
Electronic Communications of the EASST
Volume 30 (2010)

International Colloquium on Graph and Model
Transformation On the occasion of the 65th birthday of

Hartmut Ehrig
(GraMoT 2010)

Stepping from Graph Transformation Units to Model Transformation
Units

Hans-Jörg Kreowski, Sabine Kuske, Caroline von Totth

24 pages

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Stepping from Graph Transformation Units to Model
Transformation Units

Hans-Jörg Kreowski1, Sabine Kuske2, Caroline von Totth3∗

1 kreo@informatik.uni-bremen.de
2 kuske@informatik.uni-bremen.de
3 caro@informatik.uni-bremen.de
Department of Computer Science
University of Bremen, Germany

Abstract: Graph transformation units are rule-based entities that allow to transform
source graphs into target graphs via sets of graph transformation rules according
to a control condition. The graphs and rules are taken from anunderlying graph
transformation approach. Graph transformation units specify model transforma-
tions whenever the transformed graphs represent models. This paper is based on
the observation that in general models are not always suitably represented as sin-
gle graphs, but they may be specified as the composition of a variety of different
formal structures such as sets, tuples, graphs, etc., whichshould be transformed
by compositions of different types of rules and operations instead of single graph
transformation rules. Consequently, in this paper, graph transformation units are
generalized to model transformation units that allow to transform such kind of com-
posed models in a rule-based and controlled way. Moreover, two compositions of
model transformation units are presented.

Keywords: graph transformation, model transformation, transformation units, mo-
del transformation units

1 Introduction

Computers are devices that can be used to solve all kinds of data-processing problems – at least in
principle. The problems to be solved come from economy, production, administration, science,
education, entertainment, and many other areas. There is quite a gap between the problems as
one has to face them in reality and the solutions one has to provide so that they run on a computer.
Therefore, computerization is concerned with bridging this gap by transforming a problem into
a solution. Many efforts in computer science contribute to this need for transformation. First of
all, compilers are devices that transform programs in a high-level language into programs in a
low-level language where the latter are nearer and more adapted to the computer than the former.
The possibility and success of compilers have fed the dream of transforming descriptions of
data-processing problems automatically or at least systematically into solutions that are given by

∗ The authors would like to acknowledge that their research ispartially supported by the Collaborative Research
Centre 637 (Autonomous Cooperating Logistic Processes – A Paradigm Shift and Its Limitations) funded by the
German Research Foundation (DFG).

1 / 24 Volume 30 (2010)

mailto:kreo@informatik.uni-bremen.de
mailto:kuske@informatik.uni-bremen.de
mailto:caro@informatik.uni-bremen.de

Stepping from Graph Transformation Units to Model Transformation Units

smoothly running programs. In recent years, the term model transformation has become popular
for this idea.

In this paper, graph transformation units are generalized to model transformation units as rule-
based devices for modeling model transformations in a compositional framework. Our approach
has three sources of inspiration:

1. Following the ideas of model-driven architecture (MDA; cf., e.g., [Fra03]), the aim of
model transformation is to transform platform-independent models (PIMs), which allow to
describe problems adequately, into platform-specific models (PSMs), which run properly
and smoothly on a computer. As a typical description of the PIMs one may use UML
diagrams, while PSMs are often just programs in some common higher-level language
like Java or C++. A significant model transformation language within the framework of
MDA is the QVT standard of the OMG [OMG08].

2. One encounters quite an amazing number of model transformations in theoretical com-
puter science – in formal language theory as well as in automata theory in particular.
These areas provide a wealth of transformations between various types of grammars and
automata like, for example, the transformation of nondeterministic finite automata into de-
terministic ones, or of pushdown automata into context-free grammars (or the other way
round), or of arbitrary Chomsky grammars into the Pentonen normal form (to give a less
known example).

3. Graph transformation units (cf., e.g., [KKS97, KK99, KKR08]) are rule-based devices
to model binary relations between initial and terminal graphs. If the initial graphs are
interpreted as input models and the terminal graphs as output models, then such a unit
embodies a model transformation. The transformation of UMLsequence diagrams into
UML collaboration diagrams in [CHK04] and the transformation of well-structured flow
diagrams intowhile-programs in [KHK06] are examples of this kind. This observation
supports the idea to use graph transformation units as building blocks for the modeling of
model transformations.

While the models in the MDA context are often diagrammatic ortextual, the examples of the-
oretical computer science show that models may also be tuples with components being sets of
something. Accordingly, graphs as well as tuples, sequences, and sets of models are introduced
as models inSection 3, while Section 2provides the necessary mathematical preliminaries. The
basic steps of model transformation are defined inSection 4by actions that are applied compo-
nentwise to tuples of models and consist of rules in case of graph components and of data type
operations in all other cases. Based on models and actions, the notion of a model transformation
unit is introduced inSection 5, providing the descriptions of input, working and output models,
a set of actions, and a control condition to regulate the use of actions. The semantics of such
a unit is a transformation of input models into output models. In Section 6, the sequential and
parallel compositions of model transformation units are studied. In this way, complex model
transformations can be built up from simple ones in a modularway. While we discuss related
work in Section 7, the paper ends with some concluding remarks. As a running example, the
transformation of right-linear grammars into finite state automata is developed in several stages.

Proc. GraMoT 2010 2 / 24

ECEASST

2 Preliminaries

In this section, we recall the notion of a graph rule base providing a class of graphs, a class of
rules and a rule application operator. In the following sections graphs are used as basic visual
models and rules are used for their elementary transformations. Besides graphs, we use iden-
tifiers, truth values, and non-negative integers as smallest atomic models. Moreover, cartesian
products, free monoids, and powersets are recalled becausethese constructions will be used to
build up composite models in the next section.

2.1 Graph Rule Bases

A graph rule base B= (G ,R,=⇒) consists of a class of graphsG , a class of rulesR, and a
rule application operator=⇒ with =⇒

r
⊆ G ×G for everyr ∈ R. The rule application operator

is used in infix notation, i.e,(G,H) ∈ =⇒
r

is denoted byG=⇒
r

H. Subsections2.2 through2.4

present examples for the components of rule bases which are used throughout this paper.

2.2 Graph Classes

There are many different kinds of graph classes, two of whichare explored here further: the class
of directed edge-labeled graphs and the class of finite stategraphs, the latter being a subclass of
the former.

Directed edge-labeled graphs. The class of directed, edge-labeled graphs with individual,
possibly multiple edges is defined as follows. LetΣ be a set of labels. Agraph over Σ is a
systemG= (V,E,s, t, l) whereV is a set ofnodes, E is a set ofedges, s, t : E →V are mappings
assigning asource s(e) and atarget t(e) to every edge inE, andl : E → Σ is a mapping assigning
a label to every edge inE. An edgeewith s(e) = t(e) is also called aloop. For a nodev∈V the
number of edges which havev as source is denoted byoutdegree(v) and the number of edges that
point tov is theindegreeof v. An edgeewith labelx is called anx-pointer if indegree(s(e)) = 0
andoutdegree(s(e)) = 1. The componentsV, E, s, t, andl of G are also denoted byVG, EG, sG,
tG, andlG, respectively. The set of all graphs overΣ is denoted byGΣ.

