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Abstract   Communities of autonomous units are rule-based and graph-

transformational systems with a well-defined formal semantics. The autonomous 

units of a community act and interact in a common environment while striving for 

their goals. Ant colony systems consist of a set of autonomously behaving ants 

and are often employed as a metaheuristics for NP-hard logistic problems. In this 

paper, we demonstrate how communities of autonomous units can be used as a 

formal graph-transformational framework for modeling ant colony systems. As a 

first example we model an ant colony system for the Traveling Salesperson Prob-

lem as a community of autonomous units. 

1  Introduction 

In logistics, one is often faced with optimization problems that are NP-hard. One 

successful way towards efficient solutions of complex optimization problems is 

swarm intelligence that makes use of the emergent behavior of a set of autono-

mously and independently acting individuals. Ant colony optimization (ACO) al-

gorithms are famous representatives of this type. ACO algorithms are inspired by 

the way how ants find short routes between food and their formicary. They have 

been shown to be well-suited not only for the solving of shortest path problems, 

but for a series of more complex problems, typically occurring in logistics (cf. 

(Dorigo and Stützle 2004)). In particular, the Traveling Salesperson Problem 

(TSP) plays an important role in ACO algorithms. It not only occurs in many lo-

gistic applications, it also serves to illustrate the basic features of ACO algorithms.  

                                                           
1 The first and the third author would like to acknowledge that their research is partially support-

ed by the Collaborative Research Centre 637 (Autonomous Cooperating Logistic Processes: A 

Paradigm Shift and Its Limitations) funded by the German Research Foundation (DFG). 
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This paper proposes to use communities of autonomous units (see e.g., 

(Hölscher et al. 2007) and (Hölscher et al. 2009)) as a formal graph-

transformational and rule-based framework for modeling ACO algorithms. A 

community of autonomous units consists of a set of autonomous units, a global 

control condition, and an overall goal. Autonomous units are equipped with a set 

of rules, a set of auxiliary units, a control condition, and a goal. Independently 

from each other, they try to reach their individual goals by applying their rules and 

auxiliary units according to their control conditions. Applications of rules and aux-

iliary units transform the common environment, and autonomous units can react to 

these transformations. Hence, the autonomous units interact and act in a dynami-

cally changing common environment. For solving the TSP, the ants are realized as 

autonomous units, the complete graph forms the common environment and the 

overall goal consists in finding the shortest Hamiltonian cycle in the graph. 

The use of communities of autonomous units for ant colony optimization algo-

rithms has the following advantages: 

 It is not uncommon that realistic logistic problems, when solved by an ant col-

ony optimization algorithm, require a great number of ants performing some 

non-trivial actions. Especially for complex problem solution strategies, it 

quickly becomes difficult to see whether the algorithm actually solves the prob-

lem. Community of autonomous units have a well-defined operational seman-

tics which opens possibilities to prove interesting properties, like termination, 

by induction on the length of the transformation sequences and thus increasing 

the probability that the algorithm is actually performing the task that it is sup-

posed to perform. 

 The graph- and rule-based representation allows to visualize and specify the ant 

colony optimization algorithms more naturally and can help to gain a better un-

derstanding of the algorithm. Furthermore, there exist tools that are suitable to 

provide an implementation platform for communities of autonomous units; in 

particular, in (Hölscher 2008) it is shown how an algorithm based on autono-

mous units can be implemented with the tool GrGEN (Geiß and Kroll 2008) for 

finding shortest paths in graphs. 

 Communities of autonomous units are suitable to integrate autonomous control 

into the model of the logistic processes and algorithms (cf. (Hölscher et al. 

2007), (Hölscher et al. 2008) and (Hölscher 2008)). The advantage of autono-

mous control in logistics is the focus of the Collaborative Research Centre 637 

Autonomous Cooperating Logistic Processes: A Paradigm Shift and Its Limita-

tions. 

The paper is organized as follows. In Section 2, ant colony systems for the heuris-

tic solving of optimization problems are briefly introduced. In Section 3, autono-

mous units and communities of autonomous units are presented. In Section 4, it is 

shown how ant colony systems solving the TSP can be modeled by communities 

of autonomous units in a formal and visual way. The conclusion is given in Sec-

tion 5. 
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2  Ant Colony Systems 

Ant colony optimization (ACO) is an algorithmic framework for the heuristic 

solving of combinatorial optimization problems. The idea is based on the observa-

tion how ants find short routes between food and their formicary. A moving ant 

leaves a chemical substance, called pheromone, on the ground which can be 

sensed by other ants. The higher the concentration of pheromone along a way, the 

more probable it is that ants will choose this way. Since on short ways ants leave 

their pheromone in a shorter time than on longer ways the concentration of pher-

omone will be higher the shorter a way is. The more ants follow a specific route, 

the more attractive it becomes for other ants, thus resulting in a positive feedback 

loop. Furthermore, pheromone evaporates with time, so a too fast convergence to 

a short route is avoided. 

