
Autonomous Units and Their Semantics –

The Concurrent Case⋆

Hans-Jörg Kreowski, Sabine Kuske

University of Bremen, Department of Computer Science
P.O.Box 330440, D-28334 Bremen, Germany

{kreo,kuske}@informatik.uni-bremen.de

Abstract. Communities of autonomous units are rule-based and graph-
transformational devices to model processes that act and interact, move
and communicate, cooperate and compete in a common environment.
The autonomous units are independent of each other, and the environ-
ment may be large and structured in such a way that a global synchro-
nization of process activities is not reasonable or not feasible. To reflect
this assumption properly, a concurrent-process semantics of autonomous
units is introduced and studied in this paper employing the idea of true
concurrency. In particular, causal dependency between actions of au-
tonomous units is compared with shift equivalence known from graph
transformation, and concurrent processes in the present approach are
related to canonical derivations.

1 Introduction

In this paper, we introduce and investigate the concurrent semantics of au-
tonomous units. Communities of autonomous units are proposed in [7] as rule-
based and graph-transformational devices to model interactive processes that
run independently of each other in a common environment. An autonomous
unit has a goal that it tries to reach, a set of rules the applications of which
provide its actions, and a control condition which regulates the choice of actions
to be performed actually. Each autonomous unit decides about its activities on
its own right depending on the state of the environment and the possibility of
rule applications, but without direct influence of other ongoing processes.

In [9], the sequential as well as the parallel semantics of autonomous units is
studied. In the sequential case, a single unit can act at a time while all other units
must wait. This yields sequences of rule applications interleaving the activities
of the various units. Typical examples of this kind are board games with several
players who can perform their moves in turn. In the parallel case, the process
steps are given by the application of parallel rules that are composed of the rules
of the active units. In this way, units can act simultaneously providing a kind

⋆ Research partially supported by the Collaborative Research Centre 637 (Au-
tonomous Cooperating Logistic Processes: A Paradigm Shift and Its Limitations)
funded by the German Research Foundation (DFG).



of parallelism which is known from Petri nets, cellular automata, multi-agent
systems, and graph transformation.

The sequential and the parallel semantics of communities of autonomous
units are based on sequential and parallel derivations respectively. Both are
composed of derivation steps. In other words, the semantics assumes implicitly
the existence of a global clock to cut the run of the whole system into steps. But
this is not always a realistic assumption, because the environment may be very
large and – more important – the idea of autonomy conflicts with the regulation
by a global clock. For example, trucks in a large transport network upload, move,
and deliver asynchronously, and do not operate in simultaneous steps and even
less in interleaved sequential steps.

The concurrent semantics avoids the assumption of a global clock. The ac-
tions of units are no longer totally ordered or simultaneous, but only partially
ordered. The partial order reflects causal dependencies meaning that one ac-
tion takes place before another action if the latter needs something that the
former provides. The causal dependency relation of the concurrent semantics of
autonomous units is compared with shift equivalence known from graph transfor-
mation, and concurrent processes in the present approach are related to canonical
derivations (see also [11, 3, 2]).

The paper is organized as follows. Section 2 contains some preliminaries con-
cerning multisets and graphs. In Section 3, concurrent graph transformation
approaches are introduced which provide the basic ingredients of autonomous
units. In Section 4, communites of autonomous units are presented and a concur-
rent semantics is defined for them. Section 5 is dedicated to canonical derivations
which constitute a kind of representantives for the concurrent runs in a commu-
nity. The introduced concepts are illustrated with a running example solving
a generalization of the well-known Hamiltonian path problem. The last section
contains the conclusion.

2 Preliminaries

In this section, we recall some basic notions and notations concerning multisets
and graphs as far as they are needed in this paper.

Multisets. Given some basic domain D, the set of all multisets D∗ over D with
finite carriers consists of all mappings m: D → N such that the carrier car(m) =
{d ∈ D | m(d) 6= 0} is finite. For d ∈ D, m(d) is called the multiplicity of d
in m. The union or sum of multisets can be defined by adding corresponding
multiplicities, i.e., m + m′(d) = m(d) + m′(d) for all m, m′ ∈ D∗ and d ∈ D. D∗

with this sum is the free commutative monoid over D where the multiset with
empty carrier is the null element, i.e. 0: D → N with 0(d) = 0 for all d ∈ D.
Note that the elements of D correspond one-to-one to singleton multisets, i.e.
for d ∈ D, d̂: D → N with d̂(d) = 1 and d̂(d′) = 0 for d′ 6= d. These singleton
multisets are the generators of the free commutative monoid. This means in
particular that, for every m ∈ D∗, there are d1, . . . , dk ∈ D with m =

∑k

i=1 d̂i.



Graphs. A (directed edge-labeled) graph is a system G = (V, E, s, t, l) where
V is a set of nodes, E is a set of edges, s, t: E → V assign to every edge its
source s(e) and its target t(e), and the mapping l assigns a label to every edge
in E. The components of G are also denoted by VG, EG, etc. As usual, a graph
M is a subgraph of G, denoted by M ⊆ G if VM ⊆ VG, EM ⊆ EG, and sM ,
tM , and lM are the restrictions of sG, tG, and lG to EM . A graph morphism
g: L → G from a graph L to a graph G consists of two mappings gV : VL → VG,
gE : EL → EG such that sources, targets and labels are preserved, i.e. for all
e ∈ EL, gV (sL(e)) = sG(gE(e)), gV (tL(e)) = tG(gE(e)), and lL(e) = lG(gE(e)).
In the following we omit the subscript V or E of g if it can be derived from
the context. In order to represent also graphs that contain labeled as well as
unlabeled edges, we assume the existence of a special symbol ⋄. Every edge
labeled with ⋄ is then regarded as an unlabeled edge. All other edges are labeled

edges. An edge is called a loop if its source and target coincide. In graphical
representations we omit the loops, i.e., their labels are placed next to their
sources. If the labeled loops of a node is the set {e1, . . . , ek} where for i = 1, . . . , k
the label of ei is xi (xi 6= ⋄), the node will be called a {x1, . . . , xk}-node. In the
case where k = 1, the node is called an x1-node. A node without any labeled
loop is called a λ-node.

