
Graph multiset transformation: a new framework
for massively parallel computation inspired
by DNA computing

Hans-Jörg Kreowski · Sabine Kuske

© Springer Science+Business Media B.V. 2011

Abstract In this paper, graph multiset transformation is introduced and studied as a novel

type of parallel graph transformation. The basic idea is that graph transformation rules may

be applied to all or at least some members of a multiset of graphs simultaneously providing

a computational step with the possibility of massive parallelism in this way. As a conse-

quence, graph problems in the class NP can be solved by a single computation of

polynomial length for each input graph.

Keywords Graph multiset transformation · DNA computing · Transformation units ·

NP problems · Massive parallelism

1 Introduction

In this paper, a new type of graph transformation, called graph multiset transformation, is

introduced that is inspired by the concepts of genetic algorithms and DNA computing (see,

e.g., Adleman 1994; Fogel 2006; Goldberg 2002; Holland 1975; Păun et al. 1998).

Adleman’s seminal experiment demonstrates how combinatorial problems may be solved

using DNA. Roughly speaking, a tube is filled with certain quantities of properly chosen

DNA strands. Then their reactions according to the Watson–Crick complementarity pro-

duces DNA molecules, a suitable selection of which represents solutions. Similarly, a

genetic algorithm transforms a “population of individuals” step by step into one of “fitter”

individuals by means of “mutation,” “cross-over,” and “selection.” If, for example, the

individuals are solutions of an optimization problem that differ from the optimum, then the

genetic algorithm may yield solutions that are closer to the optimum or even meet it. If one

replaces tubes of molecules and populations of individuals by multisets of graphs and

H.-J. Kreowski · S. Kuske (&)
Department of Computer Science, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany
e-mail: kuske@informatik.uni-bremen.de

H.-J. Kreowski
e-mail: kreo@informatik.uni-bremen.de

123

Nat Comput
DOI 10.1007/s11047-010-9245-6

chemical reactions and genetic operations by rule applications, one gets the concept of

graph multiset transformation.

The basic idea is that graph transformation rules may be applied to all or at least some

members of a multiset of graphs simultaneously providing a computational step with the

possibility of massive parallelism in this way. As a consequence, graph problems in the

class NP can be solved by a single computation of polynomial length for each input graph.

The paper is organized in the following way. The next section provides the prelimi-

naries concerning graphs and rule-based graph transformation. In Sect. 3, simple graph

transformation units are recalled as devices to model and compute graph algorithms and

processes. Section 4 introduces a way to solve decision problems on graphs by means of

terminating units. In particular, a graph-transformational variant of the class NP is defined.

Based on simple and terminating units, graph multiset transformation is proposed as a

computational framework with massive parallelism in Sects. 5 and 7. As a consequence,

NP-problems can be solved in a polynomial number of computational steps. In Sect. 6, we

simulate Adleman’s experiment by means of graph multiset transformation. The Appendix

recalls multisets together with some basic definitions used in this paper. Throughout the

paper, the well-known NP-complete Hamiltonian path problem is discussed as a running

example. It may be noted that the basic ideas of graph multiset transformation have been

sketched in Kreowski (2002) in a draft way and that a short and less complete version of

this paper appeared in Kreowski and Kuske (2008) without proofs.

2 Graphs and rule-based graph transformation

In this section, we recall the basic notions and notations of graphs and rule-based graph

transformation as far as they are needed in this paper. We use directed and edge-labeled

graphs with binary edges.

Let R be a set of labels. A graph over R is a system G = (V, E, s, t, l) where V is a finite

set of nodes, E is a finite set of edges, s; t:E ! V are mappings assigning a source s(e) and
a target t(e) to every edge in E, and l:E ! R is a mapping assigning a label to every edge

in E. An edge e with s(e) = t(e) is called a loop. The components V;E; s; t; and l of G are

also denoted by VG;EG; sG; tG, and lG, respectively. The set of all graphs over R is denoted

by GR: We reserve a specific label � which is omitted in drawings of graphs. In this way,

graphs where all edges are labeled with � may be seen as unlabeled graphs. The sum of the

number of nodes and the number of edges is the size of G, denoted by size(G).
For graphs G;H 2 GR, a graph morphism g:G ! H is a pair of mappings gV :VG ! VH

and gE:EG ! EH that are structure-preserving, i.e., gVðsGðeÞÞ ¼ sHðgEðeÞÞ; gVðtGðeÞÞ ¼
tHðgEðeÞÞ; and lHðgEðeÞÞ ¼ lGðeÞ for all e 2 EG. If the mappings gV and gE are bijective, then
g is an isomorphism, and G and H are called isomorphic. If the mappings gV and gE are

inclusions, then G is called a subgraph of H, denoted by G � H: For a graph morphism

g:G ! H; the image gðGÞ � H of G in H is called a match of G in H.

Example 1 The graph G0 in Fig. 1 has four Hamiltonian paths which are represented by

the graphs H1;H2;H3; and H4.
1 A box h represents a node with an unlabeled loop.

Therefore, G0 has four nodes, four loops and five additional unlabeled edges. The other

graphs are variants of G0. We use ⦿ to represent a begin-node which is a node with a loop

labeled with begin. Analogously, ○ represents an end-node. If one starts in the begin-node
and follows the p-labeled edges, one reaches the end-node in the graphs H1;H2;H3, and

1 A path is called Hamiltonian if it visits every node exactly once.

H.-J. Kreowski, S. Kuske

123

H4. In each case, the sequence of p-edges defines a Hamiltonian path of G0, where the

intermediate nodes have no loops.

If one removes the right vertical edge and the loops at the source and the target of this

edge in the graph G12 in Fig. 2, then one gets the subgraph Z0. One may extend the graph

Z0 by a p-edge and an end-loop to get G123.

There are two graph morphisms from the graph Lrun ¼ ��!h into G12 which map to the

subgraphs of the same form. The construction in Fig. 2 is an example of a rule application

in the following sense.

A rule r ¼ ðL � K � RÞ consists of three graphs L;K;R 2 GR such thatK is a subgraph of

L and R. The components L;K; and R of r are called left-hand side, gluing graph, and right-
hand side, respectively. The application of r ¼ ðL � K � RÞ to a graph G = (V, E, s, t, l)
yields a directly derived graph H and consists of the following three steps.

1. A match g(L) of L in G is chosen subject to the following conditions.

– dangling condition: v 2 gVðVLÞ with sG(e) = v or tG(e) = v for some

e 2 EG � gEðELÞ implies v 2 gVðVKÞ:
– identification condition: gVðvÞ ¼ gVðv0Þ for v, v′ 2 VL implies v = v′ or v, v′ 2 VK

as well as gEðeÞ ¼ gEðe0Þ for e, e′ 2 EL implies e = e′ or e, e′ 2 EK.

2. Now the nodes of gVðVL � VKÞ and the edges of gEðEL � EKÞ are removed yielding

the intermediate graph Z � G:
3. Let d:K ! Z be the restriction of g to K and Z. Then H is constructed as the disjoint

union of Z and R − K where all edges e 2 EZ þ ðER � EKÞ keep their labels and their

sources and targets except for sRðeÞ ¼ v 2 VK or tRðeÞ ¼ v 2 VK which is replaced by

dV(v).

The application of a rule r to a graph G is denoted by G¼)
r

H; and called a direct
derivation. The subscript r may be omitted if it is clear from the context.

The dangling condition requires that nodes to be removed are only incident to edges to

be removed, and guarantees that the removal of L − K from G yields a graph and that the

restriction d of g to K and Z is a graph morphism. One possibility to construct the disjoint

union of Z and R − K is to rename R − K to h(R − K) such that Z \ hðR� KÞ ¼ ; and,

therefore, their union is a disjoint one. In this case, we have Z � H; and the renaming can

be extended to a graph morphism h:R ! H by defining h on K by d. The identification

condition concerns the match only and makes sure that G can be constructed from

d:K ! Z and R − K as H from d and L − K. These constructions are known as so-called

pushouts so that, altogether, a direct derivation is given by a double pushout (cf. Fig. 3).

