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Abstract: Graph transformation units are rule-based entities thawab transform
source graphs into target graphs via sets of graph tranafmmrules according
to a control condition. The graphs and rules are taken fromraterlying graph
transformation approach. Graph transformation units igp@codel transforma-
tions whenever the transformed graphs represent models. péper is based on
the observation that in general models are not always syitapresented as sin-
gle graphs, but they may be specified as the composition ofietyaf different
formal structures such as sets, tuples, graphs, etc., vahichld be transformed
by compositions of different types of rules and operatiorstdad of single graph
transformation rules. Consequently, in this paper, graphstormation units are
generalized to model transformation units that allow tagfarm such kind of com-
posed models in a rule-based and controlled way. Moreowercompositions of
model transformation units are presented.

Keywords: graph transformation, model transformation, transforomatinits, mo-
del transformation units

1 Introduction

Computers are devices that can be used to solve all kind¢afulacessing problems — at least in
principle. The problems to be solved come from economy, yctidn, administration, science,
education, entertainment, and many other areas. Therétésajgap between the problems as
one has to face them in reality and the solutions one has Widareo that they run on a computer.
Therefore, computerization is concerned with bridging tp by transforming a problem into
a solution. Many efforts in computer science contributehis heed for transformation. First of
all, compilers are devices that transform programs in a-legél language into programs in a
low-level language where the latter are nearer and moreaediépthe computer than the former.
The possibility and success of compilers have fed the drefatransforming descriptions of
data-processing problems automatically or at least syateatly into solutions that are given by

* The authors would like to acknowledge that their researgbaisially supported by the Collaborative Research
Centre 637 (Autonomous Cooperating Logistic Processes -arAdigm Shift and Its Limitations) funded by the
German Research Foundation (DFG).
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smoothly running programs. In recent years, the term modesformation has become popular
for this idea.

In this paper, graph transformation units are generaliagdddel transformation units as rule-
based devices for modeling model transformations in a caitippal framework. Our approach
has three sources of inspiration:

1. Following the ideas of model-driven architecture (MDA, @.g., Fra03), the aim of
model transformation is to transform platform-indeperndeadels (PIMs), which allow to
describe problems adequately, into platform-specific nsoSMs), which run properly
and smoothly on a computer. As a typical description of thHd$Pbne may use UML
diagrams, while PSMs are often just programs in some comnigitehlevel language
like Java or C++. A significant model transformation langaiagthin the framework of
MDA is the QVT standard of the OMGJMGO0§,.

2. One encounters quite an amazing number of model tranafmmns in theoretical com-
puter science — in formal language theory as well as in autortieeory in particular.
These areas provide a wealth of transformations betweeougatypes of grammars and
automata like, for example, the transformation of nondaeieistic finite automata into de-
terministic ones, or of pushdown automata into contexé-fyjeammars (or the other way
round), or of arbitrary Chomsky grammars into the Pentoreamal form (to give a less
known example).

3. Graph transformation units (cf., e.gkHS97, KK99, KKRO08]) are rule-based devices
to model binary relations between initial and terminal ¢pap If the initial graphs are
interpreted as input models and the terminal graphs as puaipdels, then such a unit
embodies a model transformation. The transformation of Uddbuence diagrams into
UML collaboration diagrams inGHKO04] and the transformation of well-structured flow
diagrams intowhile-programs in KHKO6] are examples of this kind. This observation
supports the idea to use graph transformation units asibgildocks for the modeling of
model transformations.

While the models in the MDA context are often diagrammatiteatual, the examples of the-
oretical computer science show that models may also bestuypté components being sets of
something. Accordingly, graphs as well as tuples, sequereel sets of models are introduced
as models irBection 3while Section Zprovides the necessary mathematical preliminaries. The
basic steps of model transformation are define8eition 4by actions that are applied compo-
nentwise to tuples of models and consist of rules in caseaglgcomponents and of data type
operations in all other cases. Based on models and actimaption of a model transformation
unit is introduced irSection 5 providing the descriptions of input, working and outputdals,

a set of actions, and a control condition to regulate the fisetions. The semantics of such
a unit is a transformation of input models into output modéfsSection 6 the sequential and
parallel compositions of model transformation units aredigd. In this way, complex model
transformations can be built up from simple ones in a modwty. While we discuss related
work in Section 7 the paper ends with some concluding remarks. As a runniagipke, the
transformation of right-linear grammars into finite stateoanata is developed in several stages.
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2 Preliminaries

In this section, we recall the notion of a graph rule baseidmg a class of graphs, a class of
rules and a rule application operator. In the following et graphs are used as basic visual
models and rules are used for their elementary transfoomti Besides graphs, we use iden-
tifiers, truth values, and non-negative integers as smaltesnic models. Moreover, cartesian
products, free monoids, and powersets are recalled betlaese constructions will be used to
build up composite models in the next section.