For graphsG,H ∈ GΣ, agraph morphism g: G→ H is a pair of mappingsgV : VG →VH and
gE : EG → EH that are structure-preserving, i.e.,gV(sG(e)) = sH(gE(e)), gV(tG(e)) = tH(gE(e)),
andlH(gE(e)) = lG(e) for all e∈ EG.

If the mappingsgV andgE are inclusions, thenG is called asubgraphof H, denoted byG⊆H.
For a graph morphismg: G→ H, the image ofG in H is called amatchof G in H, i.e., the match
of G with respect to the morphismg is the subgraphg(G)⊆ H.

Finite state graphs. Two particular subclasses ofGΣ are the classes of finite state graphs and
finite state graphs with word transitions respectively. More concretely, letI be some input alpha-
bet such thatI∗]{start,final} ⊆ Σ 1. Then the graph inFigure 1represents a finite state graph
with word transitions overI = {a,b,c}, where the edges labeled withw∈ I∗ represent transitions,

1 Given setsX andY,X]Y denotes the disjoint union ofX andY.

3 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

start finala

ccc

a

bb

ccc

Figure 1: A finite state graph with word transitions

start
final

a

bb

c

c

c

c

c

c

a

Figure 2: A finite state graph

and the sources and targets of the transitions represent states. The start state is indicated with
a start-pointer and every final state with afinal-pointer. States are depicted as unfilled circles
whereas all other nodes are shown as small filled circles.Figure 2shows a finite state graph
where each transition is labeled with a symbol fromI .

2.3 Rules

To be able to transform graphs, rules are applied to the graphs yielding graphs again. One rule
class that can be used to transform graphs inGΣ is defined as follows. Arule r = (L ⊇ K ⊆ R)
consists of three graphsL,K,R∈ GΣ such thatK is a subgraph ofL andR. The componentsL,
K, andR of r are calledleft-hand side, gluing graph, andright-hand side, respectively. A rule
may be depicted asL → R if K is clear from the context (the numbered nodes form the common
gluing graph).

An example of a rule is given inFigure 3. The left-hand side of this rule consists of two nodes

refine: 1 2
xyu

1 2

x yu

−→
x,y∈I
u∈I∗

Figure 3: The graph transformation rulerefine

Proc. GraMoT 2010 4 / 24

ECEASST

1 and 2 and an edge from node 1 to node 2 that is labeled with a word xyu from some alphabet
I∗ wherex and y are symbols ofI . The gluing graph consists of the two nodes 1 and 2; the
right-hand side is obtained from the gluing graph by inserting a new nodev and two new edges
e1 ande2 wheree1 points from node 1 tov and is labeled withx, ande2 points fromv to node 2
and is labeled withyu.

2.4 Rule Application

The application of a graph transformation rule to a graphG consists of replacing a match of the
left-hand side inG by the right-hand side in such a way that the match of the gluing graph is kept.
Hence, the application ofr = (L ⊇ K ⊆ R) to a graphG= (V,E,s, t, l) consists of the following
three steps.

1. A matchg(L) of L in G is chosen.

2. Now the nodes ofgV(VL −VK) are removed, and the edges ofgE(EL −EK) as well as the
edges incident to removed nodes are removed yielding theintermediate graph Z⊆ G.

3. Afterwards the right-hand sideR is added toZ by gluing Z with R in g(K) yielding the
graphH = Z] (R−K) with VH =VZ] (VR−VK) andEH = EZ] (ER−EK). The edges of
Z keep their labels, sources, and targets so thatZ ⊆ H. The edges ofR keep their labels;
they also keep their sources and targets provided that thosebelong toVR−VK . Otherwise,
sH(e) = g(sR(e)) for e∈ ER−EK with sR(e) ∈VK , andtH(e) = g(tR(e)) for e∈ ER−EK

with tR(e) ∈VK .

The application of a ruler to a graphG is denoted byG=⇒
r

H, whereH is the graph resulting

from the application ofr to G. A rule application is called adirect derivation.

If the rulerefinein Figure 3is applied to a finite state graph, it splits a word transitionlabeled
with a wordw of length at least two into two consecutive transitions, thefirst of which takes the
first symbol ofw, while the second one gets labeled with the remainder ofw. In particular, if
refine is applied as long as possible to the finite state graph inFigure 1, one gets the finite state
graph inFigure 2.

2.5 Further Basic Types

In addition to graph rule bases, we assume a set of identifiersID, the set of truth values BOOL=
{TRUE,FALSE}, and the set of non-negative numbersN. All these sets are equipped with the
usual predicates and operations, i.e. the arithmetic operations like+,−, ·,≤,=, etc. forN, the
Boolean operations like∧,∨,¬,→, etc. for BOOL, and the equality predicate= for ID.

All involved sets may be subject to the following three constructions that yield sets again:

1. the cartesian productX1×·· ·×Xk for setsX1, . . . ,Xk,k∈ N;

2. the free monoidX∗ for a setX;

3. the powersetset(X) for a setX that contains all subsets ofX.

5 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

Furthermore we assume that the usual operations of these data types are available, like the
projections in the case of the product, concatenation and other string-processing operations in
the case ofX∗ and the usual operations and predicates on sets like∪,∩,∈,⊆, etc.

3 Models and Model Types

Many models used in computer science are of a graphical, diagrammatic, and visual nature, and
they can be represented as graphs in an adequate way in most cases. Moreover, further types
of elementary models such as numbers, truth values, or identifiers may be useful in addition to
graphs. And models may not occur only as singular items, but also as tuples or as some other
collections of models like sequences and sets. To cover this, we define models and their types in
a recursive way.

Definition 1 (models and their types) Models together with their types are recursively defined
as follows:

1. LetY be a class of graphsG , ID, BOOL, orN. Then eachy∈Y is amodel of type Y.

2. If mi is a model of typeTi for i = 1, . . . ,k for somek∈ N, then thek-tuple (m1, . . . ,mk) is
amodel of type T1×·· ·×Tk.

3. If mi is a model of typeT for i = 1, . . . ,k for somek∈ N, then the sequencem1 · · ·mk is a
model of type T∗.

4. If m is a set of models of typeT, thenm is amodel of type set(T).

Note that in this way every model gets a type which is a set of models, but can serve as a name
on the syntactic level as well. To stress the semantic level we may writeM(T) for T.

Point 1 makes sure that all graphs and – in this way – all diagrams with graph representations
are models. Besides graphs, truth values, numbers and identifiers become available as elementary
models. Point 2 allows one to consider ak−tuple of models as a model and makesk models
simultaneously available in this way. Point 3 and Point 4 also make many models of the same
type available at the same time. While Point 3 provides them as a sequence, Point 4 collects
them as a set.

The types of models as introduced above may be considered as free because they are based
on the free constructions product, free monoid, and power set. But in many cases, it may not be
reasonable to transform all models of a free type without anyfurther restriction. For example, a
Chomsky grammarG= (N,T,P,S) is not just a quadruple of typeset(ID)×set(ID)×set(ID∗×
ID∗)× ID, butN, T andP should be finite,N andT should be disjoint,Sshould be a nonterminal,
and a pair(u,v) ∈ P should consist of two strings of terminals and nonterminalsrather than of
arbitrary identifiers. To make such restrictions possible,we introduce constrained types.