As the pushouts and hence the rule applications are only unique up to isomorphism, it

makes sense to assume from now on that GR contains the corresponding equivalence

Fig. 2 Two graphs with a
common subgraph

Fig. 1 G0 with all its Hamiltonian paths

Graph multiset transformation

123

classes of graphs and, in this way, abstract graphs rather than concrete ones. However, each

concrete graph is a meaningful representative of its class so that we can go on to deal with

graphs in a concrete way.

The sequential composition of direct derivations d ¼ G0 ¼)
r1

G1 ¼)
r2

� � � ¼)
rn

Gn (n 2 N)

is called a derivation from G0 to Gn. As usual, the derivation from G0 to Gn can also be

denoted by G0 ¼)
n

P
Gn where fr1; . . .; rng � P; or just by G0 ¼)

�
P

Gn: The subscript P may

be omitted if it is clear from the context. The string r1; . . .; rn is the application sequence of
the derivation d.

Example 2 Consider the following two rules

The rule start describes the removal of an unlabeled loop and the addition of a begin-loop
and an end-loop at the same node, which is depicted by . The rule run replaces an

unlabeled edge by a p-edge removing the two loops of the left-hand side and adding an

end-loop at the target node of the right-hand side.

Figure 4 shows all derivations that start in the graph G0 in Fig. 1 and apply the rule start
only once in the beginning (while the rule run is applied repeatedly afterwards). At first,

Fig. 3 Diagram of a double
pushout

Fig. 4 The derivations starting in G0 with one application of start

H.-J. Kreowski, S. Kuske

123

the rule start can be applied to G0 in four ways deriving the four graphs in the second

column from the left of Fig. 4. The graphs in the right-most column of Fig. 4 are

H1;H2;H3; and H4 representing the Hamiltonian paths of G0. They are characterized by the

property that they do not contain any unlabeled loop.

It is not difficult to prove that the Hamiltonian paths of every unlabeled graph (with a

single loop at each node) can be generated in the same way: Apply the rule start once and
then the rule run repeatedly. A path in a derived graph is Hamiltonian if and only if the

graph has no unlabeled loop left.

Given a finite set of rules and a graph G, the number of matches is bounded by a

polynomial in the size of G because the sizes of left-hand sides of rules are bounded by a

constant. Given a match, the check, whether the dangling and the identification condition

hold, and the construction of the directly derived graph is linear in the size of G. Therefore,
polynomial time is needed to find a match and to construct a direct derivation, and there is

a polynomial number of choices at most. Moreover, the size of the resulting graph differs

from the size of the host graph by a constant.

3 Simple graph transformation units

A rule yields a binary relation on graphs and a set of rules a set of derivations. The example

of Hamiltonian paths shows (like many other examples would show) that more features are

needed to model algorithms and processes on graphs in a proper way. In particular one

needs initial graphs to start the derivation process and terminal graphs to stop it. Initial and

terminal graphs may be specified by graph class expressions. Moreover, further control

conditions may be helpful to regulate the derivation process. The notion of simple graph

transformation units encompasses all these features to model and compute relations

between initial and terminal graphs by means of regulated derivations.

3.1 Graph class expressions

A graph class expression may be any syntactic entity X that specifies a class of graphs

SEMðXÞ � GR: A typical example is a subset D � R with SEMðDÞ ¼ GD � GR: Requested,
forbidden, and reduced structures are also frequently used. Let F be a graph. Then SEM
(requested(F)) consists of all graphs G containing a subgraph that is isomorphic to F. And
SEM(forbidden(F)) consists of all graphs G such that there is no subgraph in G that is

isomorphic to F. Another useful type of graph class expressions is given by sets of rules P
where SEM(reduced(P)) contains all P-reduced graphs, i.e., graphs to which none of the

rules in P can be applied. In the examples, we use the constant expression unlabeled
graphs denoting the set of unlabeled graphs each node of which is equipped with a single

unlabeled loop.

3.2 Control conditions

A control condition is any syntactic entity that cuts down the non-determinism of the

derivation process. A typical example is a regular expression over a set of rules (or any

other string-language-defining device). Let C be a regular expression specifying the lan-

guage L(C). Then a derivation with application sequence s is permitted by C if s 2 L(C). In
the following, we consider no other control conditions.

Graph multiset transformation

123

3.3 Simple graph transformation units

A simple graph transformation unit is a system tu = (I, P, C, T), where I and T are graph

class expressions to specify the initial and the terminal graphs respectively, P is a finite set

of rules, and C is a control condition.

Each such transformation unit tu specifies a binary relation

SEMðtuÞ � SEMðIÞ � SEMðTÞ
that contains a pair (G, H) of graphs if and only if there is a derivation G¼)�

P
H permitted

by C.

Example 3 The considerations in Examples 1 and 2 can be summarized by the following

simple graph transformation unit:

HP

initial : unlabeled graphs

rules : start; run

control : start; run�

terminal : forbiddenðhÞ

The initial graphs are unlabeled graphs with a single unlabeled loop at each node. The

rules start and run are given in Example 2, and the control condition is a regular expression

over the set of rules with the sequential composition ; and the Kleene star � (specifying that
a single application of start can be followed by an arbitrary sequence of applications of

run). Graphs derived in this way from initial graphs are accepted as terminal if they do not

contain any unlabeled loop.

In Fig. 4, the initial graph is semantically related to the four terminal graphs—the

rightmost ones. They represent the four Hamiltonian cycles of the initial graph. All other

derived graphs contain some forbidden loop.

3.4 Computation and complexity

Using the effective construction of direct derivations, the relation SEM(tu) of a transfor-

mation unit tu = (I, P, C, T) is recursively enumerable if SEM(I) is recursively enumerable

and SEM(T) and the control condition are decidable. SEM(tu) can be computed as follows:

– Enumerate the graphs of SEM(I).
– For each G 2 SEM(I), enumerate all derivations starting in G together with their

application sequences.

– For each derived graph G; check whether G 2 SEMðTÞ:
– If yes, check whether the respective application sequence belongs to L(C).
– If yes, put ðG;GÞ into SEM(tu).

The assumptions apply to all graph class expressions and control conditions that are

explicitly introduced above.

The time to check whether a graph G belongs to SEMðunlabeled graphsÞ;
SEMðforbiddenðFÞÞ or SEM(reduced(P)) is polynomial in the size of G.

If G¼)k H and k is bounded by a polynomial in the size of G, then the size of H is also

H.-J. Kreowski, S. Kuske

123

bounded by a polynomial in the size of G. Therefore, to check whether H belongs to the

graph SEM(forbidden(F)) or SEM(reduced(P)) takes also time that is polynomial in the

size of G. Finally, the construction of the application sequence can be done together with

the derivation without extra effort and its length coincides with the length of the derivation.

The membership problem of regular expressions is linear in this length so that it is

polynomial in the size of G.
The notion of a transformation unit has been introduced in Kreowski andKuske (1999a, b)

and in Kreowski et al. (1997) as a modeling and structuring concept for graph transformation

systems. Here the structuring component is omitted and the computational aspect is

emphasized. In addition to the cited papers, one can find more about graph class expressions

and control conditions in Kuske (2000a, b). Habel and Plump (2001) have shown that a

similar kind of graph transformation approach is computationally complete.

4 Solving decision problems

A simple graph transformation unit is terminating if, for every initial graph, the number of

derivations starting in this graph is finite. In this case, all these derivations can be constructed

effectively, and it can be checked whether any of them is permitted by the control condition

and derives a terminal graph. This means that a terminating unit can be re-interpreted as a

solution of a decision problem on the initial graphs. If the lengths of derivations are bounded

by a polynomial in addition, one gets a graph-transformational variant of the class NP of

decision problems with nondeterministic polynomial solutions.

Definition 1 Let tu = (I, P, C, T) be a transformation unit. tu is terminating if, for each

initial graph G 2 SEM(I), there is an upper bound bðGÞ 2 N such that n	 bðGÞ for each
derivation G¼)n

P
G0: The function b : SEMðIÞ �! N given in this way is called termination

bound.
A well-known sufficient condition for termination can be used in the framework of

graph transformation units.

Observation 2 Let tu = (I, P, C, T) be a transformation unit. Let val : GR �! N be a

valuation function with val(G′) [val(G´´) for each direct derivation G0 ¼)
P

G00: Then tu is

terminating.