ACO imitates this behavior for solving combinatorial optimization problems 

which often have a complete graph as input. A problem solution is encoded as an 

ordered sequence of edges in the graph. The artificial ants autonomously construct 

solutions by exploring the graphs. Since the ants start their work at a randomly 

chosen node in the graph, the crucial point consists in the decision which node is 

to visit next. 

A common method is to assign a probability probij to every possible decision, 

where i denotes the node currently visited by the ant and j is a node that can be 

reached from i by traversing an edge. The value of probij is calculated as follows: 
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The value pij simulates the pheromone intensity of the edge between the nodes i 

and j. Consequently, every edge of the graph has its own p-value. The value xij is a 

heuristic value describing an estimated probability that the solution includes the 

way between the nodes i and j. Like the pheromone intensity, every edge has its 

own x-value. The value xij is often called the desirability of the edge between i and 

j. The exponents α and β are problem-dependent parameters to control the influ-

ence of p and x. The set iJ  consists of all nodes that are reachable from the node i 

via a single edge. In other words, probij is a value in the closed interval [0…1] 

giving a procentual estimation of how worthy it is to visit the node j being at node 

i. 

With the help of this estimation, every artificial ant searches its way through 

the graph. If an ant succeeds in constructing a solution, e.g. having found a way 

from the start node to the goal node, it updates the pheromone value of all the 

edges by some value that reflects the quality of the solution. In the case of the TSP 

for example this value could be the reciprocal distance of the complete route. Af-

terwards the artificial ants will use different probij values according to the routes 

already found. Since the probij values of  routes will be higher the shorter the route 

is, artificial ants will converge slowly to the shortest route found. This basic idea 
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has been extended and modified in some ways to improve the performance. De-

tails can be found for example in (Dorigo and Stützle 2004). 

3  Communities of Autonomous Units 

In this section, we briefly introduce communities of autonomous units. For more 

detailed introductions see (Kreowski and Kuske 2008) and (Hölscher et al. 2009). 

Communities are composed of autonomous units that act and interact in a 

common environment which is typically a graph. The ingredients of communities 

are given by an underlying graph transformation approach (cf. (Rozenberg 1997) 

for an overview of graph transformation approaches). 

Definition (Graph transformation approach) A graph transformation approach 

is a system (𝒢,ℛ,𝒳,𝒞) where 𝒢 is a class 𝒢 of graphs, ℛ is a class of rules such 

that every rule specifies a binary relation on 𝒢, 𝒳 is a class of graph class expres-

sions each of which specifies a set of graphs in 𝒢, and 𝒞 is a class of control condi-

tions each of which specifies a set of sequences of graphs. 

Every autonomous unit consists of a set of pairs of rules, a set of auxiliary trans-

formation units, a control condition, a specification of initial private states, and a 

goal. When a rule pair (r1,r2) is applied, the first component r1 transforms the cur-

rent common environment and the second component r2 modifies the current pri-

vate state of the unit. Every auxiliary transformation unit encapsulates a set of rule 

pairs, a set of further auxiliary transformation units, and a control condition. 

Definition (Units) An auxiliary transformation unit is a system tu = (P,U,C) 

where P  , U is a set of auxiliary units, and C𝒞. An autonomous unit is 

a system aut = (I,U,P,C,G) where I𝒳 is the initial private state specification, U 

is a set of auxiliary transformation units, P  , C𝒞, and G𝒳 is the 

goal. 

In the following, we use auxiliary transformation units with a hierarchical import 

structure. This means that every auxiliary transformation unit of import depth zero 

does not contain any auxiliary transformation unit, and every auxiliary transfor-

mation unit of import depth 1n can use only auxiliary transformation units of 

import depth at most n. 

Every community is composed of a set of autonomous units, a specification of 

a set of initial environments, a global control condition, and a goal.  

Definition (Community) A community is a system (Init,Aut,Cond,Goal) where 

Init,Goal𝒳 are graph class expressions called the initial environment specifica-

tion and the overall goal, respectively, Aut is a set of autonomous units, and 

Cond𝒞 is a global control condition. 

The semantics of communities for modeling ACO algorithms is a parallel one, 

i.e. in every computation step, several autonomous units may perform their actions 
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simultaneously. More precisely, the parallel semantics of a community of autono-

mous units COM = (Init,Aut,Cond,Goal) consists of a set of state sequences that 

represent the transformation processes. Every state in such a sequence is com-

posed of a common environment and a private state for every autonomous unit. 