3 Concurrent Graph Transformation Approaches

Graph transformation (see, e.g., [18, 6, 1]) constitutes a formal specification frame-
work that supports the modeling of the rule-based transformation of graph-like,
diagrammatic, and visual structures. The ingredients of graph transformation
are provided by so-called graph transformation approaches. In this section, we
recall the notion of a graph transformation approach as introduced in [12], but
modified with respect to the purposes of this paper.

Two basic components of every graph transformation approach are a class
of graphs and a class of rules that can be applied to these graphs. In many
cases, rule application is highly nondeterministic – a property that is not always
desirable. Hence, graph transformation approaches can also provide a class of
control conditions so that the degree of nondeterminism of rule application can
be reduced. Moreover, graph class expressions can be used in order to specify
sets of initial and terminal graphs of graph transformations. In the following,
transformations from initial to terminal graphs via rule applications according
to control conditions are called (graph transformation) processes.

The basic idea of parallelism in a rule-based framework is the application
of many rules simultaneously and also the multiple application of a single rule.
To achieve these possibilities, we assume that multisets of rules can be applied
to graphs rather than single rules. If R is a set of rules, r ∈ R∗ comprises a
selection of rules each with some multiplicity. Therefore, an application of r to
a graph yields a graph which models the parallel and multiple application of
several rules.



If there is no global clock and no synchronization mechanism that cuts the
actions (i.e., the rule applications) of processes into steps, then the process ac-
tions are not totally ordered, but only partially. An action occurs necessarily
before another action if the former one generates something that the latter one
needs. Moreover, an action that removes something that is needed by another
action prohibits the latter one to occur if the former one is performed first. Both
situations describe causal dependencies. In all other cases, it may be impossible
to establish the order of time of two actions: They may occur one after the other
in any order or even in parallel. This is the idea of true concurrency which we
employ to define concurrent graph transformation.

Definition 1 (Concurrent graph transformation approach). A concur-
rent graph transformation approach is a system A = (G,R,X , C) the components
of which are the following.

– G is a class of graphs.
– R is a class of graph transformation rules such that every r ∈ R∗ specifies a

binary relation on graphs SEM (r) ⊆ G×G, which is subject to the following
true-concurrency condition: (G, G′′) ∈ SEM (r1 + r2) for r1, r2 ∈ R∗ implies
(G, G′) ∈ SEM (r1) and (G′, G′′) ∈ SEM (r2) for some G′ ∈ G. Moreover, we
assume that (G, H) ∈ SEM (0) implies G = H for the null element 0 ∈ R∗.

– X is a class of graph class expressions such that each x ∈ X specifies a set
of graphs SEM (x) ⊆ G.

– C is a class of control conditions such that each c ∈ C specifies a set of graph
pairs SEMAR,P (c) ⊆ G × G for every set AR ⊆ R∗ and every set P ⊆ R.

Remarks.

1. The multisets of rules in R∗ are called parallel rules. A pair of graphs
(G, G′) ∈ SEM (r) for some r ∈ R∗ is an application of the parallel rule
r to G with the result G′. It may be also called a direct parallel derivation
or a parallel derivation step denoted by G=⇒

r
G′. Accordingly, a sequence

of parallel derivation steps G = G0 =⇒
r1

G1 =⇒
r2

· · ·=⇒
rk

Gk = G′ for k ∈ N de-

fines a parallel derivation (of length k) from G to G′, which may be denoted

by G
∗

=⇒
P

G′ if r1, · · · , rk ∈ P∗ for P ⊆ R.

2. The control conditions are meant to restrict the nondeterminism of rule
applications so that some reference is needed to the rules in considera-
tion. Hence, the semantics of control conditions has two rules parameters
which are used in the definition of the semantics of autonomous units in
the next section. On one hand, the semantics of a control condition c of an
autonomous unit may depend on the rule set P of the unit itself. On the
other hand, it depends on a set AR of active rules typically being the set of
parallel rules that can be composed of the rules of all units in a community.
Hence, the set AR specifies all parallel derivations that can be constructed
with the rules of a community, and the rule set P indicates which of these
rules belong to the unit with the control condition c.



3. Due to the true-concurrency condition, each direct parallel derivation d =
(G =⇒

r1+r2

G′′) gives rise to a parallel derivation G=⇒
r1

G′ =⇒
r2

G′′ which is called

a sequentialization of d. The two parallel derivation steps are called inde-

pendent (of each other). Note that there is a second sequentialization of the
form G=⇒

r2

Ĝ=⇒
r1

G′′ because of the commutativity in R∗. A parallel deriva-

tion step and its sequentialization can be considered as equivalent w.r.t. true
concurrency. If this relation is closed under sequential composition of par-
allel derivations as well as reflexivity, symmetry, and transitivity, one gets
the true-concurrency equivalence on parallel derivations, which is denoted
by ≡ . This is made explicit in the following definition.

Definition 2 (True-concurrency equivalence). Let A = (G,R,X , C) be a
concurrent graph transformation approach, and let DER(A) be the set of all
parallel derivations over A. Then the true-concurrency-equivalence is recursively
defined on DER(A) as follows:

1. Let d = (G =⇒
r1+r2

G′′) be a direct parallel derivation and let

d′ = (G=⇒
r1

G′ =⇒
r2

G′′)

be its sequentialization. Then d ≡ d′.