Proc. GraMoT 2010 6 / 24

ECEASST

Definition 2 (constrained model types) LetT be a model type.

1. ThenX (T) is a class ofconstraintsif eachx∈ X (T) specifies a set of models of typeT,
i.e. SEM(x)⊆M(T).

2. Forx∈ X (T), 〈T with x〉 is called aconstrained model type. The models of this type are
the models ofSEM(x), denoted byM(〈T with x〉).

The definition is used in a recursive way considering the freemodel types and the con-
strained model types both as model types. Consequently, onecan build types of the form
〈〈T with x〉 with y〉 with iterated constraints.

3.1 Examples for Constraints

1. For the model typeG , constraintsx with SEM(x) ⊆ G are called graph class expressions
in the framework of graph transformation units and are extensively used there to specify
initial and terminal graphs. Examples of graph class expressions are the following.

(a) Single graphsZ ∈ G with SEM(Z) = {Z} are useful as start graphs of graph gram-
mars.

(b) ForG = GΣ with Σ ⊆ ID, a subsetX ⊆ Σ describesSEM(X) = GX and may serve as
terminal labels.

(c) ForG =GΣ andX ⊆ Σ, the expressionpointers(X) specifies all graphs inGΣ in which
all edges labeled with somex∈ X are pointers (cf.Subsection 2.2).

(d) ForG = GΣ andX ⊆ Σ, the expressionone(X) specifies all graphsG in which for
eachx∈ X there occurs exactly onex-labeled edge, i.e.,|{e∈ EG | lG(e) = x}| = 1
for eachx∈ X.

2. Logical formulas are further typical examples for constraints. They may involve model
variables and the usual predicates and operations of the basic and free types:

(a) Boolean operations in case of BOOL like¬,∧,∨,→;

(b) arithmetic operations and predicates onN like +, ·, mod, =,≤;

(c) string operations and predicates onX∗ for some setX, like concatenation, transposi-
tion, equality;

(d) set operations and predicates like∪, ∩,], =,⊆, ∈.

Consider, for example, a model(x,y,X,Y,m,n,u,v,G,H) of type ID × ID × set(ID)×
set(ID)×N×N× ID∗ × ID∗ ×GΣ ×GΣ. Then one may add the following constraints:
x= y, x∈ X, y∈Y, X∩Y = /0, m≤ n, length(u) ≥ n, uv 6= vu, u= vtranspos(v), G⊆ H,
G∈ GX, wherelengthmeasures the length of a wordu and returns an integer, andtranspos
reverses the sequence of symbols in a word. Clearly, all the constraints may be combined
by Boolean operations.

7 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

3. Another frequently used constraint for graphs and sets isthe requirement of finiteness
indicated by the constant model class expressionfiniteness. Instead of〈GΣ with finiteness〉
we may writefin(GΣ), andfinset(ID) instead of〈set(ID) with finiteness〉.

3.2 Examples for Constrained Model Types

1. Finite state automata with word transitions can be definedas a constrained model type, i.e.
a finite state automaton fsa= (I ,G) is a pair of type〈set(ID)×GΣ with (∆ ⊆ Σ)∧ (G ∈
(∆∩pointers({start,final})∩one({start})))〉 where∆ = I∗]{start,final}. The constraint
means that every state graphG is labelled overI∗]{start,final}, final- andstart-edges are
pointers, and there is exactly onestart-pointer. In the following, the constrained model
type of finite state automata with word transitions is denoted by FSA∗. The type of finite
state automata the transitions of which are labelled only with single symbols fromI , can
be defined as the finite state automata inFSA∗, but where in the constraintI∗ is replaced
by I , i.e., ∆ = I]{start,final}. The type of all finite state automata with single-symbol
transitions is denoted byFSA.

2. Chomsky grammars can be introduced in the framework aboveas models nearly in the
same way as they are defined in the literature.

A Chomsky grammar G= (N,T,P,S) is a quadruple of typeset(ID)×set(ID)×set(ID∗×
ID∗)× ID with finite N, T andP, N∩T = /0, S∈ N, and(u,v) ∈ P impliesu,v∈ (N∪T)∗

andu /∈ T∗. G is right-linear if, in addition,(u,v) ∈ P impliesu∈ N andv∈ (T+N)∪{ε}
whereε denotes the empty string.

More formally, the constraint of an arbitrary Chomsky grammar is with N,T,P∈ finset(ID)
∧N∩T = /0∧S∈N∧((u,v) ∈ P→ (u,v∈ (N∪T)∗∧u 6∈ T∗)). And in case of right-linear
grammars one must add((u,v) ∈ P→ (u∈ N∧v∈ T+N∪{ε})). The type of right-linear
grammars will be denoted byRLG. For explicit use below we mention here also the type
RLG×GΣ which will be used for transforming right-linear grammars into finite state au-
tomata.

4 Actions and Model Transformation Processes

In this section, the dynamic part of model transformations is introduced. The basic notion is that
of an action that describes an elementary step of model transformations. Then the iteration of
such steps provides more complex transformations.

It is worth noting that in this paper we do not explicitly consider infinite model transformations
because the purpose of model transformation units is to convert input models into output models
in finitely many steps. Infinite processes are considered in [HKK09].

Each modelmcan be identified with the 1-tuple(m) so that one may consider tuples of models
only without loss of generality. Given such a tuple(m1, . . . ,mk), an action is also ak-tuple
a= (a1, . . . ,ak) of component operations where, fori = 1, . . . ,k, ai specifies howmi is processed
by the action. Ifmi is a graph, thenai is a rule to be applied tomi. If mi is an identifier or truth
value, thenai may replace it by another identifier or the negated truth value respectively. Ifmi

Proc. GraMoT 2010 8 / 24

ECEASST

is a number, string or set, thenai may operate on it yielding a modified number, string or set
respectively. Moreover, we employ the void actionai =− meaning thatmi remains unchanged.
If the component actions are performed, then a new tuple(m′

1, . . . ,m
′
k) of models is obtained.

This is made precise in the following definition.

Definition 3 (actions) LetT1×·· ·×Tk be a model type.

1. Then anaction a= (a1, . . . ,ak) is a k-tuple such that one of the following holds fori =
1, . . . ,k:

(a) ai =−,

(b) ai ∈ R provided thatTi ⊆ G ,

(c) ai = renameprovided thatTi ⊆ ID whererenameis some mapping onTi ,

(d) ai is a term of operations with a distinguished variable of typeN and which evaluates
to N provided thatTi = N.

(e) the same as (d) replacingN by BOOL,T∗ andset(T) for some typeT,

(f) recursively,ai is an action provided thatTi is a product type with more than one
component.

2. Let m= (m1, . . . ,mk) ∈M(T1×·· ·×Tk). Then the action(a1, . . . ,ak) may be performed
on m yielding m′ = (m′

1, . . . ,m
′
k) ∈M(T1×·· ·×Tk) denoted bym=⇒

a
m′ if the following

holds fori = 1, . . . ,k:

(a) m′
i = mi if ai =−;

(b) mi =⇒
ai

m′
i if ai ∈ R;

(c) m′
i = ai(mi) if ai = renameor ai is a term as described in 1.(d) or (e).

(d) mi =⇒
ai

m′
i if ai is an action.