Proof Consider a derivation G0 ¼)
P

G1 ¼)
P

� � � ¼)
P

Gn with G0 2 SEM(I). Due to the

property of val, this yields valðG0Þ[valðG1Þ[� � � [valðGnÞ and, therefore,

n	 valðG0Þ: In other words, val is a termination bound for tu. h

Definition 3 Let tu = (I, P, C, T) be a terminating transformation unit with the termi-

nation bound b : SEMðIÞ ! N:

1. A function D : SEMðIÞ ! ftrue; falseg is called a decision problem.
2. tu solves D if the following holds for all G 2 SEM(I):

DðGÞ ¼ true if and only if ðG;GÞ 2 SEMðtuÞ for some G 2 SEMðTÞ:
This is denoted by COMP(tu) = D.
3. tu is called polynomial if there is a polynomial p such that, for all

G 2 SEMðIÞ; bðGÞ	 pðsizeðGÞÞ and the membership problems of SEM(I) as well as

of SEM(T) are polynomial.

Graph multiset transformation

123

4. The class of all decision problems that are solved by polynomial transformation units

is denoted by NPGT.

Remarks

1. If tu is terminating, there is only a finite number of derivations G¼)�
P

G0 for each

G 2 SEM(I). Hence, it can be checked effectively whether a terminal graph is derived

by a permitted derivation or not.

2. The computational framework given by terminating and polynomial transformation

units in particular is still nondeterministic because there may be a derivation G¼)�
P

G0

with G′ 2 SEM(reduced(P)), but G0 62 SEMðTÞ, and also a permitted derivation

G¼)�
P

G with G 2 SEMðTÞ: In the polynomial case, it takes polynomial time to build

up a single derivation and to check whether its derived graph is terminal or not

(cf. 3.4). Both points together justify the denotation NPGT.

The same reasoning shows that a decision problem D : SEMðIÞ ! ftrue; falseg which

is solved by a polynomial transformation unit belongs to the class of NP-problems if one

chooses a proper string representation of graphs. Also the converse inclusion holds because

one can simulate the computational steps of a Turing machine by the application of graph

transformation rules. This consideration yields the following result.

Observation 4 NPGT = NP.

Proof Let D 2 NPGT and tu be a polynomial transformation unit solving D. Then each

derivation has polynomial length, each step is constructed in polynomial time, and the

number of choices per step is polynomially bounded. Moreover, the membership problem

of SEM(I), SEM(T) and of L(C) is decidable in polynomial time. All facts remain true if

one chooses proper string representations of the initial graphs like the sequences of nodes,

edges, sources, and targets. This yields D 2 NP.
Conversely, let D 2 NP and TM = (Z, I, d, s0, F) with d � Z � ðI [fhgÞ�

Z � ðI [fhgÞ � fn; l; rg be a Turing machine that solves D in a polynomial number of

steps. Then TM is simulated by the transformation unit tu(TM) = (init(TM), P(TM), free,
terminal(TM)) the components of which are defined as follows.

1. The graph class expression init(TM) describes the class of graphs each member of

which is a disjoint union of the two graphs G(TM, s0) and w
 for some w 2 I�.
The graph G(TM, s0) is the state graph of TM with s0 as current state:

GðTM; s0Þ ¼ ðZ; d [fs0; currg [F; s; t; lÞ
with sjd ¼ proj1; tjd ¼ proj3; ljd ¼ hproj2; proj4; proj5i; sðs0Þ ¼ tðs0Þ ¼ s0 ¼ sðcurrÞ ¼
tðcurrÞ; sðs00Þ ¼ tðs00Þ ¼ s00 for all s00 2 F, and lðs0Þ ¼ init; lðcurrÞ ¼ curr; and lðs00Þ ¼ fin
for all s00 2 F. This means that each state transition (s, x, s′, y, m) is represented by an edge

with source s, target s′ and (x, y, m) as label. Moreover, there are some loops indicating the

initial state, the current state being initially the initial one, and the terminal states. The

graph w
 for w ¼ a1 . . . an 2 I� represents the Turing band inscribed initially with w 6¼ k.
Moreover, there are two loops indicating the left end and the right end of the band, and

there is a further edge that plays the role of the read/write-head:

w
 ¼ ðf0g [½n�; ½n� [fg; s
; t
; l
Þ

H.-J. Kreowski, S. Kuske

123

with

– s
(i) = i − 1, t
(i) = i and l
(i) = ai for i 2 [n],
– s
ð\Þ ¼ t
ð\Þ ¼ 0; l
ð\Þ ¼ \; s
ð[Þ ¼ t
ð[Þ ¼ n; l
ð[Þ ¼ [;
– s
ðhÞ ¼ 0; t
ðhÞ ¼ 1 and l
ðhÞ ¼ head:

For w ¼ k we use the graph h
:
2. P(TM) contains the rules given in Fig. 5. Obviously, an application of a rule mimics a

computational step of TM moving from the current state to a follow-up state, reading

the symbol a and writing b at the head, and keeping the head or moving to the next

symbol to the right or to the left. If one of the end markers is reached the band is

extended by the extra symbol h:
3. free is a control condition that does not invoke any restriction. As a regular expression,

it may be chosen as the arbitrary iteration of the alternative composition of all rules.

4. The graph class expression terminal(TM) specifies the class of all graphs with some

node that is incident with a curr-loop as well as a fin-loop.

If DðwÞ ¼ true; then TM runs on w as initial inscription of the band from the initial state

to some final state in a polynomial number of steps. Starting in G(TM, s0) + w
, each step

of TM corresponds to a rule application in tu(TM) reaching a graph where the current-state

loop is attached to a terminal state. Conversely, a derivation from G(TM, s0) + w
 for some

Fig. 5 The rules of tu(TM)

Graph multiset transformation

123

w 2 I� to a terminal graph corresponds to a run of TM on w with the same number of steps.

As TM is polynomial, tu(TM) is also polynomial. Consequently, one gets D 2 NPGT up to

the representation of w by G(TM, s0) + w
. h

Example 4 The rules start and run (cf. Example 2) decrease the number of unlabeled loops

by 1 whenever one of them is applied. Therefore, the unit HP (cf. Example 3) is terminating

due to Observation 2. Because HP finds all existing Hamiltonian paths of every initial graph

as terminal graphs, HP solves the Hamiltonian path problem. Moreover the termination

bound is linear so that the problem is explicitly shown to be a member of NPGT.

Termination has been studied in the context of graph transformation for example by

Plump (1998), Godard et al. (2002), and by Ehrig et al. (2005).

5 Graph multiset transformation

In this section, graph multiset transformation is introduced employing ordinary graph

transformation as basis. The underlying data structures are finite multisets of graphs.2 In

each derivation step, some of the graphs of a given actual multiset are directly derived into

graphs by applying ordinary rules, yielding a new actual multiset where the deriving graphs

are replaced by the derived ones. This idea is formalized in Definition 5. A derivation of

multisets of graphs corresponds to a set of simultaneous derivations of graphs (cf. Con-

struction 6). In this sense, graph multiset transformation is a framework for massively

parallel computation. In particular, one can show that NP-problems can be solved by graph

multiset transformation in a polynomial number of steps.

Definition 5 Let P be a set of rules. Let M : GR ! N be a finite multiset of graphs and

M0 	M a sub-multiset of M. Let G1. . .Gm 2 PermðM0Þ be one of the sequential repre-

sentations of M′ and G0
1. . .G

0
m 2 G�

R be another sequence of graphs with Gi ¼)
P

G0
i for all

i ¼ 1; . . .;m. Let M00 ¼ ½G0
1. . .G

0
m� be the multiset of G0

1. . .G
0
m.

Then M directly derives the graph multiset M ¼ M �M0 þM00; denoted by M¼)
P

M:

A sequence M0 ¼)
P

M1 ¼)
P

� � � ¼)
P

Mn of direct derivations of multisets of graphs

defines a (graph multiset) derivation from M ¼ M0 to M ¼ Mn of length n in the usual

way. Such derivations are shortly denoted by M¼)n
P

M or M¼)�
P

M: The subscript P may

be omitted if it is clear from the context.

Remarks

1. It should be noted that the derived multiset does not depend on the choice of the

sequential representation of M′ because each permutation of the sequence G1. . .Gn

corresponds to the respective permutation of G0
1. . .G

0
n and the multisets of sequences

are invariant with respect to permutation.