2. Let d = (G
∗

=⇒
P

G), d′ = (G
∗

=⇒
P

G), c = (F
∗

=⇒
P

G), and e = (G
∗

=⇒
P

H) be

parallel derivations for some P ⊆ R. If d ≡ d′, then c ◦ d ≡ c ◦ d′ and
d ◦ e ≡ d′ ◦ e.1

3. d ≡ d for all d ∈ DER(A).

4. If d ≡ d′, then d′ ≡ d for all d, d′ ∈ DER(A).

5. If d ≡ d′ and d′ ≡ d′′, then d ≡ d′′ for all d, d′, d′′ ∈ DER(A).

For technical simplicity we assume in the following that A = (G,R,X , C) is
an arbitrary but fixed concurrent graph transformation approach.

Examples

In the following we present some instances of the components of concurrent
graph transformation approaches which are partly used in the examples of the
following sections. Further examples of graph transformation approaches can be
found in, e.g., [18].

Graphs. A well-known instance for the class G is the class of all directed edge-
labeled graphs as defined in Section 2. Other classes of graphs are trees, undi-
rected graphs, hypergraphs, etc.

1 Here, ◦ denotes the sequential composition of derivations.



Rules. As a concrete example of rules we consider the so-called DPO rules each
of which consists of a triple r = (L, K, R) of graphs such that L ⊇ K ⊆ R
(cf. [3]). The application of a rule to a graph G yields a graph G′, if one proceeds
according to the following steps:

1. Choose a graph morphism g: L → G so that for all items x, y (nodes or
edges) of L with x 6= y, g(x) = g(y) implies that x and y are in K.

2. Delete all items of g(L)−g(K) provided that this does not produce dangling
edges. (In the case of dangling edges the morphism g cannot be used.) The
resulting graph is denoted by D.

3. Add R to the graph D.
4. Glue D and R by identifying the nodes and edges of K in R with their

images under g.

The conditions of (1) and (2) concerning g are called gluing condition.
Graph transformation rules can be depicted in several forms. In the following

they are shown by drawing only its left-hand side L and its right-hand side R
together with an arrow pointing from L to R, i.e. L → R. The nodes of K are
distinguished by different shapes and fill-styles occurring in L and R as well.

Figure 1 shows an example of a rule. To interpret the drawing properly, one
should remember that loops are not drawn, but the labels of the loops are placed
next to the nodes which the loops are incident with. In particular, a v-node is
a node with a v-labeled loop and a {b, e}-node a node with two loops labeled
with b and e, respectively. The left-hand side of the rule in Figure 1 consists of
a v-node, the intermediate graph K is equal to the left-hand side, and the right-
hand side consists of the same v-node, a new {b, e}-node, and a new edge labeled
with v. The edge points from the v-node to the {b, e}-node. Hence, the rule can
be applied to a graph with a v-node with the effect that a new {b, e}-node and
a v-labeled edge from the v-node to the {b, e}- node are generated.

v

−→

v

b e

v

Fig. 1. A rule

Given two rules ri = (Li, Ki, Ri) (i = 1, 2), their parallel composition yields
the rule r1+r2 = (L1+L2, K1+K2, R1+R2) where + denotes the disjoint union
of graphs. In the same way, one can construct a parallel rule from any multiset
r ∈ R∗. For every pair (G, G′′) ∈ SEM (r1 + r2) there exists a graph G′ such
that (G, G′) is in SEM (r1) and (G′, G′′) is in SEM (r2). This means that the
applications of DPO rules are truly concurrent. (see, e.g., [3] for more details).



Graph class expressions. Every subset M ⊆ G is a graph class expression that
specifies itself, i.e. SEM (M) = M . A single graph G can also serve as a graph
class expression specifying all graphs G′ with G ⊆ G′. This type of graph class
expressions is called subgraph condition. Moreover, every set L of labels specifies
the class of all graphs in G the labels of which are elements of L. Every set
P ⊆ R∗ of (parallel) graph transformation rules can also be used as a graph
class expression specifying the set of all graphs that are reduced w.r.t. P where
a graph is said to be reduced w.r.t. P if no rules of P can be applied to the
graph. The least restrictive graph class expression is the term all specifying the
class G.

Control conditions. The least restrictive control condition is the term free that
allows all pairs of graphs, i.e. SEMAR,P (free) = G × G for all AR ⊆ R∗ and
all P ⊆ R. This is the only control condition used in our running example. A
much more restrictive control condition is a single rule r ∈ P . Its semantics
SEMAR,P (r) consists of the initial and final graphs of all parallel derivations
G0 =⇒

r1

· · ·=⇒
rn

Gn (n > 0) where r1, . . . , rn ∈ AR, exactly one ri contains at

least one copy of r, and no other rule of P is applied.2 More formally, this is
expressed as follows:

– There is an i ∈ {1, . . . , n} such that ri(r) > 0.
– For j = 1, . . . , n, rj(r

′) = 0, for all r′ ∈ P \ {r}.
– For all j ∈ {1, . . . , n} with j 6= i, rj(r) = 0.

A more general control condition is a set M ⊆ P where SEMAR,P (M) specifies
the initial and terminal graphs of all parallel derivations G0 =⇒

r1

· · ·=⇒
rn

Gn such

that for i = 1, . . . , n, ri ∈ AR, and ri(r) = 0 if r ∈ P \ M . This means that in
the applied parallel rules no copy of a rule in P \ M may occur.

Since the semantics of control conditions are binary relations, they can be
sequentially composed. For control conditions c and c′, their sequential compo-
sition is denoted by c ; c′ with SEMAR,P (c ; c′) = SEMAR,P (c) ◦ SEMAR,P (c′).
Other useful control conditions are regular expressions, as long as possible, as
well as priorities (cf. [14]).