The initial state of every transformation process s in the semantics of COM must 

be composed of a common environment specified by Init and an initial private 

state for each aut AUT . Moreover, s must be allowed by the Cond as well as by 

the control conditions of all units in Aut. 

4  Modeling Ant Colony Sytems by Communities 

In this section, we demonstrate how ant colony systems can be modeled with 

communities of autonomous units by translating an ACO algorithm for the Travel-

ing Salesperson Problem (TSP) into a community.  

The ACO algorithm for the TSP gets as input a complete graph without multi-

ple edges in which every edge is labeled with a natural number denoting the dis-

tance between its two attached nodes, and a real number denoting an initial pher-

omone quantity. An optimal solution of the TSP is a Hamiltonian cycle in G 

whose distance is minimal. Basically, the TSP is solved by ACO systems accord-

ing to the following procedure. First, every ant chooses nondeterministically a 

start node. Second, every ant traverses the graph by going along a Hamiltonian 

cycle. In each step it passes through exactly one edge which is chosen according 

to the probability rule given in Section 2. Moreover, it stores the cycle and its dis-

tance in its memory. Third, pheromone evaporation takes place and every ant 

traverses the cycle again while augmenting the pheromone quantity of every 

passed edge by 1 s  where s is the distance of the cycle traversed by the ant. Then 

the next iteration starts. 

For modeling the described algorithm as a community, we employ as underly-

ing graph class undirected edge-labeled graphs. A graph transformation rule r is 

defined as   N L K R , where N, L, K, and R are graphs such that L is a sub-

graph of N, and K is a subgraph of L and R. The rule r is applied to a graph G ac-

cording to the following steps (cf. also (Habel et al. 1996) and (Corradini et al. 

1997)). (1) Choose a homomorphic image of L in G. (2) If L is a proper subset of 

N, make sure that the image of L cannot be extended to an image of N. (3) Delete 

the image of L up to the common part K of L and R, provided that the result is a 

graph again, i.e., no dangling edges should be produced. (4) Add a copy of R to 

the resulting graph such that K is identified with its image. 

A rule   N L K R  is depicted as N R  where the parts of N not be-

longing to L are crossed out. The common part K consists of the nodes and edges 

that have the same forms, labels, and relative positions in N and R. A node with a 

loop is often depicted as a node with the loop label inside. We assume the exist-

ence of a special label unlabelled that is omitted in graph drawings. A pair of rules 
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( 1 1 1 1 2 2 2 2,N L K R N L K R      ) is depicted as 1 2 1 2| |N N R R , where 

again the items of i iN L  (i = 1,2) are crossed out. 

As graph class expressions we use all denoting all graphs and complete(A) 

where A is some set of labels. The expression complete(A) characterizes all com-

plete graphs without multiple edges in which every edge is labeled with an ele-

ment of A. Moreover, every graph G is a graph class expression which specifies it-

self. The control conditions of our approach consist of regular expressions over 

rules and auxiliary units equipped with the operator ! standing for as long as pos-

sible. Moreover, as global control conditions, we use regular expressions over sets 

of autonomous units, where a set of units means that they should run in parallel. 

For reasons of space limitations we do not introduce a formal semantics of control 

conditions but explain their meaning when they are used.  

The community of autonomous units that models the presented ACO algorithm 

for the TSP is equal to  

(complete(ℕ ℝ),{Ant1,...,Antk, Update(ρ)},({Ant1,...,Antk} ; Update(ρ))*,all) 

where k , 0 1  , and the condition ({Ant1,..., Antk} ; Update(ρ))* means 

that in each iteration the autonomous units Ant1,..., Antk run in parallel and then the 

autonomous unit Update(ρ) becomes active, where ρ is a pheromone decay pa-

rameter. 

For j=1,...,k, the autonomous unit Antj is equal to  

(Mj
•
,{traversej,putpherj},∅,traversej ; putpherj,all) 

where Mj
•
 denotes the graph consisting of a node with an Mj-labeled loop (repre-

senting the initial memory of Antj), and the control condition requires that the aux-

iliary units traversej and putpherj, be executed sequentially in this order. 

The unit traversej in Figure 1 searches for a Hamiltonian cycle, guided by the 

present pheromone trails. It uses the auxiliary unit probj and contains the three 

rule pairs start, go, and stop. With the first component of every rule pair, the 

common environment is transformed whereas the second component updates the 

memory of Antj. 