2. The sub-multiset M0 	M in a direct derivation is called left-active and M00 	M right-
active respectively.

3. Let Der ¼ ðM0 ¼)
P

M1 ¼)
P

� � � ¼)
P

MnÞ be a graph multiset derivation.

For i ¼ 1; . . .; n� 1, let M0
i 	Mi be the left-active sub-multiset of the direct derivation

Mi ¼)
P

Miþ1 in Der and let M00
i 	Mi be the right-active sub-multiset of the direct

2 The definitions concerning multisets are given in the Appendix.

H.-J. Kreowski, S. Kuske

123

derivation Mi�1 ¼)
P

Mi in Der. Then Der is called proactive if M00
i 	M0

i for

i ¼ 1; . . .; n� 1: This means that a graph that is not transformed in some step is

kept invariant in all further steps.

4. The left-active sub-multiset M′ of a direct derivation M¼)
P

M may be empty so that

M00 = 0 and M ¼ M: Such a direct derivation is called inactive. A derivation without

inactive steps is called undelayed.

Multiset transformation as introduced is not restricted to graph transformation as

underlying computational framework. It would work for any binary relation on some set of

configurations where the relation provides computational steps. Nevertheless, we are

interested in a graph transformational counterpart to DNA computing. Therefore, we focus

on graphs as molecules and rule applications as chemical reactions.

Example 5 The six derivations in Fig. 4 can be turned into the graph multiset derivation

in Fig. 6 if one considers the columns of graphs as multisets and adds copies of the second

graph and the fourth graph of the last-but-one column to the last column. The derivation is

proactive because no graph is kept invariant in the first three steps.

It is not difficult to see that graph multiset derivations correspond to derivations of the

graphs in the multisets and that the lengths of graph multiset derivations are bounded if and

only if the lengths of graph derivations are bounded. The correspondence is based on two

constructions: Each graph multiset derivation induces a multiset of derivations and the

other way round.

Construction 6

1. LetM¼)k
P

M be a graph multiset derivation and G1. . .Gn be a sequential representation

of M, i.e., G1. . .Gn 2 PermðMÞ. Then there is a multiset of derivations

Fig. 6 A graph multiset derivation

Graph multiset transformation

123

MoDðM¼)k
P

MÞ: ½G1 ¼)
k1

P
G1. . .Gn ¼)

kn

P
Gn� with ki 	 k for each i ¼ 1; . . .; n such that

½G1. . .Gn� ¼ M: Moreover, k	 Pn
i¼1 ki if M¼)k

P
M is undelayed. MoDðM¼)k

P
MÞ can

be constructed inductively as follows.

Induction base: M¼)0
P

M implies M ¼ M yielding the derivations

Gi ¼)
0

P
Gi ¼ Gi

for all i ¼ 1; . . .; n with ½G1. . .Gn� ¼ ½G1. . .Gn� ¼ M ¼ M:

Induction step: Consider M¼)kþ1

P
M which decomposes into M¼)k

P
M̂ and M̂¼)

P
M: By

induction hypothesis, one gets derivations Gi ¼)
ki

P
Ĝi with ki 	 k for all i ¼ 1; . . .; n and

½Ĝ1. . .Ĝn� ¼ M̂: Moreover, there are sub-multisets M0 	 M̂ and M00 	M with

M ¼ M̂ �M0 þM00:Without loss of generality, one can assume thatM′ is sequentially

represented by Ĝ1. . .Ĝm for some m	 n: Then there are direct derivations Ĝi ¼)
P

G00
i

for i ¼ 1; . . .;m with ½G00
1 . . .G

00
m� ¼ M00. Consequently, one can construct the following

derivations: Gi ¼)
ki

P
Ĝi ¼)

P
G00

i ¼ Gi for i ¼ 1; . . .;m and Gi ¼)
ki

P
Ĝi ¼ Gi for

i ¼ mþ 1; . . .; n with lengths not longer than k + 1 and

½G1. . .Gn� ¼ ½G00
1 . . .G

00
mĜmþ1. . .Ĝn� ¼ M̂ �M0 þM00 ¼ M:

This completes the construction, i.e., the resulting multiset of derivations is equal to

½G1 ¼)
k0
1

P
G1. . .Gn ¼)

k0n

P
Gn�

where k0i ¼ ki þ 1 for i ¼ 1; . . .;m and k0i ¼ ki for i ¼ mþ 1; . . .; n:

Moreover, if M¼)kþ1
M is undelayed, then m� 1; M¼)k

P
M̂ is undelayed, and by

induction hypothesis k	 Pn
i¼1 ki: Hence, k þ 1	 Pn

i¼1 ki þ 1	 Pn
i¼1 ki þ m ¼Pn

i¼1 k
0
i:

2. Let DER be a multiset of derivations and let

G1 ¼)
k1

P
G1. . .Gn ¼)

kn
Gn 2 PermðDERÞ

be a sequential representation of DER. Then there is a graph multiset derivation

gmdðDERÞ: ½G1. . .Gn� ¼)
k

P
½G1. . .Gn� with k ¼ maxfki j i ¼ 1; . . .; ng; which can be

constructed as follows.

Let Gi ¼ Gi0 ¼)
P

Gi1 ¼)
P

� � � ¼)
P

¼ Giki ¼ Gi for i ¼ 1; . . .; n be the given derivations.

Let Gij ¼ Giki for i ¼ 1; . . .; n and j ¼ ki þ 1; . . .; k: Then this induces

gmdðDERÞ : ½G10. . .Gn0� ¼)
P
½G11. . .Gn1� ¼)

P
� � � ¼)

P
½G1k. . .Gnk�

where,

– ½G10. . .Gn0� ¼ ½G1. . .Gn�;
– ½G1k. . .Gnk� ¼ ½G1k1 . . .Gnkn � ¼ ½G1. . .Gn�; and
– for j ¼ 1; . . .; k; the direct graph multiset derivation

H.-J. Kreowski, S. Kuske

123

½G1ðj�1Þ. . .Gnðj�1Þ� ¼)
P
½G1j. . .Gnj�

is defined by the direct derivations G1ðj�1Þ ¼)
P

Gij for i ¼ 1; . . .; n and j	 ki:

Example 6 Let Der0 be the graph multiset derivation in Fig. 6. Then the multiset of

derivations MoD(Der0) consists of the six derivations in Fig. 4. Let the (multi-)set of these

derivations be denoted by DER0. Then the induced graph multiset derivation gmd(DER0) is

the one in Fig. 6. Besides Der0, there are many other graph multiset derivations with the

same multiset of derivations. For instance, one may replace the last step in Fig. 6 by the

derivation in Fig. 7, which is not proactive, in particular. If the resulting derivation is

denoted by Der1, then MoDðDer1Þ ¼ DER0.

Observation 7 Let DER be a multiset of derivations and Der be a graph multiset deri-

vation. Then the following properties hold.

1. MoD(gmd(DER)) = DER,
2. in particular, MoD(gmd(MoD(Der))) = MoD(Der),
3. gmd(DER) is proactive,
4. in particular, gmd(MoD(Der)) is proactive,
5. if Der is proactive, then Der = gmd(MoD(Der)).

Proof

1. Let G1 ¼)
k1

P
G1. . .Gn ¼)

kn

P
Gn 2 PermðDERÞ: Let max ¼ maxfki j i ¼ 1; . . .; ng: The

statement is proved by induction on max.

Induction base: max ¼ 0 implies ki ¼ 0 and Gi ¼ Gi for all i ¼ 1; . . .; n: Hence,

gmdðDERÞ ¼ ½G1. . .Gn� ¼)
0

P
½G1. . .Gn� ¼ ½G1. . .Gn� implying

Fig. 7 A graph multiset
derivation that is not proactive

Graph multiset transformation

123

MoDðgmdðDERÞÞ ¼ ½G1 ¼)
0

P
G1 ¼ G1. . .Gn ¼)

0

P
Gn ¼ Gn�

by definition of gmd and MoD. This proves DER = MoD(gmd(DER)) for k ¼ 0.