3. LetA be a set of actions. Then amodel transformation processis a sequence of performed
actionsm= m0=⇒

a1
m1=⇒

a2
· · ·=⇒

an
mn = m′ with theaction sequence a1 · · ·an ∈ A∗. Such a

process may be denoted bym
n

=⇒
A

m′ or m
∗

=⇒
A

m′ if the omitted details do not matter. The

set of model transformation processes overA is denoted byMTP(A).

4.1 Examples for Actions

Let (N,T,P,S,G) be an arbitrary model of typeRLG×GΣ as defined in point 2 ofSubsection 3.2.

1. An action that removes a nonterminal symbolX from the first component of the right-
linear grammar(N,T,P,S) and then inserts a state labeled withX in the graph component
can be defined as(remove(X),−,−,−,node(X)), whereremove(X) removesX from N (if
X ∈ N) andnode(X) is the graph transformation rule depicted inFigure 4. If N does not
containX the action cannot be executed.

9 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

node(X) : /0
X

−→

Figure 4: Graph transformation rulenode(X)

edge(X,u,Y) : 1 2

X Y
1 2

X Yu
−→

Figure 5: Graph transformation ruleedge(X,u,Y)

2. An action that removes a rule with a non-empty right-hand side from the right-linear gram-
mar while inserting a corresponding transition in the graphthat contains a state for every
nonterminal of the rule can be defined as(−,−, remove((X,uY)),−,edge(X,u,Y)); the
graph transformation ruleedge(X,u,Y) is given inFigure 5.

Model transformation processes are nondeterministic in three respects. First, the rule applica-
tions in graph model components are nondeterministic as some rules may be applicable at several
matches. Second, although the operations of the basic typesare functional, the evaluations of the
action terms of these types may not lead to unique values as the terms can contain free variables
with a variety of instantiations. Third, there may be a choice of many actions that can process a
current model, and the only regulating requirement for actions is that of sequential composition,
which is that one action is executed after the other. Sometimes such nondeterminism is desired,
convenient, or unavoidable. But in other cases one would like to avoid nondeterminism, or cut
it down at least. This can be achieved by choosing rules and actions in such a way that only
one or a few of them can be applied and performed. But the rulesand actions may become quite
complicated. Another possibility is extra regulation which can be provided by control conditions.

Definition 4 (control conditions) LetA be a set of actions. ThenC is a class ofcontrol condi-
tions if SEM(c)⊆ MTP(A) for everyc∈ C .

4.2 Examples for Control Conditions

In the area of graph transformation, control conditions arefrequently expressions over rules.
Many of these kinds of control conditions can be generalizedby replacing rules with actions.

1. A typical kind of control conditions are regular expressions overA. Each regular expres-
sionr specifies a regular languageL(r). A model transformation processm

∗
=⇒

A
m′ belongs

to SEM(r) if and only if its action sequence belongs toL(r). In the following, the operators
concatenation, union, and Kleene star on languages will be denoted on the level of regular
expressions as a semicolon, a vertical bar and a star, respectively.

2. Another kind of control condition is a priority given by a partial reflexive and transitive
relation≤ on A wherea ≥ a′, but a′ 6≥ a means thata has higher priority thana′. A

Proc. GraMoT 2010 10 / 24

ECEASST

model transformation process belongs toSEM(≤) if and only if each performed action
mi−1=⇒

ai
mi has highest priority meaning that there is nomi−1=⇒

a
mwith a≥ ai butai 6≥ a.

3. For any actiona, the control conditiona! requires to applya as long as possible. Hence,
m

∗
=⇒

A
m′ is in SEM(a!) if the application sequence is in{a}∗ and there is nom′′ such that

m′=⇒
a

m′′. (Due to the fact that model transformation processes are finite, this means that

SEM(a!) = /0 if a can be applied infinitely often to any modelm.) This condition can be
combined with regular expressions in a straightforward way. For example, the expression
a1!; a2! requires to apply firsta1 as long as possible and thena2 as long as possible.

5 Model Transformation Units

The previous sections provide all the ingredients that are needed to introduce model transforma-
tion units as devices to specify model transformations. Such a unit consists of the type of models
to be transformed, of the actions to be performed, and of the control condition that regulates the
transformation process. Moreover, the types of input and output models are specified, including
their relation to the type of working models. The reasons to separate input, output and working
models is that input and output may have different types and that it may be convenient to use
further component models for intermediate processing.

In other words, an input modelmof type〈I1×·· ·× Ik with x〉 (i.e. a model of typeI1×·· ·× Ik
that satisfies the constraintx) is first of all extended to a working modelmof typeT1×·· ·×Tl by
taking the components ofm as components ofm according to a mappinginitial . This mapping
yields for each component ofm the positions inm (i.e. the numbers out of 1, . . . , l) where the
component should be used. Clearly, each position inm may be associated in this way with with
at most one component of the input type. The components of theworking model not covered
by initial are initialized by the initial models of the respective component types. Initial models
are chosen in some appropriate way, like 0 forTj = N, etc. Thenm is transformed intom′ by
performing the given actions such that the control condition is satisfied. Afterwards an output
modelm′ of type 〈O1× ·· ·×On with y〉 is constructed according to a mappingterminal. This
mapping selects for every position inm′ (i.e. for every number out of 1, . . . ,n) a component of
m′. Moreover, it must be assured that the obtained modelm′ satisfies the constrainty.

Definition 5 (model transformation unit)

1. A model transformation unitis a systemmtu= (ITD,OTD,WT,A,C) where

− WT is a product typeT1×·· ·×Tl calledworking type,

− ITD is theinput type declarationwhich consists of the constrained product type〈I1×
·· ·× Ik with x〉 and a mappinginitial : [k]→ set[l] such thatinitial (i)∩ initial (j) = /0
for i 6= j andIi = Tj for i = 1, . . . ,k and j ∈ initial (i),

− OTD is the output type declarationwhich consists of a constrained product type
〈O1×·· ·×On with y〉 and an injective mappingterminal: [n]→ [l] with Oi =Tterminal(i)

for i = 1, . . . ,n,

11 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

− A is theset of actionswith respect to the working type and

− C is thecontrol condition.

The typeI = 〈I1×·· ·× Ik with x〉 is calledinput typeof mtuand the mappinginitial initial-
ization. The typeO= 〈O1×·· ·×On with y〉 is calledoutput typeof mtuand the mapping
terminal terminalization.

2. The model transformation modeled by the model transformation unit mtu is a mapping
SEM(mtu) : M(〈I1×·· ·× Ik with x〉)→ set(M(〈O1×·· ·×On with y〉)) which is defined
by m′ = (m′

1, . . . ,m
′
n)∈ SEM(mtu)(m1, . . . ,mk) for everym= (m1, . . . ,mk)∈M(〈I1×·· ·×

Ik with x〉) if and only if the following holds:

There are working modelsm= (m1, . . . ,ml), m′ = (m′
1, . . . ,m

′
l) ∈ M(T1 × ·· · ×Tl) such

that

(a) mj =

{

mi for i = 1, . . . ,k and j ∈ initial (i)
init(Tj) for j 6∈ initial ([k]) =

⋃

i∈[k]
initial (i) ,

(b) m
∗

=⇒
A

m′ ∈ SEM(C),

(c) m′
i = m′

j for i = 1, . . . ,n andterminal(i) = j,

(d) m′ ∈ SEM(y).