4 Communities of Autonomous Units

Autonomous units interact in a common environment which is modeled as a
graph. As a basic modeling device, an autonomous unit consists of a set of graph
transformation rules, a control condition, and a goal. The graph transformation
rules contained in an autonomous unit aut specify all transformations the unit
aut can perform. Such a transformation comprises for example a movement of the
autonomous unit within the current environment, the exchange of information

2 We assume that identical rules of different autonomous units can be distinguished
in AR. This can be achieved by considering named rules. For technical simplicity,
this is not further regarded in this paper.



with other units via the environment, or local changes of the environment. The
control condition regulates the application process. For example, it may require
that a sequence of rules be applied as long as possible. The goal of a unit is a
graph class expression determining how the transformed graphs should look like
eventually.

Definition 3 (Autonomous unit). An autonomous unit is a system aut =
(g, P, c) where g ∈ X is the goal, P ⊆ R is a set of graph transformation rules,
and c ∈ C is a control condition. The components of aut are also denoted by
gaut , Paut , and caut , respectively.

An autonomous unit modifies an underlying environment while striving for
its goal. In the setting of a concurrent graph transformation approach, its se-
mantics consists of a set of equivalence classes of parallel derivations w.r.t. the
true-concurrency equivalence. This concerns parallel derivations which comprise
the parallel application of local rules of the considered unit as well as of rules
performed by other autonomous units that are working in the same environment.
In a concurrent setting, environment changes performed by other units must be
possible while a single autonomous unit applies its rules. To cover this in the
definition of the semantics, we assume a variable set of active rules that de-
scibes all possibilities of coexisting units. Moreover, autonomous units regulate
their transformation processes by choosing only those rules that are allowed by
their control condition. A transformation process is called successful if its last
environment satisfies the goal of the unit.

Definition 4 (Parallel and concurrent semantics).

1. Let aut = (g, P, c) be an autonomous unit, let AR ⊆ R∗ be a set of parallel

rules, called active rules, and let d = (G
∗

=⇒
AR

G′) ∈ DER(A) be a parallel

derivation over A. Then d is a parallel run of aut if (G, G′) ∈ SEMAR,P (c).
2. The set of parallel runs of aut is denoted by PARAR(aut).
3. The derivation d is called a successful parallel run if G′ ∈ SEM (g).
4. Let d ∈ PARAR(aut). Then [d] is a concurrent run of aut where [d] denotes

the equivalence class of d w.r.t. the true-concurrency equivalence ≡, i.e.,
[d] = {d′ | d ≡ d′}.

5. The set of concurrent runs of aut is denoted by CONCURAR(aut).
6. A concurrent run [d] is successful if it contains a successful parallel run.

Remarks.

1. A parallel run of an autonomous unit depends on its rules and its control
condition as the pair of the start graph and the result graph must be accepted
by the control condition semantics with respect to the rules of the unit.
Moreover, it depends on the set AR of active rules that reflects the context
of the considered unit. The definition of the parallel and concurrent semantics
does not fix the set AR. This means that one can choose any set of parallel
rules as active. Nevertheless, as mentioned before, the typical case is to



choose AR as the set of all parallel rules composed of the rules of a set of
units that interact with each other in the common environment. The rules
of the considered unit may occur as single rules or as components of parallel
rules in AR.

2. All parallel and concurrent runs contain only derivations that apply active
rules. Moreover, each such derivation is only accepted if its initial and result
graph are allowed by the control condition. Moreover, each concurrent run
contains at least one accepted parallel run. Hence, the set of concurrent runs
is the quotient set of the parallel runs with respect to the true equivalence
relation. This is reflected in the following observation the proof of which is
straightforward and hence omitted.

Observation 1 Let aut = (g, P, c) be an autonomous unit, let AR ⊆ R∗, and

let d = (G
∗

=⇒
AR

G′) be a derivation. Then the following statements are equivalent.

1. (G, G′) ∈ SEMAR,P (c)
2. d ∈ PARAR(aut)
3. [d] ∩ PARAR(aut) 6= ∅
4. [d] ∈ CONCURAR(aut)

Examples

Two examples of autonomous units are depicted in Fig. 2. Both contain a single
rule that – according to the control condition free – can be applied arbitrarily
often. The goal of both units is equal to all which means that all parallel and
concurrent runs of the units are successful.

vertex copy

goal: all

rules:

cv:

v

−→

v

b e

v

cond: free

edge copy

goal: all

rules:

ce:

e b

v v′

v v′ −→

v v′

v v′

cond: free

Fig. 2. The units vertex copy and edge copy

Given a directed edge-labeled graph G and a set V such that every node in G
is a v-node, for some v ∈ V , the unit vertex copy on the left-hand side of Fig. 2
copies a node of G by generating a {b, e}-node and a v-labeled edge from the



original node to its newly generated copy. The unit edge copy on the right side
copies one unlabeled edge e′ of G provided that s(e′) and t(e′) are already copied
by two executions of vertex copy. It erases the e-loop at the copy of s(e′) and
the b-loop at the copy of t(e′) in order to guarantee that b and e cannot be used
by other applications of the rule ce. The label b indicates that the corresponding
node is the beginning of a simple path and the label e indicates the end of such
a path, respectively. Hence, b is removed if a new edge ends at that node, and e
is removed if a new edge starts at that node. Multiple concurrent applications of
vertex copy and edge copy generate simple paths from b-nodes to e-nodes that
are copies of simple paths of G. Moreover, the units generate copies of simple
cycles of G.

Applications of both rules depend on each other only in some cases. Con-
cretely, an application of ce is causally dependent on the two copies of its nodes
and on any edge copy that tries to use the same b- or e-loop. All other cases are
independent so that all vertex copies can be done in parallel followed by all edge
copies in parallel in the extreme case.