2.1 Graph Rule Bases

A graph rule base B= (¥,%,—>) consists of a class of graphg, a class of rulesz, and a
rule application operato=- with o C ¢ x ¢ for everyr € Z. The rule application operator

is used in infix notation, i.e(G,H) e — is denoted byG:>H Subsection®.2 through2.4
present examples for the components of rule bases whlcrsacbthroughout this paper.

2.2 Graph Classes

There are many different kinds of graph classes, two of whretexplored here further: the class
of directed edge-labeled graphs and the class of finite gtagehs, the latter being a subclass of
the former.

Directed edge-labeled graphs. The class of directed, edge-labeled graphs with individual
possibly multiple edges is defined as follows. DBebe a set of labels. AyraphoverZ is a
systemG = (V,E,s,t,|) whereV is a set ohodesE is a set ofedgess,t: E — V are mappings
assigning aource $e) and atarget t(e) to every edge i, andl : E — X is a mapping assigning
a label to every edge iB. An edgee with s(e) =t(e) is also called doop. For a nodes € V the
number of edges which haveas source is denoted bytdegreév) and the number of edges that
point tov is theindegreeof v. An edgee with labelx is called arx-pointer ifindegregs(e)) = 0
andoutdegreés(e)) = 1. The componentg, E, s, t, andl of G are also denoted by, Eg, S,
tg, andlg, respectively. The set of all graphs overs denoted byss.

For graphsG,H € ¢, agraph morphism gG — H is a pair of mappingsy : Ve — V4 and
Oe : Ec — Ey that are structure-preserving, i.6v,(Sc(€)) = s1(ge(€)), gv(tc(e)) =ty (ge(e)),
andly(ge(e)) =lc(e) for all e € Eg.

If the mappinggy andge are inclusions, the@ is called asubgraphof H, denoted byG C H.
For a graph morphismg: G — H, the image ofs in H is called amatchof G in H, i.e., the match
of G with respect to the morphisiis the subgraplg(G) C H.

Finite state graphs. Two particular subclasses @ are the classes of finite state graphs and
finite state graphs with word transitions respectively. &ooncretely, let be some input alpha-
bet such that* v {start,final} C = 1. Then the graph iffigure lrepresents a finite state graph
with word transitions over = {a,b,c}, where the edges labeled withe | * represent transitions,

1 Given setX andY, X wY denotes the disjoint union & andy.
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Figure 1: A finite state graph with word transitions

Figure 2: A finite state graph

and the sources and targets of the transitions represees.stBhe start state is indicated with
a start-pointer and every final state withfeal-pointer. States are depicted as unfilled circles
whereas all other nodes are shown as small filled circlégure 2shows a finite state graph
where each transition is labeled with a symbol frbm

2.3 Rules

To be able to transform graphs, rules are applied to the grgieiiding graphs again. One rule
class that can be used to transform graphssiris defined as follows. Auler = (L D K C R)
consists of three graphsK,R € ¢ such thaK is a subgraph of andR. The componentk,
K, andR of r are calledeft-hand sidegluing graph andright-hand side respectively. A rule
may be depicted ds— Rif K is clear from the context (the numbered nodes form the common
gluing graph).

An example of a rule is given iRigure 3 The left-hand side of this rule consists of two nodes

X u
. Xyu
refine: 1 Qﬂo 2 m L C)/VO\(\O 5

uel*

Figure 3: The graph transformation rukfine
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1 and 2 and an edge from node 1 to node 2 that is labeled with @xyaifrom some alphabet

I* wherex andy are symbols of. The gluing graph consists of the two nodes 1 and 2; the
right-hand side is obtained from the gluing graph by insgra new node and two new edges

e; ande, wheree; points from node 1 to and is labeled wittx, ande, points fromv to node 2
and is labeled witlyu.

2.4 Rule Application

The application of a graph transformation rule to a gr&ptonsists of replacing a match of the
left-hand side irG by the right-hand side in such a way that the match of the glgnaph is kept.
Hence, the application of= (L O K C R) to a graphG = (V,E,s;t,l) consists of the following
three steps.

1. Amatchg(L) of L in G is chosen.

2. Now the nodes afly (V. — Vk) are removed, and the edgesgef(E, — Ex) as well as the
edges incident to removed nodes are removed yieldingqnteemediate graph £ G.