The initial modelinit(Tj) in (a) may be chosen in some appropriate way, like 0 forTj =N,
the empty stringε for Tj = T∗, the empty set /0 forTj = set(T) or FALSEfor Tj = BOOL.

In examples,initial will be represented in the formi 7→ j1, . . . , jp if initial (i) = { j1, . . . , jp}
andterminal in the formi 7→ j for terminal(i) = j.

Remark Given a model transformation unitmtuwith input typeI = 〈I1×·· ·× Ik with x〉 and
output typeO= 〈O1×·· ·×On with y〉, mtucan be graphically represented by

mtu
I O

emphasizing thatmtuspecifies a transformation of input models into output models.

5.1 Examples for Model Transformation Units

A model transformation unit that transforms right-linear Chomsky grammars into finite state
automata is given inFigure 6. The components of this model transformation unitRLG2FSA∗ are
the following:

Proc. GraMoT 2010 12 / 24

ECEASST

RLG2FSA∗

input: RLG& 1 7→ 1,2 7→ 2,3 7→ 3,4 7→ 4

add: 5:GΣ & init(5) = /0 for Σ = (N∪T)∗]{start,final}

actions: a1 = (remove(X),−,−,−,node(X)) for X ∈ N
a2 = (−,−, remove((X,ε)),−,final(X)) for X ∈ N
a3 = (−,−, remove((X,uY)),−,edge(X,uY)) for X,Y ∈ N,u∈ T+

a4 = (−,−,−,−,start(S))
a5 = (−,−,−,−, removeloop(X)) for X ∈ N

cond: a1!; a2!; a3!; a4;a5!

output: FSA∗ & 1 7→ 2,2 7→ 5

Figure 6: The model transformation unitRLG2FSA∗ transforms right-linear Chomsky grammars
(RLG) into finite state automata with word transitions (FSA∗)

− A model of the working type is a quintuple where the first four components of the working
type correspond to the four types of a right-linear grammar;the last component is equal
to GΣ and serves to build up the finite state graph. It is initialized with the empty graph /0.
The alphabetΣ must equal(N∪T)∗]{start,final} whereN are the nonterminal symbols
andT the terminal symbols of the input grammar, andstart andfinal will serve to label
the start and final states of the finite state graph respectively.

− The input type declaration is composed of the constrained model type for right-linear
grammars and the initializationinitial : [4]→ set([5]) with initial (i) = {i} for i = 1, . . . ,4.
This means that the four components of the input type are the first four components of the
working type. Hence, the four components of every input model are used as the first four
components in the model the model transformation unit starts working with.

− The output type declaration consists of the constrained model typeFSA∗ and the terminal-
ization terminalwith terminal(1) = 2 andterminal(2) = 5. Hence, every output model of
the unit is the pair consisting of the second and the last component of the model the unit
ends working with, provided that the type of this pair equalsFSA∗.

− The set of actions ofRLG2FSA∗ consists of five kinds of actions, each of which contains
among other operations one of the graph transformation rules depicted in Figures4, 5 and
7.

1. The first actiona1 = (remove(X),−,−,−,node(X)) serves to generate a state in the
graph for each nonterminal of the input grammar. More concretely, every application
of this action generates a state with nameX while removing the nonterminalX from
the set of nonterminals.

2. The second actiona2 =(−,−, remove((X,ε)),−,final(X)) inserts final pointers at all
final states of the graph, while removing the corresponding rules from the grammar.

13 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

start(S) :
S S start

−→

final(X) :
X X final

−→

remove− loop(X) :
X

−→

Figure 7: Graph transformation rules for the actions of model transformation unitRLG2FSA∗

3. The third actiona3 = (−,−, remove((X,uY)),−,edge(X,u,Y)) serves to generate
transitions from those rules of the grammar that have a nonterminal in their right-
hand side. Every application ofa3 removes such a rule from the rule set in the third
component at the same time that a corresponding transition in the graph is generated.

4. Action a4 = (−,−,−,, start(S)) inserts the start pointer at the stateS if S is the start
symbol of the grammar.

5. Finally, the last actiona5 = (−,−,−,−, removeloop(X)) for X ∈ N serves to re-
move all state names in order to obtain a finite state graph.

− The control conditiona1!; a2!; a3!; a4;a5! requires that at first all states be generated. This
is achieved by applyinga1 as long as possible. The application ofa2 as long as possible
inserts for every rule with the empty word as right-hand sideafinal-pointer while removing
this rule. Thena3 requires to insert a transition for every remaining rule. Then the start
state is inserted bya4 and afterwards all state names are removed by applyinga5 as long
as possible.

FSA∗2FSA
input: FSA∗ & 1 7→ 1,2 7→2

actions: a= (−, refine)

cond: a!

output: FSA& 1 7→ 2,2 7→ 2

Figure 8: The model transformation unitFSA∗2FSAtransforms finite state automata with word
transitions (FSA∗) into finite state automata (FSA)

If the input model ofRLG2FSA∗ is the right-linear grammar({S,A},{a,b,c},P,S) with P=
{(S,aSa),(S,aA),(S,bbS),(A,cccA),(A,ε)}, the output model is({a,b,c},G) whereG is the
finite state graph with word transitions inFigure 1.

Proc. GraMoT 2010 14 / 24

ECEASST

Finite state graphs with word transitions can be transformed into finite state graphs with sym-
bol transitions by the model transformation unitFSA∗2FSAgiven inFigure 8.

The input type declaration consists of the constrained model typeFSA∗ of finite state automata
with word transitions and the initializationinitial that maps the two components of every input
model to the first two components of the working type. The working type of the unit is equal to
set(ID)×GΣ; the output type declaration consists of the model typeFSAfor finite state automata
and the terminalizationterminal, which is the identity in this case. The only actiona applies the
rule refineof Figure 3to the graph component of the current model, while the control condition
requires to apply the actiona as long as possible. If the input model ofFSA∗2FSAis equal to the
state automaton({a,b,c},G) whereG is the finite state graph ofFigure 1, the output is equal to
({a,b,c},G′) whereG′ is the finite state graph inFigure 2.

6 Sequential and Parallel Composition

Model transformation units can be used as building blocks for more complex model transforma-
tion constructions obtained by sequential and parallel composition. This leads to the notion of
model transformation expressions on the syntactic level. Semantically, the sequential composi-
tion of model transformations is just the usual one of relations. And the parallel composition
uses the fact that all models are considered as tuples of someproduct types so that the product
of such types yields again models of some product type.

Definition 6 (compositional expressions)

1. The setCX of compositional expressions is defined recursively:

(a) model transformation units are inCX ,

(b) cx1, . . . ,cxk ∈ CX impliescx1; . . . ;cxk ∈ CX

(sequential composition),

(c) cx1, . . . ,cxk ∈ CX impliescx1 ‖ . . . ‖ cxk ∈ CX

(parallel composition).

2. The semantic relation of a compositional expressioncx∈ CX is defined according to its
syntactic structure:

(a) If cx= mtu for some model transformation unit, thenSEM(cx) = SEM(mtu).