Autonomous units are meant to work within a community of autonomous
units that modify the common environment together. Every community is com-
posed of an overall goal that should be achieved, an environment specification
that specifies the set of initial environments the community may start working
with, and a set of autonomous units. The overall goal may be closely related to
the goals of the autonomous units in the community. Typical examples are the
goals admitting only graphs that satisfy the goals of one or all autonomous units
in the community.

Definition 5 (Community). A community is a triple

COM = (Goal , Init ,Aut),

where Goal , Init ∈ X are graph class expressions called the overall goal and the
initial environment specification, respectively, and Aut is a set of autonomous
units. The components of COM are denoted as GoalCOM , InitCOM , and AutCOM ,
respectively.

In a community, all units act on the common environment in a self-controlled
way by applying their rules. The active rules integrated in the semantics of au-
tonomous units make it possible to define a concurrent semantics of a community
in which every autonomous unit may perform its transformation processes. From
the point of view of a single autonomous unit, the changes of the environment
that are not caused by itself must be activities of the other units in the commu-
nity. Hence, in every transformation step in a community, a multiset of the rules
occurring in the autonomous units of the community is applied to the environ-
ment. All these multisets constitute the active rules of the community. This is
reflected in the following definition.



Definition 6 (Active rules). Let COM = (Goal , Init ,Aut) be a community.
Then the set of its active rules is defined by

AR(COM ) = (
⋃

aut∈Aut

Paut )∗.

Every concurrent run of a community must start with a graph specified as
an initial environment of the community. Moreover, it must be a concurrent
run of every autonomous unit participating in the community. Successful runs of
communities are defined analogously to the successful runs of autonomous units.

Definition 7 (Concurrent community semantics).

1. Let COM = (Goal , Init ,Aut) be a community of autonomous units. Let
daut ∈ PARAR(COM )(aut) for every aut ∈ Aut with daut ≡ daut′ for all
aut , aut ′ ∈ Aut. Let the common start graph of these equivalent derivations
be in SEM (Init). Then the common equivalence class is a concurrent run of
COM .

2. The set of all concurrent runs of COM is denoted by CONCUR(COM ).
3. A concurrent run is successful if the common result graph is specified by

SEM (Goal ).

As the definition of the community semantics shows, there is a strong con-
nection between the semantics of a community COM = (Goal , Init ,Aut) and
the semantics of an autonomous unit aut ∈ Aut . The concurrent semantics of
COM is a subset of the semantics of aut with respect to the active rules of
COM . Conversely, one may take the intersection of the concurrent runs of all
autonomous units with respect to the active rules and restrict it to the deriva-
tions starting in an initial environment. Then one gets the concurrent semantics
of the community. This reflects the autonomy because no unit can be forced to
do anything that is not admitted by its own control. The following observation
makes the described connection precise.

Observation 2 Let COM = (Goal , Init ,Aut) be a community. Then

CONCUR(COM ) =

{[G
∗

=⇒
AR(COM )

G′] ∈
⋂

aut∈Aut
CONCURAR(COM )(aut) | G ∈ Init}.

Proof. Let d = (G
∗

=⇒
AR(COM )

G′) be a derivation. Then by Definition 7, the

class [d] is in CONCUR(COM ) if and only if G ∈ SEM (Init) and for each
aut ∈ Aut , there is a derivation daut ∈ PARAR(COM)(aut) such that daut ≡ d,

i.e., [daut ] = [d]. By Definition 4, this means that [d] ∈ {[G
∗

=⇒
AR(COM )

G′] ∈
⋂

aut∈Aut
CONCURAR(COM )(aut) | G ∈ Init}.

If the control conditions satisfy certain properties, the preceding definitions
establish a nice relation between the community semantics and the semantics of



the single autonomous unit which is composed of the goal of the community, the
union of all rules occurring in the autonomous units of the community and a
control condition that, specifies the intersection of the semantics of the control
conditions of the units. This is stated in the following observation.

Observation 3 Let COM = (Goal , Init ,Aut) be a community and let union =
(Goal ,

⋃
aut∈Aut

Paut , c) such that

SEMAR(COM ),Punion
(c) =

⋂

aut∈Aut

SEMAR(COM ),Paut
(caut ).

Then CONCURAR(COM )(union) =
⋂

aut∈Aut
CONCURAR(COM )(aut).

Proof. Let d = (G
∗

=⇒
AR(COM )

G′) be a derivation. By Observation 1, we have that

[d] ∈ CONCURAR(COM )(union) if and only if (G, G′) ∈ SEMAR(COM ),P (c). By
assumption, this is the case if and only if

(G, G′) ∈
⋂

aut∈Aut

SEMAR(COM),Paut
(caut ),

and by Observation 1, this is equivalent to

[d] ∈
⋂

aut∈Aut

CONCURAR(COM )(aut).

It should be noted that the condition in Observation 3 can be satisfied if the
following holds.

1. For each aut ∈ Aut the semantics of the control condition caut does not
depend on the parameter Paut , i.e.,

SEMAR(COM),P (caut ) = SEMAR(COM),P ′(caut ),

for all P, P ′ ⊆ R.
2. The class C is closed under intersection, i.e., for all c, c′ ∈ C we have c∧c′ ∈ C

with SEMAR,P (c ∧ c′) = SEMAR,P (c) ∩ SEMAR,P (c′).

In this case, the condition c of the unit union can be defined as
∧

aut∈Aut
caut .

Examples

The community V-paths shown in Fig. 3 solves a generalized form of the Hamil-
tonian path problem. More precisely, for some set V = {v1, . . . , vr}, V-paths

searches for copies of V -paths which are simple paths, that consist of r nodes
and contain exactly one vi-node for every i = 1, . . . , r. Hence, these paths are
Hamiltonian w.r.t. the set V and, consequently, if V coincides with the node



set of the initial environment, the community solves the Hamiltonian path prob-
lem. This is done in a concurrent way with the four autonomous units V-checker,
vertex copy, edge copy, and check. The initial component of the community spec-
ifies the set of V-graphs comprising all directed graphs with unlabeled edges and
nodes, but where to each node a v-loop is added for some v ∈ V The goal of
V-paths is a subgraph condition specifying the set of all graphs that contain a
heureka-node indicating that a V -path is found.