3. Afterwards the right-hand side is added taZ by gluing Z with R in g(K) yielding the
graphH = Zw (R—K) with Viy =Vz W (VR —Vk ) andEy = Ez W (Er— Ex). The edges of
Z keep their labels, sources, and targets soZhatH. The edges oR keep their labels;
they also keep their sources and targets provided that thedeag toVg — V. Otherwise,
sH(e) = g(sr(e)) for e € Er— Ex with sz(e) € Vk, andty (e) = g(tr(e)) for e € Er — Ex
with tR(e) € W.

The application of a rule to a graphG is denoted byG:r> H, whereH is the graph resulting
from the application of to G. A rule application is called direct derivation

If the rulerefinein Figure 3is applied to a finite state graph, it splits a word transiteireled
with a wordw of length at least two into two consecutive transitions,firgt of which takes the
first symbol ofw, while the second one gets labeled with the remaindev.on particular, if
refineis applied as long as possible to the finite state gragfigare 1 one gets the finite state
graph inFigure 2

2.5 Further Basic Types

In addition to graph rule bases, we assume a set of identiberthe set of truth values BOOE
{TRUE FALSE}, and the set of non-negative numbé@¥s All these sets are equipped with the
usual predicates and operations, i.e. the arithmetic tpeslike +,—,-, <,=, etc. forN, the
Boolean operations like, Vv, —,—, etc. for BOOL, and the equality predicatefor ID.

All involved sets may be subject to the following three comstions that yield sets again:

1. the cartesian produg; x - -- x X, for setsXy,..., X, k€ N;
2. the free monoiK* for a setX;

3. the powersese(X) for a setX that contains all subsets Xf
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Furthermore we assume that the usual operations of theadygets are available, like the
projections in the case of the product, concatenation amer @tring-processing operations in
the case oK* and the usual operations and predicates on setsilikee, C, etc.

3 Models and Model Types

Many models used in computer science are of a graphicalradiagatic, and visual nature, and
they can be represented as graphs in an adequate way in rsest ddoreover, further types

of elementary models such as numbers, truth values, orifidéestmay be useful in addition to

graphs. And models may not occur only as singular items, Isotas tuples or as some other
collections of models like sequences and sets. To coventleislefine models and their types in
a recursive way.

Definition 1 (models and their types) Models together with their typesracursively defined
as follows:

1. LetY be a class of graptg, ID, BOOL, orN. Then eacly €Y is amodel of type Y

2. If my is a model of typeT; fori =1,... kfor somek € N, then thek-tuple (my,...,my) is
amodel of type X --- x Tg.

3. If my is a model of typel fori=1,...,k for somek € N, then the sequena®; ---my is a
model of type T.

4. If mis a set of models of typ&, thenmis amodel of type séT).

Note that in this way every model gets a type which is a set afetsy but can serve as a name
on the syntactic level as well. To stress the semantic leeahay writei(T) for T.

Point 1 makes sure that all graphs and — in this way — all dragnaith graph representations
are models. Besides graphs, truth values, numbers andielesibecome available as elementary
models. Point 2 allows one to considekatuple of models as a model and makesodels
simultaneously available in this way. Point 3 and Point 4 aleike many models of the same
type available at the same time. While Point 3 provides thera aequence, Point 4 collects
them as a set.

The types of models as introduced above may be consideregeabdcause they are based
on the free constructions product, free monoid, and powteiBag in many cases, it may not be
reasonable to transform all models of a free type withoutfarther restriction. For example, a
Chomsky gramma@ = (N, T,P,S) is not just a quadruple of type{(ID) x se{ID) x se{ID* x
ID*) x ID, butN, T andP should be finiteN andT should be disjointSshould be a nonterminal,
and a pair(u,v) € P should consist of two strings of terminals and nontermimatier than of
arbitrary identifiers. To make such restrictions possiie introduce constrained types.
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Definition 2 (constrained model types) L&tbe a model type.

1. ThenZ (T) is a class otonstraintsif eachx € 2°(T) specifies a set of models of tyfe
i.e. SEM(x) C 9(T).

2. Forxe 2 (T), (T with X% is called aconstrained model typ&he models of this type are
the models oSEM(x), denoted byt ((T with X)).

The definition is used in a recursive way considering the fremlel types and the con-
strained model types both as model types. Consequently,canebuild types of the form
((T with X with y) with iterated constraints.