The rule pair start puts the ant on a randomly chosen node in the common envi-

ronment. In its memory, the ant inserts a node for the distance of the cycle found 

so far (which initially is equal to zero) and it stores its current location. The unla-

beled loop at the B-node serves to remember the start node of the cycle. The rule 

pair go models a movement of the ant to a neighbor node. The crossed node guar-

antees that the ant only moves to a neighbor node C if the node is not stored in the 

memory, yet. Moreover, in the memory, the cycle distance is updated, the node C 

(together with the passed edge) is added to the visited path, and the current loca-

tion of the ant is changed to node C by redirecting the sit-edge. The rule pair go is 

applied according to the probability presented in Section 2 and depicted under the 

arrow of the rule. The value of γ in the formula is inserted in the memory by the 

auxiliary unit probj, which for reasons of space limitations is not depicted. The 

rule pair stop closes the cycle. According to the control condition of traversej, the 
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pair start is applied first. Second the unit probj and go are applied as long as pos-

sible in this order, and finally, the pair stop is applied. 

 

Fig. 1.  The auxiliary unit traversej 

It can be shown that the unit traversej finds a Hamiltonian cycle in the underly-

ing graph. 

The auxiliary unit putpherj in Figure 2 leaves a pheromone trail on the passed 

cycle with the intensity 1 s , where s is the distance of the cycle. According to the 

cycle stored in the memory, putpherj places additional "pheromone-edges", la-

beled with 1 s , in parallel to the edges where trail update should take place. Dur-

ing this procedure the cycle is deleted from the local memory. It should be noted 

that the fact that each ant inserts separate edges for its individual pheromone trail 

allows the ants to put pheromone in parallel.  

It can be shown that all transformation sequences of putpherj are finite and that 

the parallel edges are inserted along the Hamiltonian cycle in the memory of the 

ant. 

The autonomous unit Update(ρ) in Figure 3 is responsible for the evaporation 

and the summation of the pheromone updates made by the ant units. According to 

its control condition the rule evap is executed as long as possible to lessen the 

amount of pheromone at every edge. To remember where the evaporation has tak-

en place, a parallel edge with label done is inserted. 
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Fig. 2.   The auxiliary unit putpherj 

When the evaporation for all edges is completed, delete! removes all the done-

edges. Now for each edge e with a label in  , add! adds up the values of the 

"pheromone-edges" placed by the ant units and updates the pheromone amount of 

e with the respective result. 

 

 

Fig. 3.  The autonomous unit Update(ρ) 
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Since Update(ρ) needs no local memory, the second components of the rule pairs 

of Update(ρ) are not depicted. Formally these second components consist of emp-

ty graphs, only.  

It can be shown that all transformation processes of Update(ρ) terminate and 

model the update of pheromone trails in the required way. 

5  Conclusion 

In this paper, we have proposed communities of autonomous units as a modeling 

framework for ACO algorithms. In particular, we have modeled an ant colony op-

timization algorithm for the Traveling Salesperson Problem as a community of au-

tonomous units.  

It has turned out that rule-based graph transformation allows to specify ant al-

gorithms in a very natural way because (artificial) ants modify graphs and move 

along edges. This yields the following advantages: 

 The specification of ants as autonomous units provides the ants with a well-

defined operational semantics so that correctness results can be proved. 

 The graph transformation rules of autonomous units allow for a visual specifi-

cation of ants behavior instead of string-based pseudo code as it is often used in 

the literature. 

 The existing graph transformation systems (cf. e.g. (Ermel et al. 1999) and 

(Geiß and Kroll 2008)) facilitate the visual simulation of ant colonies in a 

straightforward way (see also (Hölscher 2008)). 

 Implementing ACO algorithms with graph transformational systems is useful 

for verification purposes, i.e., to check whether the algorithms behave properly 

for specific cases.  

In the future, this and further case studies should be implemented with one of the 

existing graph transformation systems so that (1) the emerging behavior of ant 

colonies can be visually simulated by representing transformations of the common 

environment and transformations of the private states on different visualization 

levels, and (2) ACO algorithms can be verified. For the implementation purpose 

we plan to use GrGen (Geiß and Kroll 2008) because it is one of the fastest and 

most flexible graph transformation systems. 

Further case studies should take into account local search, elitist and rank-

based ant systems as well as dynamic aspects (cf. (Eyckelhof and Snoek 2002), 

(Dorigo and Stützle 2004), (Montemanni et al. 2005), (Reimann et al. 2004) and 

(Rizzoli et al. 2007) to mention only a few examples). 

Acknowledgments   We are grateful to Hans-Jörg Kreowski and the anonymous referees for 

their valuable comments. 
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