V-paths

goal: heureka

init: V -graphs
aut: V-generator, vertex copy,

edge copy, check

Fig. 3. The community V-paths

The autonomous unit V-checker generates a set of (V ∪{check})-nodes where
check /∈ V . This node is used later on for analysing copies of simple paths. It is
depicted in Fig. 4. The nodes generated by V-checker will be called checkers in
the following.

V-checker

rules:
gen: empty −→

v1, . . . , vr

check

Fig. 4. The unit V-checker

The autonomous units vertex copy and edge copy are depicted in Fig. 2. As
stated in Section 4, they copy simple paths of the initial graph and label their
start nodes with a b-loop and their end nodes with an e-loop, each.

The unit check is depicted in Fig. 5 and contains the rules start, go, and
stop. It searches for a copy of a simple path of the initial environment. The rule
start begins the search at a b-node. It inserts a go-edge from the b-node to a
(V ∪ {check})-checker and deletes both the v-loop and the check -loop from the
latter. The check -loop is deleted to avoid that the checker can be used for another
path, and the v-loop is deleted in order to remember that the path has already
passed through a copy of a v-node. The application of the rule go changes the
source of the go-edge to the next node, say n, in the copy of a simple path.
Moreover, it deletes the corresponding loop at the checker of the path, i.e., it



deletes that loop at the target of the go-edge which has the same label as the
loop of the node of which n is a copy. Hence, the rule go cannot move the source
of the go-edge to an already visited node. The rule stop can be applied if there
doesn’t remain any labeled loop at the corresponding checker. Moreover the copy
of the path ends which is indicated by the e-loop. The application of the rule
deletes the go-edge and adds a heureka-loop to its target. Please note that the
symbol λ at the checker in the left-hand side of the rule means that the checker
has no labeled loop. Technically, this can be expressed by the rule with negative
context condition (NC, L, K, R) where L consists of an e-node, a checker, and a
go-edge from the e-node to the checker, NC consists of L plus a v-loop at the
checker where v ∈ V , K is obtained from L by deleting the go-edge, and R is
obtained from K by adding a heureka-loop to the checker.

The control condition is satisfied if the unit check applies in its last step
a parallel rule composed of the rule stop only. Before the application of stop,
parallel rules composed of start and go can be applied arbitrarily often. Hence,
the unit finishes transforming graphs after the first application of the rule stop.

check

rules:

start:

v

b

v check

v −→

v

b

v go stop :

e

λ

go −→

e

heureka

go :

v

vgo −→ vgo

cond: {start , go} ; stop

Fig. 5. The unit check

With respect to causal dependency, the following holds. The application of
the rule of V-checker is independent of all other rule applications. The applica-
tion of start must wait for the generation of its node copy and its checker. The
rule go can be applied after a start application sequentially traversing a copy
of a simple path. The rule stop is only applicable at the end of the path if at
all. The applications of the check -rules are independent of each other if they
concern different copies of simple paths. In particular, the check of a single copy
of a simple path is never longer than r steps if r is the number of elements of



V . It needs exactly r steps in the successful case of finding a V -path. Because of
the control condition of the autonomous unit check, we get that all concurrent
runs of the community V -paths are successful.

5 Canonical Derivations

The definition of concurrent runs of autonomous units reflects the principle of
true concurrency meaning that the order of time of two rule applications is only
fixed if the derivation steps are causally dependent. The disadvantage of the
equivalence classes as concurrent runs is that they may contain an exponen-
tial number of equivalent derivations. This follows from the fact that a parallel
derivation step applying n rules is equivalent to all iterated sequentializations
including all n! permutations of the n rule applications. There is a complete
enumeration of each equivalence class starting with a parallel run in the class
by iterated sequentializations and inverse sequentializations. But one may ask
whether there is a more efficient method to check the equivalence of parallel runs.
How and how fast equivalence can be checked, is often a fundamental question.
In the case of concurrent runs of autonomous units, it is of particular interest
because an equivalence class of parallel runs satisfies the control condition con-
ditions if one member does. Therefore, the satisfaction of control conditions can
only be checked up to equivalence.

In this section, we show that each equivalence class of parallel runs contains
canonical derivations which are reduced forms with respect to a shift operator
and which can be constructed from an arbitrary run by a quadratic number
of shifts at most. A shift is a composition of a sequentialization followed by
an inverse sequentialization moving some part of a parallel derivation step to
the preceding step. In other words, one gets a quadratic equivalence check in
this way if the canonical derivation is a unique representative of a concurrent
run. Furthermore, it turns out that the canonical derivation is unique if the
shift operator is confluent which applies in the DPO approach for example. For
technical purposes, we also introduce the delay of a parallel derivation as the
sum of the numbers of steps each atomic rule must wait before it is applied as
well as the number of applied atomic rules.

The following notions and results can be found in [11] (cf. also [3]) for the
DPO approach to graph transformation. They are adapted here to the case of
concurrent runs in communities of autonomous units.

Definition 8 (Shift operator).

1. A parallel derivation F =⇒
p+q

G′ =⇒
r

H with p 6= 0 6= q is the shift of the par-

allel derivation F =⇒
p

G=⇒
q+r

H if there is a derivation F =⇒
p

G=⇒
q

G′ =⇒
r

H

such that the first two steps are the sequentialization of F =⇒
p+q

G′ and the

last two steps the sequentialization of G=⇒
q+r

H.