(b) If cx1; . . . ;cxk for some model transformation unitscxi with i = 1, . . . ,k, then
SEM(cx1; . . . ;cxk) = SEM(cx1)◦ . . . ◦SEM(cxk)where

SEM(cxi)◦SEM(cxi+1)(m) =
⋃

m′∈SEM(cxi)

SEM(cxi+1)(m
′)

for eachi ∈ {1, . . . ,k−1} and eachm in the domain ofSEM(cxi).

(c) (m′
1, . . . ,m

′
k)∈SEM(cx1 ‖ . . . ‖ cxk)(m1, . . . ,mk) if and only if m′

i ∈SEM(cxi)(mi) for
i = 1, . . . ,k.

15 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

6.1 Examples

The sequential compositionRLG2FSA∗;FSA∗2FSAof the model transformation units inSection 5
transforms right-linear grammars into finite state automata so that the language generated by the
input grammar is recognized by the automaton.

The formal language theory offers many examples of sequential compositions of model trans-
formations like the transformation of right-linear grammars into finite state automata followed
by their transformation into deterministic automata followed by the transformation of the latter
into minimal automata.

A typical example of a parallel composition is given by the acception processes of two finite
state automata that run simultaneously. If they try to accept the same input strings, this parallel
composition simulates the product automaton that accepts the intersection of the two accepted
regular languages.

To make the definition of compositional expressions more transparent, one may assign an
input type and an output type to each compositional expression. Then the relational semantics of
an expression turns out to be a relation between input and output types.

Definition 7 (input and output types) The input typein and the output typeout of a composi-
tional expressioncx∈ CX is recursively defined.

1. If cx= mtu for some model transformation unit with input typeI and output typeO, then
in(mtu) = I , out(mtu) = O,

2. If cx = cx1; . . . ;cxk for some model transformation unitscxi with i = 1, . . . ,k, then
in(cx1; . . . ;cxk) = in(cx1) andout(cx1; . . . ;cxk) = out(cxk),

3. If cx= cx1 ‖ . . . ‖ cxk for some model transformation unitscxi with i = 1, . . . ,k, then
in(cx1 ‖ . . . ‖ cxk) = in(cx1) ‖ . . . ‖ in(cxk) and out(cx1 ‖ . . . ‖ cxk) = out(cx1) ‖ . . . ‖
out(cxk), where the parallel composition of model types is defined as follows

(a) (T ‖ T ′) = (T ×T′) provided thatT andT ′ are free,

(b) T ‖ (〈T ′ with x′〉) = 〈(T ‖ T ′) with x′〉 provided thatT is free,

(c) (〈T with x〉) ‖ T ′ = 〈(T ‖ T ′) with x〉 provided thatT ′ is free, and

(d) (〈T with x〉) ‖ (〈T ′ with x′〉) = 〈T ‖ T ′ with x∧x′〉,

Due to these definitions, it is easy to see that compositionalexpressions describe transforma-
tions from input models to output models.

Observation SEM(cx)(m) ∈ set(M(out(cx))) for all m∈M(in(cx)).

The compositions can be quite intuitively depicted:

Proc. GraMoT 2010 16 / 24

ECEASST

tr1
I1 O1 tr2

I2 O2

tr1; tr2

I1 ‖ I2

tr1
I1

tr2
I2

O1

O2

O1 ‖ O2

tr1 ‖ tr2

The sequential and parallel compositions on the level of model transformation expressions
have the disadvantage that their results cannot be subject to further constraints. This is partic-
ularly problematic with respect to the parallel composition because the composed units run in
parallel, but without any interaction. This is quite all right provided that the components are
meant to run independently of each other. But in many cases ofparallel composition one intends
that the components exchange information or process some data simultaneously. Such interre-
lations and interactions could be achieved by adding further constraints and control conditions.
This requires either to extend the notion of constraints andcontrol conditions to the level of
model transformation expressions or to flatten such expressions into model transformation units.
The latter is done in the following.

6.2 Sequential Composition

Let mtui = (ITDi,OTDi,WTi,Ai ,Ci) for i = 1,2 be two model transformation units with input
types Ii = 〈Ii,1 × ·· · × Ii,ki with xi〉 and output typesOi = 〈Oi,1 × ·· · ×Oi,ni with yi〉. By defi-
nition of the semantics of the sequential compositionmtu1;mtu2, the following holds: m′′ =
(m′′

1, . . . ,m
′′
n2
) ∈ SEM(mtu1;mtu2)(m) for m= (m1, . . . ,mk1) ∈ M(I1) if and only if there is an

m′ with m′ ∈ SEM(mtu1)(m) and m′′ ∈ SEM(mtu2)(m′). This means in particular thatm′ ∈
M(O1)∩M(I2) and thereforen1 = k2. To avoid too much technical trouble, we assume in addi-
tion thatWT= WT1 = O1×·· ·×On1 = I1×·· ·× Ik2 = WT2. Then the sequential composition
of mtu1 andmtu2 can be simulated by the model transformation unit

mtu(mtu1;mtu2) = (ITD1,OTD2,WT,A1∪A2,C(C1,C2,y1,x2,A1,A2))

where the control condition is chosen in such a way that a model transformation processm
∗

=⇒
A1∪A2

m′′ is accepted if and only if it decomposes intom
∗

=⇒
A1

m′ ∗
=⇒

A2

m′′ with the following properties:

17 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

1. m
∗

=⇒
A1

m′ is accepted byC1,

2. m′ ∈ SEM(y1)∩SEM(x2),

3. m′ ∗
=⇒

A2

m′′ is accepted byC2.

Such a control condition may have the form of a transition system:

s0 s1 s2 s3

A∗
1,C1 −,y1∧x1 A∗

2,C2

requiring that at the beginning the actions ofA1 are iterated regardingC1, that the result must
obeyy1 andx2 and that finally actions ofA2 are iterated regardingC2.

It is not difficult to show that the following correctness result holds.

Observation SEM(mtu1;mtu2) = SEM(mtu(mtu1;mtu2)).

6.3 Parallel Composition

Let mtui = (ITDi ,OTDi ,WTi ,Ai,Ci) for i = 1,2 be two model transformation units each with
input typeIi = 〈Ii,1×·· ·× Ii,ki with xi〉 and initializationinitial i : [ki]−→ set[l i] as well as output
typeOi = 〈Oi,1×·· ·×Oi,ni with yi〉 and terminalizationterminal: [ni]−→ [l i]. Then the parallel
composition ofmtu1 andmtu2 can be simulated by the model transformation unit

mtu(mtu1 ‖ mtu2) = (ITD,OTD,WT1×WT2,A,C)

where

− ITD consists of the input typeI1 ‖ I2 and the initializationinitial i : [k1+k2]−→ set[l1+ l2]
with initial (i) = initial 1(i) for i ∈ [k1] and initial (i) = l1 + initial 2(i − k1) for i = k1 +
1, . . . ,k1+k2,

− OTD consists of the output typeO1 ‖ O2 and the terminalizationterminal: [n1+n2] −→
[l1+ l2] with terminal(i) = terminal1(i) for i ∈ [n1] andterminal(i) = l1+ terminal2(i−n1)
for i = n1+1, . . . ,n1+n2,

− A= A1
′×A2

′ with A1
′ = A1∪{−}l1 andA2

′ = A2∪{−}l2, and

− the control conditionC is chosen in such a way that a model transformation process
(m1,m2)

∗
=⇒

A
(m1

′,m2
′) is accepted if and only if it decomposes intom1

∗
=⇒
A1

′
m1

′ and

m2
∗

=⇒
A2

′
m2

′ so that the former is accepted byC1 and the latter byC2 after removal of

the void steps given by the performance of the void actions(−, . . . ,−).