Induction step: Consider max ¼ k þ 1: For i ¼ 1; . . .; n; let ðGi ¼)
ki

P
GiÞ ¼

ðGi ¼)
k

P
G0

i ¼)
P

GiÞ for ki = k + 1 and k0i ¼ ki and G0
i ¼ Gi for ki 	 k: By induction

hypothesis, one gets MoD(gmd(DER′)) = DER′ for DER0 ¼ ½G1 ¼)
k0
1

P
G0

1. . .Gn ¼)
k0n

P
G0

n�
with k0i ¼ k in the case of ki = k + 1. The derivation gmdðDER0Þ ¼
ð½G1. . .Gn� ¼)

k

P
½G0

1. . .G
0
n�Þ can be extended by

½G0
1. . .G

0
n� ¼)

P
½G0

1. . .G
0
n�

using the direct derivations G0
i ¼)

P
Gi for i ¼ 1; . . .; n with ki = k + 1. The resulting

derivation is gmd(DER) according to the construction of gmd, and MoD(gmd(DER))

contains the derivations Gi ¼)
k

P
G0

i ¼)
P

Gi for ki = k + 1 and Gi ¼)
ki

P
G0

i ¼ Gi otherwise

proving the statement 1 for k + 1 if it holds for k.

2. Statement 2 is a special case of statement 1.

3. If DER contains a derivation Gi0 ¼)
P

Gi1 ¼)
P

� � � ¼)
P

Giki ; then gmd(DER) uses ki rule

applications in the first ki steps in this order. If ki is not the maximum length in DER,
then Giki is kept invariant in all further steps. In other words, gmd(DER) is proactive.

4. Statement 4 is a special case of statement 3.

5. Consider Der ¼ ðM¼)k
P

MÞ and G1. . .Gn 2 PermðMÞ: The statement is proved by

induction on k.
Induction base: k ¼ 0 implies M ¼ M: Therefore,

MoDðDerÞ ¼ ½G1 ¼)
0

P
G1. . .Gn ¼)

0

P
Gn�

and gmdðMoDðDerÞÞ ¼ ðM ¼ ½G1. . .Gn� ¼)
0

P
½G1. . .Gn� ¼ M ¼ MÞ proving the state-

ment for k = 0.

Induction step: Der ¼ ðM¼)kþ1

P
MÞ ¼ ðM¼)k

P
M̂¼)

P
MÞ: Because Der is proactive,

M¼)k
P

M̂ is proactive as initial section, too. By induction hypothesis, one gets

gmdðMoDðM¼)k
P

M̂ÞÞ ¼ ðM¼)k
P

M̂Þ. Let M0 	 M̂ be left-active and M00 	M be right-

active with respect to M̂¼)
P

M: Let G0
1. . .G

0
m 2 PermðM0Þ and G0

j ¼)
P

G00
j for

j ¼ 1; . . .;m the respective direct derivations. Let MoDðM¼)k
P

M̂Þ ¼ ½G1 ¼)
k1

P

Ĝ1. . .Gn ¼)
kn

P
Ĝn�: Without loss of generality, one may assume that the permutation

is chosen in such a way that G0
1. . .G

0
m ¼ Ĝ1. . .Ĝm: Then, by construction, MoD(Der)

contains the derivations Gi ¼)
k

P
Ĝi ¼ G0

i ¼)
P

G00
i ¼ Gi for i ¼ 1; . . .;m and

Gi ¼)
ki

P
Ĝi ¼ Gi for i ¼ mþ 1; . . .; n: Note that ki = k for i ¼ 1; . . .;m because of

H.-J. Kreowski, S. Kuske

123

the assumed proactivity. It follows that gmdðMoDðDerÞÞ ¼ ðM ¼ ½G1. . .Gn�
¼)kþ1

P
½G1. . .Gn� ¼ MÞ ¼ Der proving the statement for k + 1 if it holds for k. h

The construction of a multiset of derivations from a derivation of multisets of graphs

and vice versa is mainly used to compare the two kinds of computation given by the two

kinds of derivations. We do not claim that the multiset of derivations has a DNA analogon

of any kind. In particular, the synchronization of the derivation can be done (and is done)

step by step without taking any reaction speed into account. Observation 7 means, in

particular, that graph multiset transformation is a kind of parallel graph transformation that

has the same termination properties as ordinary graph transformation discussed above if

one considers proactive derivations. Therefore, graph multiset transformation can be used

as a computational framework similarly to graph transformation. In particular, a termi-

nating transformation unit can solve a decision problem on its initial graphs by means of

graph multiset transformation. The computation starts with multiple copies of an initial

graph and yields TRUE if some terminal graph occurs in one of the derived multisets. Using

polynomial transformation units, the lengths of proactive graph multiset derivations are

polynomially bounded and TRUE is computed in a single derivation with high probability if

the multiplicity of the initial graph is chosen large enough.

Definition 8 Let tu = (I, P, C, T) be a terminating transformation unit. Let

D : SEMðIÞ ! true; falsef g be a decision problem. Then tu computes D by graph multiset
transformation (GMST) if the following holds.

For each G 2 SEM(I), there is a proactive graph multiset derivation

Der ¼ ðn � ½G� ¼)�
P

MÞ with initial multiplicity n for some n 2 N so that some underlying

derivation G¼)�
P

G 2 MoDðDerÞ is permitted by C with G 2 carðMÞ \ SEMðTÞ if and

only if DðGÞ ¼ true:

Remarks

1. If tu computes D by graph multiset transformation, then this may be denoted by

D = COMPGMST(tu).
2. PGMST denotes the set of all decision problems that are computed via graph multiset

transformation by polynomial transformation units.

3. If tu is polynomial and G an initial graph, then the number of derivations starting in G
is bounded by a number exponential in the size of G so that—in general—there is no

feasible way to check all of them sequentially.

4. If the initial multiplicity is 1, then there is no difference between graph transformation

and graph multiset transformation because the singleton x and the multiset [x] with the

single element x provide the same information—for example the same nondetermin-

ism if x is a derivation.

5. If the multiplicity n of G is chosen large and the multiset derivation

Der ¼ ðn � ½G� ¼)�
P

MÞ

is long, then the probability is high that some successful derivation starting in graph G is in

MoD(Der). Therefore the probability is high to find the proper value of D(G) in a single

graph multiset derivation with a polynomial number of steps. This justifies the denotation

PGMST.

Graph multiset transformation

123

6. To make this more precise, let N be the number of derivations G¼)� H that cannot be

prolonged and K the number of successful derivations. Then the probability that a

single derivation out of the N ones is successful is p1 ¼ K
N : If Der cannot be prolonged,

then MoD(Der) contains n test derivations that are constructed independently of each

other so that one could construct them one after the other and number them from 1 to n
without loss of information. Let pi denote the probability that the derivations 1 to i
contain a successful derivation. Then the derivation i + 1 improves the chance to get a

successful one by pið1� piÞ yielding piþ1 ¼ pi þ pið1� piÞ: By induction, one gets for
1	 i	 n; n 2 N

pi ¼
Xi�1

j¼0

K

N
� N � K

N

� �j

:

These are the finite prefixes of a geometric series with the constant ratio N�K
N so that a well-

known fact and a bit of arithmetic leads to

pi ¼ K

N
� 1�

N�K
N

� �i
1� N�K

N

¼ 1� N � K

N

� �i

:

This means, in particular, that the sequence ðpiÞi� 1 converges against 1. In other words, a

graph multiset derivation finds a successful derivation with arbitrarily high probability that

is the better the larger the initial multiplicity is. The case where none of the N possible

derivations is successful (i.e. DðGÞ ¼ false) can be treated similarly.

As a first result on polynomial graph multiset transformation and as the main result of

this section, one can show that the classes NPGT and PGMST coincide. Unfortunately, this

is not a solution of the P = NP-problem because the class PGMST relies on massive

parallelism. The equality of the classes NPGT and PGMST is based on the following

observation.

Observation 9 Let tu be a polynomial transformation unit. Then COMP(tu)
= COMPGMST(tu).

