
the actual values are available whenever the rule is applied. Consequently, there is a unique
matching for each environment graph. But to apply the rule, the new distribution ratesd̂ jil for
l ∈ [k] must be chosen or computed. Some possibilities are discussed in the next subsection
where different sets of variables are used.

6.2 Constraints for changing the distribution rates

The simplest possibility is to allow a free choice. Then the only constraint to be considered
is that distribution rates for the site j must sum up to 1. The sets of variables may be empty
in this case.

(constraint 1)
k

∑
l=1

djil = 1

But this is not really a good idea because free choice may lead to quite chaotic processes.
As indicated at the end of Section 3 and the introduction of this section, a much better

idea is to choose the new distribution rates in such a way that the chances for stability grow.
A production process is instable if there is at least one production site at which the quantities
grow beyond any bound. The cause of this effect is that the site gets more delivered than it
redistributes over the time. To avoid the unbounded growing, one may shorten the delivered
quantities by making the distribution rates smaller in inverse proportion to the amount of
material piled up at the sites. The three following constraints are examples how a production
site unit can autonomously control its distribution following this general principle.

The site j may consider the current quantities at the neighbor sites and assume that the
smaller the quantity is, the faster the processing runs. The sets of variables must contain the
quantities accordingly. This idea is reflected in the following constraint:

(constraint 2) d̂jim =
b−qim
k
∑
l=1

(b−qil
)

for m ∈ [k] and some b ∈ R+ with qim < b

The differences b− qim are in converse order to the order of the quantities so that the
larger the quantity is, the smaller the difference grows. The division by the sum makes sure
that the new distribution rates sum up to 1:

k

∑
m=1

d̂ jim =
k

∑
m=1

b−qim
k
∑

l=1
(b−qil)

=

k
∑

m=1
(b−qim)

k
∑

l=1
(b−qil)

= 1

23

Note that the new distribution rates reflect the differences between the current site quan-
tities in lessened form if the upper bound b is chosen larger. We require that b is larger than
max{qil | l ∈ [k]} to avoid that any distribution rate becomes 0.

In the exceptional case that all quantities at neighbor sites are equal, the bound b must
be greater - at least a bit - because otherwise the sum of all differences would be 0 and the
quotient would not be defined.

The reflection of the waiting time becomes more sophisticated if one replaces the quan-
tities in constraint 2 by the quotients of quantities and maximum production rates.

(constraint 3) d̂jim =
b−wim
k
∑
l=1

(b−wil
)

with wim =
qim

maxim
for m ∈ [k] and some b ∈ R+

with wim < b

The latter quotient may be called waiting number because the smallest integer greater
or equal is the minimum number of steps to process the current quantity. Clearly the sets of
variables must contain the quantities and the maximum production rates.

The last explicit example takes into account that it may not always be reasonable to
forget the old distribution totally so that one may like to mix the old rates with new ones. A
weighted average will do this job:

(constraint 4) d̂jim =
r·djim+s·d′jim

r+s for m ∈ [k] and r, s ∈ R+ with r+ s > 0 and

some distribution rates d′
ji1
. . .d′

jik
which may be chosen as one of

the three cases above

Each of the four constraints (and other similar ones) can be used as control condition in
the autonomous unit site(j) after it is enriched by the rule ad just(j). As the control condition
concerns only this rule, it may be placed beside the right-hand side of the rule (cf. Figure 5).

6.3 Example

The production site 4 of sample has the neighbors 2, 3, 6 and 5 and distributes a quarter of
the production rate to each of them due to the distribution matrix (cf. Figures 1 and 4). Let
us assume in addition the following current quantities: q2 = 450, q3 = 300, q5 = 250, and
q6 = 500. Then one can apply the rule adjust(4) using constraint 2 with b = 600. Fig. 16
shows the rule application restricted to the significant part of the network. In Fig. 17 the
same is depicted for constraint 3 with b = 7

2 . While the new distribution rates in the first
case are smaller the larger the quantities are, the second case reflects the waiting numbers
w2 = 3, w3 = 2, w5 = 1, and w6 =

5
2 . While, for example, site 2 gets a larger fraction from

site 4 than site 6 in the first case, it is the other way round in the second case.
The considerations in this section exemplify how communities of autonomous units may

be modified and extended to cover new aspects and features. Concerning the variable dis-
tribution rates, we have taken into account some measures that reflect something like the
waiting time with a look-ahead of 1 (meaning that we access only the information provided
by direct neighbors). In a similar way, one could involve larger look-aheads or criteria other
than waiting time like pheromone traces (cf. [2]). We are also convinced that further princi-
ples of planning in production networks (cf. [1]) can be realized in this way.

24

2:Site

q = 450

3:Site

q = 300

4:Site =⇒

5:Site

q = 250

6:Site

q = 500

1
4

1
4

1
4

1
4

2:Site

q = 450

3:Site

q = 300

4:Site

5:Site

q = 250

6:Site

q = 500

1
6

1
3

7
18

1
9

Fig. 16: Application of rule adjust(4) with constraint 2, with b=600

2:Site

q = 450
max = 150

3:Site

q = 300
max = 150

4:Site =⇒

5:Site

q = 250
max = 250

6:Site

q = 500
max = 200

1
4

1
4

1
4

1
4

2:Site

q = 450
max = 150

3:Site

q = 300
max = 150

4:Site

5:Site

q = 250
max = 250

6:Site

q = 500
max = 200

1
11

3
11

5
11

2
11

Fig. 17: Application of rule adjust(4) with constraint 3, with b = 7
2

7 Conclusion

In this paper, we have modeled and investigated a variant of production networks with dis-
crete production processes. The usual quantitative modeling based on matrices and vec-
tors has been supplemented by a visual modeling employing the rule-based and graph-
transformational framework of communities of autonomous units. It has turned out that the
community version models production networks correctly with respect to their mathemati-
cal description so that all results for one of the models applies to the other and conversely.
Therefore, one gets both: On one hand, one can prove results like the stability of determin-
istic production networks provided that certain systems of linear equations are solvable; on

25

the other hand, the visual simulation is supported. The attempt to bring two styles of model-
ing may be considered as promising. To shed more light on the significance of the approach,
one may investigate the following topics:

1. The stability results may be improved by enlarging the class of production networks
for which sufficient conditions yield stability. And one may also look for necessary
conditions or even proper characterizations.