Proc. GraMoT 2010 18 / 24

ECEASST

The construction relies on the cartesian product of types and actions. Because the working type
components 1 tol2 become the componentsl1+1 to l1+ l2, the initialization and terminalization
must be adapted accordingly. The actions ofmtu1 and mtu2 are extended by the void action
(−, . . . ,−) with l1 andl2 components respectively. This is necessary because the actions ofmtu1

andmtu2 may run in parallel, but the model transformation processesare of different lengths in
general so that they cannot run fully simultaneously.

It is again not difficult to show the following correctness result.

Observation SEM(mtu1 ‖ mtu2) = SEM(mtu(mtu1 ‖ mtu2)).

7 Related Work

In this section we briefly describe a selection of related work concerning model transformation.
Since there exists quite an amount of publications we restrict ourselves to papers that are con-
cerned with model transformations in the context of graph transformation. Moreover, we also
mention some work that is concerned with the composition of model transformation definitions.

Model transformations based on graph transformation. One approach to define model
transformations is by triple grammars [Sch94, KS06, SK08]. Each rule of a triple grammar
can be easily transformed into a forward rule, a source rule,and a backward rule. The source
rules are used to generate source models that – represented as graph triples – have the form
(S, /0, /0) whereS represents the source model. The forward rules are used to produce target
models from source models. These target models – represented as graph triples – have the form
(S,C,T) whereT is the target model. The backward rules are used to transforma target model
(/0, /0,T) to a source model(S,C,T). In [EEE+07], it is shown that any source consistent model
transformation based on triple grammars is backward information preserving. This means that
the target model (generated by the forward rules of the grammar) can be transformed into the
source model via the backward rules of the grammar. Roughly spoken, a model transformation
MT is source consistent if there is a transformation that generates the source model from(/0, /0, /0)
and that completely determines the matches in the source model of the forward rules applied in
MT.

In [EE08], models are graphs equipped with a semantics given as a set of simulation rules,
and a model transformation is composed of generating first anintegrated model by graph trans-
formation rules and restricting it then to the target model.It is shown under which conditions
semantical correctness and completeness of model transformations are achieved. In [Küs06],
an approach to model transformation is presented that uses transformation units based on typed
attributed graph transformation. It provides criteria forsyntactic correctness as well as for termi-
nation and confluence.

Examples of model transformation tools based on graph transformation are VIATRA2 [VB07],
GReAT [BNvBK06] and ATOM3 [dLVA04]. VIATRA2 integrates graph transformation and ab-
stract state machines. Basically, model transformation steps are captured by graph transforma-
tion rules whereas abstract state machines control the order of rule application. GReAT mainly
consists of a pattern specification language, a transformation rule language and a control flow
language. The graph transformation rules of GReAT include for example input and output in-

19 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

terfaces where the former can receive graph objects from previous rules and the latter can send
graph objects to another rule. ATOM3 focuses on modeling complex systems composed of var-
ious formalisms and allows to transform them into a single common formalism based on graph
transformation. In [dLT04], ATOM3 is combined with AGG for validation purposes.

In general, the mentioned publications on model transformation with graph transformation are
very close to our approach – they are however restricted to transform mainly graphs, not tuples
of graphs, sets or sequences as proposed in this paper.

Composition of model transformations. In the literature one can find two main types of
composition techniques for model transformation definitions: external and internal composition.
The first one chains model transformations sequentially whereas the second composes the rules
of a set of model transformation definitions into one transformation definition. In this sense the
compositions presented in Subsections6.2and6.3can be considered as internal compositions.

In [Wag08], the composition of model transformation definitions via superimposition is de-
scribed, which is a feature of the ATLAS Transformation Language [JK05]. Superimposition of
modules is an internal composition technique where models can be superimposed on top of each
other yielding a module that contains the union of all transformation rules. In [YCWD09], the au-
thors consider composition of model transformation definitions that transform high-level models
into low-level models by defining a correspondence model that specifies the relations between
the high-level meta models. The low-level correspondence model is automatically generated
so that the low-level models can be composed homogeneously.In this way, new concerns can
be added to existing model transformation definitions. In [CM08], two approaches for reusing
model transformation definitions are proposed. The first oneis called factorization and it al-
lows to extract common parts of model transformation definitions obtaining in this way a base
transformation definition which can be reused. The second concerns composition of transfor-
mation definitions which have compatible source metamodelsbut different target metamodels.
Metamodels are related via small new metamodels and the transformations are integrated via
an integration transformation definition that locates and connects the join points (without know-
ing the rules but some kind of trace information) by using so-called refinement rules. One ap-
proach towards composition of model transformations basedon graph transformation is studied
in [BHE09] where models are typed graphs that are mapped to semantic domains. The authors
define spatial compositionality of semantic mappings whichroughly spoken means that the se-
mantics of a model is equal to the semantics that is obtained by embedding the semantics of
a piece of the model into some context. It is assumed that the semantic mappings are graph
transformation systems with a functional behavior and it isshown under which conditions they
behave compositionally. In [KKS07], a first approach towards structured model transformation
is proposed that allows package import, package merge and generalization according to a stan-
dardized packaging concept of the UML. In particular, the authors extend triple graph grammars
by the mentioned concepts.

8 Conclusion

In this paper, we have introduced the notion of model transformation units as a generalization
of graph transformation units. Models are tuples of graphs and other data structures like strings,

Proc. GraMoT 2010 20 / 24

ECEASST

sets, numbers, etc. Models of this kind cover graphical models like UML diagrams as well as
set-theoretic models like grammars and automata. They are transformed componentwise by rule
applications in the cases of graphs and by applications of data type operations in the other cases.
Besides a set of such actions, a model transformation unit provides descriptions of input, output,
and working models as well as a control condition to regulatethe use of actions. Semantically,
a transformation of input models into output models is specified. Moreover, we have studied
sequential and parallel compositions of model transformation units as means to build up complex
transformations from simple ones.

Although the considerations in this paper seem to be promising, more work is needed to un-
derpin the significance of this novel approach, including the following points.

1. As pointed out inSection 4, the introduced kind of model transformation is nondeter-
ministic. Therefore, sufficient conditions are often of interest that guarantee termination,
completeness and functionality where the first property means that there is no infinite run,
the second one requires at least one output for each input, and the latter one requires at
most one output for each input.

2. Concerning our running example, it is known from the literature that a right-linear gram-
mar generates the same language as is recognized by the finitestate automaton resulting
from the transformation. One intention of our approach is tosupport such correctness
proofs. Therefore, notions of correctness and an appropriate proof theory must be studied
in the future.

3. An interesting question in this respect is whether and howthese correctness notions are
compatible with the sequential and parallel compositions so that the correctness of the
components yields the correctness of the composed model transformation.

4. Further explicit and detailed examples are needed to illustrate all introduced concepts more
convincingly, in particular examples for parallel and sequential composition with interac-
tion between components.