Proof Let tu = (I, P, C, T) be a polynomial graph transformation unit and let G 2 SEM(I)
such that COMPðtuÞðGÞ ¼ true: Then by definition there is a derivation

der ¼ ðG ¼ G0 ¼)
P

G1 ¼)
P

� � � ¼)
P

GnÞ with Gn 2 SEM(T) that is permitted by C. This

induces the graph multiset derivation Der ¼ ð½G� ¼ ½G0� ¼)
P
½G1� ¼)

P
� � � ¼)

P
½Gn�Þ with der

2 MoD(Der) = [der] such that COMPGMSTðtuÞðGÞ ¼ true: If, conversely,

COMPGMSTðtuÞðGÞ ¼ true; then by definition there are a graph multiset derivation

Der ¼ ðn � ½G� ¼)�
P

MÞ and a derivation der ¼ ðG¼)�
P

GÞ 2 MoDðDerÞ which is permitted

by C with G 2 carðMÞ \ SEMðTÞ: The derivation der yields COMPðtuÞðGÞ ¼ true such

that, all together, COMP(tu) = COMPGMST(tu). h

From this observation it follows that the decision problems in NPGT are the same as

those in PGMST.

Corollary 10 NPGT = PGMST.

Proof D 2 NPGT if and only if there is a polynomial graph transformation unit

tu = (I, P, C, T) with D = COMP(tu). By Observation 9 D = COMPGMST(tu). This is in
turn the case if and only if D 2 PGMST. Hence, NPGT = PGMST. h

H.-J. Kreowski, S. Kuske

123

Example 7 Based on the unit HP in Example 3 of Sect. 3, Figure 8 shows a graph multiset

derivation that starts with two copies of G0. In the first step, the rule start is applied to

the left upper node of both copies. There is only one possible match in each case exept for

the third step where run is applied to the right vertical edge in the upper graph and to the

diagonal edge in the lower graph. In the following steps, run is applied as long as possible.

The horizontal rows of graphs represent the underlying derivations which are both per-

mitted. The derived (multi-)set contains two graphs of which one graph is terminal proving

that COMPGMSTðHPÞðG0Þ ¼ true:
The derivation in Fig. 6 yields the same result as it covers the one in Fig. 8. In contrast

to that, the derivation in Fig. 9 fails because both derived graphs are not terminal.

The section is closed by a more explicit construction of the computations that solve

decision problems by graph multiset transformation. To keep track of underlying deriva-

tions that are permitted by the control condition, a finite automaton is used. Moreover, we

assume that terminal graphs are reduced. Therefore, the check for terminality can be

postponed until a derivation cannot be prolonged.

Construction 11 Let tu = (I, P, C, T) be a terminating transformation unit with

SEMðTÞ � reducedðPÞ: Let A = (S, P, d, s0, F) be a finite automaton with L(A) = L(C)
where P is the input alphabet.

As underlying data structures, configurations of the form ðM¼)�
P

M;W ;wÞ with

W 2 PermðMÞ and w 2 S� are used. In addition, one may assume length(W) = length (w) so
that each copy of each graph in M is associated with a state of A. Given an initial graph G,
a computation can be constructed inductively in the following way.

Induction base: Choose n, and consider ðn � ½G� ¼)0
P

n � ½G�;Gn; sn0Þ as start configuration.
Induction hypothesis: Assume that a configuration

ðn � ½G� ¼)k
P

M̂; Ĝ1. . .Ĝn; s1. . .snÞ

is already constructed.

Fig. 8 A graph multiset derivation with terminal graphs

Fig. 9 A graph multiset
derivation without terminal
graphs

Graph multiset transformation

123

Induction step: If possible, then choose for i ¼ 1; . . .; n; Ĝi ¼)
r

Gi with some

si 2 dðsi; rÞ: Otherwise, let Gi ¼ Ĝi and si ¼ si: Then ½Ĝ1. . .Ĝn� ¼)
P
½Gi. . .Gn� is a

direct derivation giving rise to the follow-up configuration

ðn � ½G� ¼)k
P

M̂¼)
P
½G1. . .Gn�;G1. . .Gn; s1. . .snÞ:

The construction can be terminated if a configuration

ðn � ½G� ¼)l
P

M;G1. . .Gn; s1. . .snÞ

is reached such that there is no Gi ¼)
r

Gi: Consequently, all follow-up configurations

remain unchanged. Such a configuration is reached eventually because the transformation

unit tu is terminating.

Observation 12 Let tu = (I, P, C, T) be a terminating transformation unit with

SEMðTÞ � reducedðPÞ: Let A = (S, P, d, s0, F) be a finite automaton with L(A) = L(C). Let
D = COMPGMST(tu). Then the following statements hold.

1. Let ðn � ½G� ¼)k
P

M;G1. . .Gn; s1. . .snÞ be a configuration constructed inductively

according to Construction 11. Let, for i ¼ 1; . . .; n; ui be the application sequence of

the underlying derivation G¼)ki
P

Gi: Then si 2 d�ðs0; uiÞ:
2. Let ðn � ½G� ¼)�

P
M;G1. . .Gn; s1. . .snÞ be a terminated configuration for some graph

G 2 SEM (I) with Gi 2 SEMðTÞ and si 2 F for some i ¼ 1; . . .; n: Then DðGÞ ¼ true:
3. If DðGÞ ¼ true; then there is a terminated configuration of the form

ð1 � ½G� ¼)� ð1 � ½G�;G; sÞ for some G 2 SEMðTÞ and s 2 F.

Proof

1. Statement 1 is proved by induction on k.

Induction base: ðn � ½G� ¼)0
P

M;G1. . .Gn; s1. . .snÞ implies

M ¼ M;G1 ¼ � � � ¼ Gn ¼ G; and s1 ¼ � � � ¼ sn ¼ s0:

Then ðG¼)0
P

GÞ is the only derivation in MoDðn � ½G� ¼)0
P

MÞ with application sequence k

such that s0 2 d�ðs0; kÞ ¼ fs0g:

Induction step: ðn � ½G� ¼)kþ1

P
M;G1. . .Gn; s1. . .snÞ is obtained from

ðn � ½G� ¼)k
P

M̂; Ĝ1. . .Ĝn; s1. . .snÞ and M̂¼)
P

M

where Ĝi ¼)
ri

Gi is used with si 2 dðsi; riÞ if possible, and Gi ¼ Gi and si ¼ si otherwise.

By induction hypothesis, one knows that si 2 d�ðs0; uiÞ where ui is the application

sequence of the derivation G¼)ki
P

Ĝi 2 MoDðn � ½G� ¼)k
P

M̂Þ for each i ¼ 1; . . .; n: Then the

derivation of MoDðn � ½G� ¼)kþ1

P
MÞ has the following form for each i ¼ 1; . . .; n:

Gi ¼)
ki

P
Ĝi ¼)

ri
Gi with application sequence uiri or Gi ¼)

ki

P
Ĝi ¼ Gi with application

H.-J. Kreowski, S. Kuske

123

sequence ui. In the first case, one gets si 2 dðsi; riÞ and si 2 d�ðs0; uiÞ which implies

si 2 d�ðs0; uiriÞ: And in the second case, one gets si ¼ si 2 d�ðs0; uiÞ: Both together prove

statement 1 for k + 1 if it holds for k.

2. Let G¼)ki
P

Gi with G 2 SEMðIÞ;Gi 2 SEMðTÞ and si 2 F be a derivation of

MoDðn � ½G� ¼)�
P

MÞ: If the given configuration is terminated, then Gi 2 reducedðPÞ for
all i ¼ 1; . . .; n: Due to statement 1, si 2 d�ðs0; uiÞ for the application sequence of

G¼)ki
P

Gi meaning that ui 2 L(A)= L(C) and that, therefore, the derivation is permitted

by C. Consequently, DðGÞ ¼ true:
3. By assumption and Corollary 10, D 2 PGMST ¼ NPGT : Hence, DðGÞ ¼ true for some

G 2 SEM(I) implies the existence of a derivation G¼)�
P

G with

G 2 reducedðPÞ \ SEMðTÞ
permitted by C. The latter means that d�ðs0; uÞ \ F 6¼ ; if u is the application sequence
of G¼)�

P
G: It remains to show the following: Let G¼)�

P
G0 be a derivation with

application sequence u and G 2 SEM(I) such that s 2 d�(s0, u) for some s 2 S. Then

there is a configuration ð1 � ½G� ¼)�
P

1 � ½G0�;G0; sÞ: This is proved by induction on the

length of G¼)�
P

G0:

Induction base: G¼)0
P

G0 implies G′ = G such that ð1 � ½G� ¼)0
P

1� ½G� ¼ 1 � ½G0�;G0; s0Þ
proves the statement for this case.