2. A good motivation to make the distribution rates variable is the chance for more stability.
It would be nice to know whether this works and for which production network and
which variability.

3. To make the model more flexible one may enhance the notion of production networks
by relaxing, modifying or specializing various assumptions like the following:
• There may be lower bounds of input, production and output rates in addition to upper

bounds.
• There may be different kinds of materials and information flows through the network

rather than a single homogeneous kind of quantities.
• There may be particular time conditions for production and transportation at each

site rather than the common-step assumption.
• There may be more information about the production like costs, prices, etc. to refine

the basis for the autonomous decision making and planning at the production sites,
or one may also involve production goals into the consideration.

4. Another possible modification would be to assume that the produced and distributed
material consists of a number of atomic items such that only integer division is possible.
In this case, the graph-transformational model may be particularly suitable as the atomic
items could be represented by atomic graph components explicitly.

We think that communities of autonomous units provide a suitable framework to model
production networks with respect to the points 3 and 4 at least. As the framework is equipped
with a well-defined syntax and semantics, it offers the perspective of further tool support
beyond the visual simulation. For example, it should be possible to employ a verifier like a
model checker, SAT solver or theorem prover eventually to prove properties of production
processes like stability automatically.

Acknowledgements We are grateful to the anonymous reviewers for their valuable comments.

References

1. Argoneto, P., Perrone, G., Renna, P., Lo Nigro, G., Bruccoleri, M., Noto La Diega, S.: Production Plan-
ning in Production Networks: Models for Medium and Short-term Planning. Springer (2008)

2. Armbruster, D., de Beer, C., Freitag, M., Jagalski, T., Ringhofer, C.: Autonomous control of production
networks using a pheromone approach. Physica A 363(1), 104–114 (2006)

3. Armbruster, D., Kaneko, K., Mikhailov, A.S. (eds.): Networks of Interacting Machines: Production Or-
ganization in Complex Industrial Systems and Biological Cells. World Scientific (2006)

4. Corradini, A., Ehrig, H., Heckel, R., Löwe, M., Montanari, U., Rossi, F.: Algebraic approaches to graph
transformation part I: Basic concepts and double pushout approach. In: G. Rozenberg (ed.) Handbook
of Graph Grammars and Computing by Graph Transformation, Vol. 1: Foundations, pp. 163–245. World
Scientific, Singapore (1997)

5. Dashkovskiy, S., Görges, M., Naujok, L.: Local input to state stability of production networks. In:
Proceedings of 2nd International Conference on Dynamics in Logistics (LDIC 2009). Springer, Bremen,
Germany (2009)

6. Dashkovskiy, S., Rüffer, B.S.: Local ISS of large-scale interconnections and estimates for stability re-
gions. Systems and Control Letters 59(3–4), 241–247 (2010)

26

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. (eds.): Fundamentals of Algebraic Graph Transformation.
Springer (2006)

8. Geiß, R., Kroll, M.: GrGen.NET: A fast, expressive, and general purpose graph rewrite tool. In:
A. Schürr, M. Nagl, A. Zündorf (eds.) Proc. 3rd Intl. Workshop on Applications of Graph Transfor-
mation with Industrial Relevance (AGTIVE ’07), Lecture Notes in Computer Science, vol. NN. Springer
(2008)

9. Helbing, D., Lämmer, S.: Supply and production networks: From the bullwhip effect to business cycles.
In: Armbruster et al. [3]

10. Hölscher, K., Klempien-Hinrichs, R., Knirsch, P., Kreowski, H.J., Kuske, S.: Autonomous units: Basic
concepts and semantic foundation. In: M. Hülsmann, K. Windt (eds.) Understanding Autonomous Co-
operation and Control in Logistics – The Impact on Management, Information and Communication and
Material Flow, pp. 103–120. Springer, Berlin Heidelberg New York, USA (2007)

11. Hölscher, K., Kreowski, H.J., Kuske, S.: Autonomous units to model interacting sequential and parallel
processes. Fundamenta Informaticae 92(3), 233–257 (2009)

12. Hülsmann, M., Windt, K. (eds.): Understanding Autonomous Cooperation and Control in Logistics.
Springer (2007)

13. Kreowski, H.J., Kuske, S.: Autonomous units and their semantics – the concurrent case. In: G. Engels,
C. Lewerentz, W. Schäfer, B. Westfechtel (eds.) Graph Transformations and Model-Driven Engineering,
Lecture Notes in Computer Science, vol. 5765 (2010)

14. Scholz-Reiter, B., Mehrsai, A., Görges, M.: Handling the Dynamics in Logistics - Adoption of Dynamic
Behavior and Reduction of Dynamic Effects. Asian International Journal of Science and Technology in
Production and Manufacturing Engineering (AIJSTPME) 2(3), 99–110 (2009)

15. Sontag, E.: Input to state stability: Basic concepts and results. In: P. Nistri, G. Stefani (eds.) Nonlinear
and Optimal Control Theory, pp. 163–220. Springer-Verlag, Berlin (2007)

16. Wiendahl, H.P., Lutz, S.: Production in Networks. Annals of the CIRP- Manufacturing Technology
51(2), 1–14 (2002)