Acknowledgments We are grateful to the unknown referees for various helpful comments.
The first author wants to thank Hartmut Ehrig for the long lasting cooperation and friendship.
Hans-J̈org (being a Math student at the time) met Hartmut in 1970 whena very close relation-
ship started. Hartmut supervised Hans-Jörg’s diploma thesis in 1974 and his PhD thesis in 1978.
Moreover, he guided Hans-Jörg to habilitation in 1981. Hartmut introduced Hans-Jörg to cate-
gory theory. They both learned automata theory together. Hartmut convinced Hans-Jörg of the
significance of graph transformation. They both together got involved in algebraic specification.
Although this happened in the 1970s, it sticks: Elements of all four areas can be found in the
present paper. Hans-Jörg happily acknowledges that he is one of Hartmut’s grateful students.

Bibliography

[BHE09] Dénes Bisztray, Reiko Heckel, and Hartmut Ehrig. Compositionality of model trans-
formations.Electr. Notes Theor. Comput. Sci., 236:5–19, 2009.

21 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

[BNvBK06] Daniel Balasubramanian, Anantha Narayanan, Christopher P. van Buskirk, and Ga-
bor Karsai. The graph rewriting and transformation language: GReAT.ECEASST, 1,
2006.

[CHK04] Björn Cordes, Karsten Hölscher, and Hans-Jörg Kreowski. UML interaction dia-
grams: Correct translation of sequence diagrams into collaboration diagrams. In John
l. Pfaltz, Manfred Nagl, and Boris Böhlen, editors,Applications of Graph Transfor-
mations with Industrial Relevance (AGTIVE 2003), volume 3062 ofLecture Notes in
Computer Science, pages 275–291, 2004.

[CM08] Jesús Sánchez Cuadrado and Jesús Garcı́a Molina.Approaches for model transfor-
mation reuse: Factorization and composition. In Vallecillo et al. [VGP08], pages
168–182.

[dLT04] Juan de Lara and Gabriele Taentzer. Automated modeltransformation and its val-
idation using AToM3 and AGG. In Alan F. Blackwell, Kim Marriott, and Atsushi
Shimojima, editors,Diagrammatic Representation and Inference, volume 2980 of
Lecture Notes in Computer Science, pages 182–198. Springer, 2004.

[dLVA04] Juan de Lara, Hans Vangheluwe, and Manuel Alfonseca. Meta-modelling and graph
grammars for multi-paradigm modelling in AToM3. Software and System Modeling,
3(3):194–209, 2004.

[EE08] Hartmut Ehrig and Claudia Ermel. Semantical correctness and completeness of model
transformations using graph and rule transformation. In Ehrig et al. [EHRT08], pages
194–210.

[EEE+07] Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele
Taentzer. Information preserving bidirectional model transformations. In Matthew B.
Dwyer and Antónia Lopes, editors,FASE, volume 4422 ofLecture Notes in Computer
Science, pages 72–86. Springer, 2007.

[EHRT08] Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg,and Gabriele Taentzer, editors.
Graph Transformations, 4th International Conference, ICGT 2008, Leicester, United
Kingdom, September 7-13, 2008. Proceedings, volume 5214 ofLecture Notes in
Computer Science. Springer, 2008.

[Fra03] David S. Frankel.Model Driven Architecture. Applying MDA to Enterprise Comput-
ing. Wiley, Indianapolis, Indiana, 2003.

[HKK09] Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous units to
model interacting sequential and parallel processes.Fundamenta Informaticae,
92(3):233–257, 2009.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Jean-Michel
Bruel, editor,Satellite Events at the MoDELS 2005 Conference, volume 3844 ofLec-
ture Notes in Computer Science, pages 128–138. Springer, 2005.

Proc. GraMoT 2010 22 / 24

ECEASST

[KHK06] Hans-Jörg Kreowski, Karsten Hölscher, and PeterKnirsch. Semantics of visual mod-
els in a rule-based setting. In R. Heckel, editor,Proceedings of the School of SegraVis
Research Training Network on Foundations of Visual Modelling Techniques (FoVMT
2004), volume 148 ofElectronic Notes in Theoretical Computer Science, pages 75–
88. Elsevier Science, 2006.

[KK99] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units with interleaving
semantics.Formal Aspects of Computing, 11(6):690–723, 1999.

[KKR08] Hans-Jörg Kreowski, Sabine Kuske, and Grzegorz Rozenberg. Graph transformation
units – an overview. In P. Degano, R. De Nicola, and J. Meseguer, editors,Con-
currency, Graphs and Models, volume 5065 ofLecture Notes in Computer Science,
pages 57–75. Springer, 2008.

[KKS97] Hans-Jörg Kreowski, Sabine Kuske, and Andy Schürr. Nested graph transformation
units. International Journal on Software Engineering and Knowledge Engineering,
7(4):479–502, 1997.

[KKS07] Felix Klar, Alexander Königs, and Andy Schürr. Model transformation in the large.
In Ivica Crnkovic and Antonia Bertolino, editors,ESEC/SIGSOFT FSE, pages 285–
294. ACM, 2007.

[KS06] Alexander Königs and Andy Schürr. Tool integration with triple graph grammars - a
survey.Electr. Notes Theor. Comput. Sci., 148(1):113–150, 2006.

[Küs06] Jochen Malte Küster. Definition and validation ofmodel transformations.Software
and System Modeling, 5(3):233–259, 2006.

[OMG08] OMG. Meta object facility (MOF) 2.0 query/view/transformation (QVT).
http://www.omg.org/spec/QVT/, 2008.

[Sch94] Andy Schürr. Specification of graph translators with triple graph grammars. In
Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer, editors, Graph-Theoretic
Concepts in Computer Science, volume 903 ofLecture Notes in Computer Science,
pages 151–163. Springer, 1994.

[SK08] Andy Schürr and Felix Klar. 15 years of triple graph grammars. In Ehrig et al.
[EHRT08], pages 411–425.

[VB07] Dániel Varró and András Balogh. The model transformation language of the VIA-
TRA2 framework.Science of Computer Programming, 68(3):187–207, 2007.

[VGP08] Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, editors. Theory and Prac-
tice of Model Transformations, First International Conference, ICMT 2008, Z̈urich,
Switzerland, July 1-2, 2008, Proceedings, volume 5063 ofLecture Notes in Computer
Science. Springer, 2008.

[Wag08] Dennis Wagelaar. Composition techniques for rule-based model transformation lan-
guages. In Vallecillo et al. [VGP08], pages 152–167.

23 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

[YCWD09] Andrés Yie, Rubby Casallas, Dennis Wagelaar, andDirk Deridder. An approach for
evolving transformation chains. In Andy Schürr and Bran Selic, editors,MoDELS,
volume 5795 ofLecture Notes in Computer Science, pages 551–555. Springer, 2009.

Proc. GraMoT 2010 24 / 24

	Introduction
	Preliminaries
	Graph Rule Bases
	Graph Classes
	Rules
	Rule Application
	Further Basic Types

	 Models and Model Types
	Examples for Constraints
	Examples for Constrained Model Types

	Actions and Model Transformation Processes
	Examples for Actions
	Examples for Control Conditions

	Model Transformation Units
	Examples for Model Transformation Units

	Sequential and Parallel Composition
	Examples
	Sequential Composition
	Parallel Composition

	Related Work
	Conclusion