Induction step: G¼)kþ1

P
G0 with application sequence u decomposes into

G¼)k
P

G00 ¼)
r

G0

with u = u′r where u′ is the application sequence of G¼)k
P

G00: As s 2 d�(s0, u′r) for some

s 2 S there must be a state s′ 2 d�(s0, u′) such that s 2 d(s′, r). Hence, by induction

hypothesis, one gets ð1 � ½G� ¼)k
P

1 � ½G00�;G00; s0Þ; and by Construction 11, this yields the

configuration ð1 � ½G� ¼)k
P

1 � ½G00� ¼)
P

1 � ½G0�;G0; sÞ:

6 Adleman’s experiment

Adleman’s famous and seminal experiment (Adleman 1994) can be mimicked by means of

graph multiset transformation illustrating how the experiment inspired the presented

approach.

Consider some simple directed graph G ¼ ðV ;EÞ with a finite set of nodes V and a set of

edges E � V � V as well as two distinguished nodes begin and end.
Let s(v) = l(v)r(v) 2 fA; T ; C; Gg� be a single-stranded DNA sequence for each v 2 V

so that the lengths of all l(v) and r(v) are equal and the left and right sections identify the

nodes, i.e., v ≠ v′ implies l(v) ≠ l(v′) and r(v) ≠ r(v′). Moreover, let X(v) and XðvÞ be two

extra symbols for each v 2 V so that all of them are pairwise different.

Graph multiset transformation

123

Then G induces a graph transformation unit HP(G) that computes the Hamiltonian paths

from begin to end in G by graph multiset transformation (see Fig. 10)

If w 2 fA; T ; C; Gg�, then w denotes the Watson–Crick complement. A graph of the

form

represents the double strand
w
w

� �
: Starting with the initial graph, the rules of type edge and

type node can be applied alternatively provided that there is a proper edge in E in the case

of edge-rules. Every graph derived in this way, contains exactly one edge with an extra

symbol which guides the choice of applicable rules. If this extra symbol is XðendÞ, then the
stop-rule may be applied. A derivation of this kind is depicted in Fig. 11 .

The edge-rules are applicable if ðbegin; v1Þ; ðvi; viþ1Þ; ðvn; endÞ 2 E for i ¼ 1; . . .; n� 1

meaning that the derived graph represents the path beginv1. . .vnend in G. This is a

Hamiltonian path if the label l(v) occurs exactly once in the derived graph for each v 2 V.
In other words, the derived graph represents a Hamiltonian path from begin to end in G if

and only if it is terminal.

Consequently, starting with a large number of initial graphs, one can detect Hamiltonian

paths in G with high probability employing graph multiset transformation.

Fig. 10 The graph transformation unit HP(G)

H.-J. Kreowski, S. Kuske

123

Each graph in Fig. 11 except the last graph contains a single edge labeled with an extra

symbol which forms a triangle with an overhanging sticky end:

Each rule application removes the diagonal edge and completes the sticky end into a

double strand according to the Watson–Crick-complementarity. The resulting graph cor-

responds to the double-stranded DNA molecule

Fig. 11 A derivation of HP(G)

Graph multiset transformation

123

sðbeginÞ sðv1Þ � � � sðvnÞ sðendÞ
sðbeginÞ sðv1Þ � � � sðvnÞ sðendÞ

� �

In his experiment, Adleman created very similar molecules out of small pieces that

correspond to right-hand sides of the rules above. Then he selected those molecules that

contained the strands s(v) for each v 2 V and had the proper lengths so that no s(v) could
occur twice. Therefore, the selection of the molecules that represent Hamiltonian paths in

the experiment is quite similar to the termination condition above.

7 Exhaustive computations

A polynomial graph transformation unit tu = (I, P, C, T) solves a decision problem by

means of graph multiset transformation in a polynomial number of steps with a high

probability if the multiplicity of the initial graph is large. It does not provide an exact

solution because there is no guarantee that an existing permitted derivation G¼)� G with

G 2 SEM(I) and G 2 SEMðTÞ belongs to the derivations underlying a computation

n � ½G� ¼)� M: This may be seen as a drawback which can be resolved by means of

exhaustive computations that cover all derivations and all their prefixes up to a given

length.

Definition 13 A graph multiset derivation n � ½G� ¼)k M for some k; n 2 N is exhaustive if

each derivation G¼)l Ĝ with l	 k is an initial section of an underlying derivation,

meaning that there is a derivation Ĝ¼)� G with G¼)l Ĝ¼)� G 2 MoDðn � ½G� ¼)k MÞ:
As the following construction shows, exhaustive derivations exist for every length, but

the initial multiplicity must be chosen large enough to cover all derivations up to the given

length. In the construction, the multiplicity grows exponentially with the length if the rule

application is not deterministic. If the underlying transformation unit is terminating, then

the exhaustive derivation of the length of the termination bound (which can be prolonged

by empty steps only) covers all derivations starting in the given initial graph including all

successful ones. This is stated in Observation 14 and means that exhaustive derivations

compute the corresponding decision problem exactly and not only with high probability.

Construction 14 Exhaustive derivations can be constructed inductively.

Induction base: ½G� ¼)0 ½G� is an exhaustive derivation of length 0.

Induction step: Let n � ½G� ¼)k M be an exhaustive derivation of length k which exists by

induction hypothesis. Let max be the maximum number of direct derivations starting in

some G 2 carðMÞ: Let max �n � ½G� ¼)k max �M be obtained from n � ½G� ¼)k M by

copying every rule application max times. Then there are max copies of G in max �M for

each G 2 carðMÞ so that all direct derivations starting in G can be constructed. This

defines an exhaustive derivation max �n � ½G� ¼)k max �M¼) M̂ of length k + 1.

Observation 15 Let tu = (I, P, C, T) be a terminating transformation unit with termi-

nation bound b: SEMðIÞ ! N and SEMðTÞ � reducedðPÞ: Let n � ½G� ¼)bðGÞ
P

M for some

H.-J. Kreowski, S. Kuske

123

n 2 N be an exhaustive graph multiset derivation with carðMÞ � reducedðPÞ: Let G¼)�
P

G

with G 2 SEMðTÞ be permitted by C. Then G¼)�
P

G 2 MoDðn � ½G� ¼)bðGÞ
P

MÞ:

Proof Consider G¼)l
P

G such that G 2 SEMðTÞ and G¼)l G is permitted by C. Then

l	 bðGÞ and by definition, there is a derivation G¼)�
P

G0 such that G¼)l
P

G¼)�
P

G0 2 MoDðn � ½G� ¼)bðGÞ
P

MÞ: By assumption one knows that G 2 SEMðTÞ �

reducedðPÞ so that ðG¼)�
P

G0Þ ¼ ðG¼)0
P

G0Þ: Therefore, G¼)�
P

G 2 MoDðn � ½G� ¼)bðGÞ
P

MÞ:h
The crucial part of Construction 14 is the copying of graphs which would be awfully

inefficient if done in a sequential way. But if one assumes to have some copying mech-

anism for multisets of graphs that works like the polymerase chain reaction for DNA

molecules, then one could duplicate a multiset of graphs in linear time and therefore

multiply efficiently. A copying of this kind could be achieved by a DNA simulation of

graph multiset transformation, for instance (cf. Point 6 of the conclusion).

Example 8 Figure 6 in Example 5 of Sect. 5 represents the full derivation process starting

in G0 that obeys the control condition start; run�. The derivation would become exhaustive

if all possibilities would be added to apply the rule start more that once. The derivation

length is bounded by the number of nodes of the initial graph, and the reduced graphs

contain a terminal graph if and only if the initial graph contains a Hamiltonian path. In

other words, the exhaustive derivations of maximum lengths solve the Hamiltonian path

problem in a linear number of steps.

8 Conclusion

In this paper, we have proposed graph multiset transformation as a novel framework for the

modeling and computation of graph algorithms and decision problems on graphs in par-

ticular. The basic idea is to apply rules to various graphs in a multiset simultaneously in a

single computational step. In particular, NP-problems can be solved polynomially by graph

multiset transformation employing exhaustive derivations. A result like this is typical for

and should be expected of a computational model with massive parallelism.

We are convinced that future investigations will emphasize the significance of this

approach.

1. Graph multiset transformation may be compared with other types of parallelism within

and beyond graph transformation.