3.1 Examples for Constraints

1. For the model typ&/, constraintx with SEM(x) C ¢ are called graph class expressions
in the framework of graph transformation units and are esttety used there to specify
initial and terminal graphs. Examples of graph class exgioas are the following.

(@) Single graphZ € ¢ with SEM(Z) = {Z} are useful as start graphs of graph gram-
mars.

(b) For¥ =% with ~ C ID, a subseX C X describesSSEMX) = % and may serve as
terminal labels.

(c) For¥9 =% andX C Z, the expressiopointerg X) specifies all graphs i#s in which
all edges labeled with somec X are pointers (cfSubsection 2.2

(d) For¢9 =% andX C %, the expressioong X) specifies all graph& in which for
eachx € X there occurs exactly onelabeled edge, i.el{ec Eg |lg(e) =x}| =1
for eachx € X.

2. Logical formulas are further typical examples for coaistis. They may involve model
variables and the usual predicates and operations of the drad free types:

(a) Boolean operations in case of BOOL likeA, Vv, —;
(b) arithmetic operations and predicatesMtike +, -, mod, =,<;

(c) string operations and predicatesXhfor some sek, like concatenation, transposi-
tion, equality;

(d) set operations and predicates liken, W, =, C, €.

Consider, for example, a modék,y,X,Y,m,n,u,v,G,H) of type ID x ID x se{ID) x
sefID) x Nx N x ID* x ID* x % x %. Then one may add the following constraints:
x=y,xeX,yeY,XNnY =0,m<n, lengthlu) > n, uv+# vu, u= vtransposv), G C H,

G € %, wherelengthmeasures the length of a waudhnd returns an integer, atrdnspos
reverses the sequence of symbols in a word. Clearly, alldhstints may be combined
by Boolean operations.

7124 Volume 30 (2010)
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3. Another frequently used constraint for graphs and setsesequirement of finiteness
indicated by the constant model class expresgiuteness Instead of % with finiteness
we may writefin(¢ ), andfinsetID ) instead of(se{ID) with finiteness.

3.2 Examples for Constrained Model Types

1. Finite state automata with word transitions can be defasealconstrained model type, i.e.
afinite state automaton fsa (I,G) is a pair of type(sefID) x % with (A C Z) A (G €
(Anpointerg{start, final}) Nnoneg({start})))) whereA = 1* v {start, final}. The constraint
means that every state gra@hs labelled ovet* w {start, final}, final- andstart-edges are
pointers, and there is exactly osgart-pointer. In the following, the constrained model
type of finite state automata with word transitions is dedditg FSA. The type of finite
state automata the transitions of which are labelled ontia single symbols front, can
be defined as the finite state automat& 84", but where in the constraint is replaced
by I, i.e.,A = 1w {start final}. The type of all finite state automata with single-symbol
transitions is denoted HySA

2. Chomsky grammars can be introduced in the framework abevaodels nearly in the
same way as they are defined in the literature.

A Chomsky grammar & (N, T,P,S) is a quadruple of typse{ID) x setID) x sefID* x
ID*) x ID with finite N, T andP, NNT =0, Se N, and(u,v) € Pimpliesu,ve (NUT)*
andu ¢ T*. Gisright-linear if, in addition, (u,v) € Pimpliesuc N andve (TTN)u{e}
wheree denotes the empty string.

More formally, the constraint of an arbitrary Chomsky graamnis with N, T, P € finsetID)
ANNT =0ASeNA((u,v) eP— (u,ve (NUT)*AugT¥)). And in case of right-linear
grammars one must ad¢u,v) e P— (ue NAve TTNU{e})). The type of right-linear
grammars will be denoted BRLG. For explicit use below we mention here also the type
RLGx ¢ which will be used for transforming right-linear grammamgoi finite state au-
tomata.

4 Actions and Model Transformation Processes

In this section, the dynamic part of model transformati@isiiroduced. The basic notion is that
of an action that describes an elementary step of modelftranations. Then the iteration of
such steps provides more complex transformations.

Itis worth noting that in this paper we do not explicitly caies infinite model transformations
because the purpose of model transformation units is tosatbmput models into output models
in finitely many steps. Infinite processes are considereHiiti09].

Each modein can be identified with the 1-tuplen) so that one may consider tuples of models
only without loss of generality. Given such a tudl®,...,my), an action is also &-tuple
a=(ay,...,ak) of component operations where, fot 1,... k, a specifies hown is processed
by the action. Ifim; is a graph, them is a rule to be applied toy. If my is an identifier or truth
value, theng; may replace it by another identifier or the negated truthevagspectively. Iim
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is a number, string or set, thepn may operate on it yielding a modified number, string or set
respectively. Moreover, we employ the void actir= — meaning thatr; remains unchanged.