2. The shift operator is closed under sequential composition of parallel deriva-
tions, i.e., a parallel derivation E

∗
=⇒

P
F =⇒

p+q
G′ =⇒

r
H

∗
=⇒

P
I is a shift of the

parallel derivation E
∗

=⇒
P

F =⇒
p

G′ =⇒
q+r

H
∗

=⇒
P

I if F =⇒
p+q

G′ =⇒
r

H is a shift of

F =⇒
p

G=⇒
q+r

H .

3. A parallel derivation is canonical if no shift is possible.

4. Let s = (G0 =⇒
r1

G1 =⇒
r2

· · ·=⇒
rm

Gm) be a parallel derivation with ri =
ni∑

j=1

rij ,

rij ∈ R, ni ≥ 1 for i = 1, · · · , m. Then the delay of s is defined by

delay(s) =

m∑

i=1

(i − 1) · ni

and the number of atomic rules applied in s by nar(s) =
m∑

i=1

ni.

Theorem 1. Let s = (G0 =⇒
r1

G1 =⇒
r2

· · ·=⇒
rm

Gm) be a parallel derivation with

ri =
ni∑

j=1

rij , rij ∈ R, ni ≥ 1 for i = 1, · · · , m. Let s′ be a shift of s. Then the

following holds.

1. s ≡ s′.
2. delay(s′) < delay(s).

3. 0 ≤ delay(s) ≤ n·(n−1)
2 for n = nar(s).

4. Let s = s0, s1, · · · , sk be a sequence of parallel derivations such that si is a
shift of si−1 for i = 1, · · · , k. Then k ≤ delay(s).

5. The equivalence class [s] contains canonical derivations where some of them
are obtained by iterating shifts as long as possible starting with s.

6. The canonical derivation in [s] is unique if the shift operator is confluent, i.e.,
if s1 and s2 are shifts of some parallel derivation s0, then there is a parallel
derivation s3 which is obtained from s1 and s2 by iterated shifts.

7. Let the canonical derivation in [s] be unique. Then s ≡ s for some parallel
derivation s if and only if iterated shifts as long as possible starting in s and
s yield the same result.

Proof. 1. A shift is a composition of a sequentialization and an inverse sequen-
tialization and yields equivalent derivations, therefore.

2. A shift moves at least one atomic rule to the preceding step such that it is
delayed one step less while no rule must wait longer than before.

3. As the shift decreases the delay, a sequentialization increases it. Therefore,
the worst case is a purely sequential derivation with one applied atomic rule
per step. The delay of such a derivation is the sum of the first n− 1 natural

numbers which is n·(n−1)
2 .

4. As the delay cannot be negative and decreases with each shift, delay(s) is
an upper bound of the number of iterated shifts starting in s.



5. Accordingly, the iteration of shifts as long as possible terminates always
yielding a canonical derivation.

6. It is well-known that a relation yields unique results by iterated application
if it is confluent and terminating.

7. Let ŝ be the result of the iterated shifts starting in s and s. Then s ≡ ŝ ≡ s
according to Point 1. Conversely, there is only one canonical derivation in
[s].

Examples

Let [s] be a successful concurrent run of the community V-paths. Without loss
of generality, one can assume that s is canonical (otherwise shifts as long as
possible yield one). Due to the dependency analysis, all node copies and all
checker generations are done in the first step and all edge copies and applications
of start are done in the second step. The following r − 2 steps are parallel
applications of the rule go where r is the number of elements of the label set V.
The last step consists of all parallel applications of the rule stop which is applied
at least once because this is the only way to end successfully. This means that a
successful run finds a V -path (and hence a Hamiltonian path as a special one)
in r + 1 steps.

If enough node and edge copies are made in a fair way, then one gets copies
of all simple paths. If enough checkers are generated, then it can be checked
whether there is a V -path among all simple paths. In other words, the concurrent
semantics of V-paths can solve the V -path problem in a linear number of steps
with high probability depending on the number of copies. To make this true, one
must assure that concurrent steps are not delayed for too long. The canonical
derivation does the job because all possible rule applications are performed as
early as possible. But less strict runs will also work if the number of shifts that
transform them into the canonical derivation is small.

This result is quite significant as it shows that an NP -complete problem can
be solved by a parallel run in a polynomial number of steps. This holds for con-
current runs, too, if there is not much unnecessary delay. Clearly, it is well-known
that parallelism is a way to overcome the P=NP -problem. The message here is
that autonomous units do the job if they are many enough and interact properly.
To keep the example simple, we do not employ any kind of heuristics. Neverthe-
less, autonomous units are suitable candidates to model heuristic methods (see
e.g. [20, 15].)

6 Related Work

The present investigation is mainly related to work in three areas. With respect
to the concurrent semantics, it contributes to the theory of concurrency. Petri
nets are shown to be special cases of communities of autonomous units (cf. [9]).
The relation to other models of concurrent processes is still an open research
topic.



Concerning autonomy, our approach is closely related to multiagent systems.
In [19], it is sketched that communities of autonomous units are a kind of rule-
based realization of the axiomatic definition of multiagent systems in the sense of
Wooldridge and others (see,e.g., [21]). How our concept is related to other graph-
transformational approaches to agent and actor systems like [10, 5, 4], should be
investigated in the future.

Last but not least, communities of autonomous units are devices to model
interactive processes and distributed systems. Within the area of graph trans-
formation, the approach is closely related to Manfred Nagl’s and others’ work
on the IPSEN Project and the IMPROVE Project (see, e.g., [16, 17]). While we
start from a theoretical base and try to expand the concepts to reach practical
use, the Nagl school is rooted in the software engineering point of view from
the beginning. It would be of great interest to investigate the relations in more
details because quite some synergy may emerge from a common framework.