2. In particular, one may relate graph multiset transformation with the underlying graph

transformation because parallelism is provided in this approach in an elegant way by

considering disjoint unions of rules as parallel rules. As they are also ordinary rules,

they can be applied in exactly the same way as introduced in Sect. 2 Therefore, a

derivation step of a multiset of graphs can be simulated by taking the disjoint union of

all graphs in the multiset as host graph and applying the parallel rule of all applied

rules to it. But doing this, one is faced with two problems: All known matching

algorithms are exponential if the sizes of left-hand sides are not bounded so that one

looses the direct correspondence to the class NP. Moreover, the relation is not easily

conversed because a host graph does not know about its component graphs and a

Graph multiset transformation

123

parallel rule application does not automatically respect that at most one atomic rule is

applied to a component graph. One would need some extra information about the

component graphs that form the multiset. It may be meaningful to work this out.

3. In the introduction, we refer to genetic algorithms as one of our sources of inspiration

for graph multiset transformation. A genetic algorithm transforms “populations of

individuals” by means of operations like “mutation” and “crossover”. While mutation

relates quite nicely to rule application in our approach, there is not yet a proper

counterpart of crossover which recombines two individuals (and does not only change

one). But this could be achieved by allowing rules that cut graphs into parts on one

hand and merge parts together on the other hand. Such rule applications on graph

multisets seems to be an interesting topic of future research. It would also yield

possibilities to cover further DNA operations such as splicing.

4. Graph multiset transformation may be used like genetic algorithms as a heuristic

approach. This would mean to start with a comparatively small multiplicity of initial

graphs and to employ more sophisticated control conditions to improve the chances of

successful computations.

5. The example of the Hamiltonian path problem indicates that simple graph

transformation units and their evaluation by graph multiset transformation provides

a quite natural way to model graph problems and their solutions. Further case studies

can strengthen this view.

6. As pointed out in the Introduction, graph multiset transformation is inspired by

Adleman’s experiment, in which he solved the Hamiltonian path problem by means of

DNA computing in the proper sense using DNA molecules and their reaction with

each other. Similarly, it may be possible to translate graph multiset transformation into

DNA computing and implement it by a massively parallel machinery in this way.

7. Because of the close relation to genetic algorithms and DNA computing, graph

multiset transformation is potentially applicable wherever these both are useful.

Acknowledgments The authors would like to acknowledge that their research ispartially supported by the
Collaborative Research Centre 637(Autonomous Cooperating Logistic Processes: A Paradigm Shift and
ItsLimitations) funded by the German Research Foundation (DFG). The authors are also grateful to the
anonymous reviewers for their valuable comments.

Appendix

This appendix recalls the notions and notations of multisets used in the paper.

1. Let X be a set. Then a multiset (over X) is a mapping M : X ! N, where M(x) is the
multiplicity of x in M.

2. The carrier of M contains all elements of X with positive multiplicity, i.e.

carðMÞ ¼ fx 2 X j MðxÞ > 0g:

3. A multiset is finite if its carrier is a finite set.

4. Let M and M′ be multisets. Then M′ is a sub-multiset of M, denoted by M0 	M, if

M0ðxÞ	MðxÞ for all x 2 X.
5. Let M and M′ be multisets. Then the sum (difference) of M and M′ is the multiset

defined by

H.-J. Kreowski, S. Kuske

123

ðM M0ÞðxÞ ¼ MðxÞ M0ðxÞ for all x 2 X:

Here + and − are the usual sum and difference of non-negative integers with m� n ¼ 0 if

m 	 n in particular.

6. Using the sum of multisets, the multiplication of multisets with non-negative numbers

can be defined inductively for all multisets M by

(i) 0 �M ¼ 0 and

(ii) ðk þ 1Þ �M ¼ k �M þM for all k 2 N

where the multiset 0 is the multiset with the constant multiplicity 0, i.e. 0(x) = 0

for all x 2 X.

7. Each sequence w 2 X� induces a multiset [w] by counting the number of occurrences

of each x in w, i.e., for all x, y 2 X and w 2 X�,
– ½k�(x) = 0

– ½yw�ðxÞ ¼ if x ¼ y then ½w�ðxÞ þ 1 else ½w�ðxÞ:
8. Let M be a finite multiset. Then the set of all sequences w with [w] = M is denoted by

Perm(M). An element of Perm(M) is called a sequential representation ofM. Note that

Perm(M) contains all permutations of w if ½w� ¼ M.

9. The set of multisets over X as well as the set of finite multisets over X give rise to a

commutative monoid with the multiset 0 as null and the sum as inner composition.

Moreover, the set of finite sultisets over X is generated by the singletons [x] for all x 2 X
so that the finite multisets are characterized as the free commutative monoid over X.

References

Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:
1021–1024

Ehrig H, Ehrig K, Taentzer G, de Lara J, Varró D, Varró-Gyapai S (2005) Termination criteria for model
transformation. In: Cerioli M (ed) Proceedings of fundamental approaches to software engineering
(FASE 2005). Lecture notes in Computer science, vol 3442. Springer, Berlin, pp 49–63

Fogel DB (2006) Evolutionary computation: toward a new philosophy of machine intelligence, 3rd edn.
IEEE Press, Piscataway, NJ

Godard E, Métivier Y, Mosbah M, Sellami A (2002) Termination detection of distributed algorithms by
graph relabelling systems. In: Corradini A, Ehrig H, Kreowski H-J, Rozenberg G (eds) Proceedings of
the first international conference on graph transformation (ICGT ’02). Lecture notes in Computer
science, vol 2505. Springer, Berlin, pp 106–119

Goldberg DE (2002) The design of innovation: lessons from and for competent genetic algorithms. Addison-
Wesley, Reading, MA

Habel A, Plump D (2001) Computational completeness of programming languages based on graph trans-
formation. In: Honsell F, Miculan M (eds) Proceedings of foundations of software science and
computation structures (FOSSACS 2001). Lecture Notes in Computer science, vol 2030. Springer,
Berlin, pp 230–245

Holland JM (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor,
MI

Kreowski H-J (2002) A sight-seeing tour of the computational landscape of graph transformation. In: Brauer
W, Ehrig H, Karhumäki J, Salomaa A (eds) Formal and natural computing. Essays Dedicated to
Grzegorz Rozenberg. Lecture notes in Computer science, vol 2300. Springer, Berlin, pp 119–137

Kreowski H-J, Kuske S (1999a) Graph transformation units and modules. In: Ehrig H, Engels G, Kreowski
H-J, Rozenberg G (eds) Handbook of graph grammars and computing by graph transformation, vol 2:
applications, languages and tools. World Scientific, Singapore, pp 607–638

Kreowski H-J, Kuske S (1999b) Graph transformation units with interleaving semantics. Form Asp Comput
11(6):690–723

Graph multiset transformation

123

Kreowski H-J, Kuske S (2008) Graph multiset transformation as a framework for massively parallel
computation. In: Proceedings of 4th international conference on graph transformations (ICGT 2008).
Lecture notes in Computer science, vol 5214. Springer, Heidelberg, pp 351–365

Kreowski H-J, Kuske S, Schürr A (1997) Nested graph transformation units. Int J Softw Eng Knowl Eng 7
(4):479–502

Kuske S (2000) More about control conditions for transformation units. In: Ehrig H, Engels G, Kreowski
H-J, Rozenberg G (eds) Proceedings of theory and application of graph transformations. Lecture notes in
Computer science, vol 1764. Springer, Berlin, pp 323–337

Kuske S (2000) Transformation units—a structuring principle for graph transformation systems. PhD thesis,
University of Bremen

Păun G, Rozenberg G, Salomaa A (1998) DNA computing—new computing paradigms. Springer, Berlin
Plump D (1998) Termination of graph rewriting is undecidable. Fundam Inf 33(2):201–209

H.-J. Kreowski, S. Kuske

123

	Graph multiset transformation: a new framework for massively parallel computation inspired by DNA computing
	Abstract
	Introduction
	Graphs and rule-based graph transformation
	Simple graph transformation units
	Graph class expressions
	Control conditions
	Simple graph transformation units
	Computation and complexity

	Solving decision problems
	Graph multiset transformation
	Adleman’s experiment
	Exhaustive computations
	Conclusion
	Acknowledgments
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