7 Conclusion

This is the third paper on the semantics of autonomous units. After the sequen-
tial semantics in [8] and the parallel semantics in [13], we have introduced the
concurrent semantics based on the idea of true concurrency. A concurrent run is
an equivalence class of parallel runs w.r.t. the true-concurrency equivalence. It
can be represented by canonical derivations where a derivation is canonical if no
shift is possible meaning that each rule application is in the first step or causally
dependent of the preceding step. The example shows that an NP -hard problem
can be solved by linear concurrent runs of a community of autonomous units
where a concurrent run is linear if it contains a parallel run of linear length.

The paper provides the very first investigation of the concurrent semantics
of autonomous units. Further studies are needed to get a better insight into
the matter. This includes a thorough comparison with other approaches to con-
currency like communicating sequential processes, calculus of communicating
systems, traces, bigraphs, etc. W.r.t. Petri nets, the relation is already quite
clear. In [13], it is shown that a place/transition system can be seen as a com-
munity of autonomous units where each transition is the single rule of a unit and
the firing of a multiset of transitions satisfies the true-concurrency condition so
that these communities of place/transition systems fit into the framework of this
paper. Moreover, it should be thoroughly studied what are of the consequences
of requiring that an equivalence class must contain a single successful run.

References

1. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S.,
Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and
programming. Science of Computer Programming 34(1), 1–54 (1999)

2. Baldan, P., Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Rossi, F.: Concur-
rent semantics of algebraic graph transformations. In: Ehrig, H., Kreowski, H.-J.,



Montanari, U., Rozenberg, G. (eds.) Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Vol. 3: Concurrency, Parallelism, and Distribution,
pp. 107–185. World Scientific, Singapore (1999)

3. Corradini, A., Ehrig, H., Heckel, R., Löwe, M., Montanari, U., Rossi, F.: Algebraic
approaches to graph transformation part I: Basic concepts and double pushout
approach. In: Rozenberg [18], pp. 163–245

4. Depke, R., Heckel, R.: Modeling and analysis of agents’ goal-driven behavior using
graph transformation. In: H.D. Ehrich, J.J. Meyer, M. R. (ed.) Objects, Agents
and Features - Structuring Mechanisms for Contemporary Software, pp. 81–97.
Springer (February 2003)

5. Depke, R., Heckel, R., Küster, J.: Formal agent-oriented modeling with graph trans-
formation. Science of Computer Programming 44, 229–252 (2002)

6. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages and Tools. World Scientific, Singapore (1999)

7. Hölscher, K., Klempien-Hinrichs, R., Knirsch, P., Kreowski, H.-J., Kuske, S.:
Autonomous units: Basic concepts and semantic foundation. In: Hülsmann, M.,
Windt, K. (eds.) Understanding Autonomous Cooperation and Control in Logis-
tics – The Impact on Management, Information and Communication and Material
Flow. pp. 103–120. Springer, Berlin Heidelberg New York, USA (2007)

8. Hölscher, K., Kreowski, H.-J., Kuske, S.: Autonomous units and their semantics —
the sequential case. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rosen-
berg, G. (eds.) Proc. International Conference of Graph Transformation (ICGT
2006). Lecture Notes in Computer Science, vol. 4178, pp. 245–259 (2006)

9. Hölscher, K., Kreowski, H.-J., Kuske, S.: Autonomous units to model interacting
sequential and parallel processes. Fundamenta Informaticae 92(3), 233–257 (2009)

10. Janssens, D.: Actor grammars and local actions. In: Ehrig, H., Kreowski, H.-J.,
Montanari, U., Rozenberg, G. (eds.) Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Vol. 3: Concurrency, Parallelism, and Distribution,
pp. 57–106. World Scientific, Singapore (1999)

11. Kreowski, H.-J.: Manipulationen von Graphmanipulationen. Ph.D. thesis, Tech-
nische Universität Berlin (1977)

12. Kreowski, H.-J., Kuske, S.: Graph transformation units with interleaving seman-
tics. Formal Aspects of Computing 11(6), 690–723 (1999)

13. Kreowski, H.-J., Kuske, S.: Autonomous units and their semantics - the parallel
case. In: Fiadeiro, J., Schobbens, P. (eds.) Recent Trends in Algebraic Develop-
ment Techniques, 18th International Workshop, WADT 2006. Lecture Notes in
Computer Science, vol. 4408, pp. 56–73 (2007)

14. Kuske, S.: More about control conditions for transformation units. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Proc. Theory and Application of
Graph Transformations. Lecture Notes in Computer Science, vol. 1764, pp. 323–337
(2000)

15. Kuske, S., Luderer, M.: Autonomous units for solving the capacitated vehicle rout-
ing problem based on ant colony optimization. Electronic Communications of the
EASST 26 (2010), 23 pages

16. Nagl, M. (ed.): Building Tightly Integrated Software Development Environments:
The IPSEN Approach, Lecture Notes in Computer Science, vol. 1170. Springer-
Verlag (1996)

17. Nagl, M., Marquardt, W. (eds.): Collaborative and Distributed Chemical Engineer-
ing: From Understanding to Substantial Design Process Support - Results of the



IMPROVE Project, Lecture Notes in Computer Science, vol. 4970. Springer-Verlag
(2009)

18. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations. World Scientific, Singapore (1997)

19. Timm, I., Kreowski, H.-J., Knirsch, P., Timm-Giel, A.: Autonomy in software
systems. In: Hülsmann, M., Windt, K. (eds.) Understanding Autonomous Coop-
eration and Control in Logistics – The Impact on Management, Information and
Communication and Material Flow. pp. 255–274. Springer (2007)

20. Tönnies, H.: An evolutionary graph transformation system as a modelling frame-
work for evolutionary algorithms. In: Mertsching, B., Hund, M., Aziz, M. Z. (eds.)
KI 2009: Advances in Artificial Intelligence. Lecture Notes in Computer Science,
vol. 5803, pp. 201–208 (2009)

21. Wooldridge, M., Jennings, N. R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10(2) (1995)