If the component actions are performed, then a new tuplg...,m) of models is obtained.
This is made precise in the following definition.

Definition 3 (actions) Lefl; x --- x Ty be a model type.

1. Then amaction a= (ay,...,a) is ak-tuple such that one of the following holds for=

4.1

1....k

(@) a=-—,
(b) & € Z provided thafl; C ¢,
(c) & = renameprovided thafl; C ID whererenames some mapping o,

(d) & is aterm of operations with a distinguished variable of thjpend which evaluates
to N provided thafl; = N.

(e) the same as (d) replacibgby BOOL, T* andse{T ) for some typeT,
(f) recursively, g is an action provided thal is a product type with more than one
component.
Letm= (my,...,mg) € M(Ty x --- x Tx). Then the actiorfay, ...,ax) may be performed
onmyielding m' = (..., m) € M(Ty x --- x Tx) denoted byn?nf if the following
holds fori=1,... k:

(@ m=mif g = —;

(Mmiwﬁae%

(c) m =& (m) if & =renameor g is a term as described in 1.(d) or (e).
(d) m ?n}’ if g is an action.

. LetA be a set of actions. Thermaodel transformation processa sequence of performed

actionsm= nb?ml? e ?mq = m' with theaction sequence;a--a, € A*. Such a
1 2

process may be denoted by::wﬂ or m:j;mf if the omitted details do not matter. The
set of model transformation processes o¥és denoted byMTP(A).

Examples for Actions

Let (N, T,P, S G) be an arbitrary model of typRLGx ¢ as defined in point 2 dbubsection 3.2

1. An action that removes a nonterminal sympofrom the first component of the right-

linear gramma(N, T,P,S) and then inserts a state labeled witlin the graph component
can be defined asemovéX), —, —, —,nodg X)), whereremovgX) removesx from N (if

X € N) andnodgX) is the graph transformation rule depictedrigure 4 If N does not
containX the action cannot be executed.

9/24
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X
nodgX): © —

Figure 4: Graph transformation rutedg X)

PSIMEINS SR S VIR S ST 8

Figure 5: Graph transformation ruéelge X, u,Y)

2. An action that removes a rule with a non-empty right-hadd gom the right-linear gram-
mar while inserting a corresponding transition in the grt contains a state for every
nonterminal of the rule can be defined (@s, —,remové(X,uY)),—,edgéX,u,Y)); the
graph transformation ruledgé X, u,Y) is given inFigure 5

Model transformation processes are nondeterministicraethespects. First, the rule applica-
tions in graph model components are nondeterministic ag soles may be applicable at several
matches. Second, although the operations of the basic #ypdsnctional, the evaluations of the
action terms of these types may not lead to unique valuesedsitms can contain free variables
with a variety of instantiations. Third, there may be a ckai€ many actions that can process a
current model, and the only regulating requirement foromdiis that of sequential composition,
which is that one action is executed after the other. Sonastisnch nondeterminism is desired,
convenient, or unavoidable. But in other cases one wougdttikavoid nondeterminism, or cut
it down at least. This can be achieved by choosing rules atidnacin such a way that only
one or a few of them can be applied and performed. But the andsactions may become quite
complicated. Another possibility is extra regulation whgan be provided by control conditions.

Definition 4 (control conditions) LeA be a set of actions. The#i is a class otontrol condi-
tionsif SEM(c) C MTP(A) for everyc € %.

4.2 Examples for Control Conditions

In the area of graph transformation, control conditions feequently expressions over rules.
Many of these kinds of control conditions can be generalaedeplacing rules with actions.

1. Atypical kind of control conditions are regular express overA. Each regular expres-
sionr specifies a regular languabér). A model transformation proce9$::> m' belongs

to SEM(r) if and only if its action sequence belongdt@). In the following, the operators
concatenation, union, and Kleene star on languages wilebetdd on the level of regular
expressions as a semicolon, a vertical bar and a star, teshec

2. Another kind of control condition is a priority given by antial reflexive and transitive
relation < on A wherea > &, buta * a means that has higher priority tha@. A

Proc. GraMoT 2010 10/ 24
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model transformation process belongsSiBM(<) if and only if each performed action
m_l? m; has highest priority meaning that there ism01:a>mwith a>a buty #a

3. For any actiora, the control conditiora! requires to applha as long as possible. Hence,
m::>rrf is in SEMa!) if the application sequence is {m}* and there is nan’ such that

m :a>nf’. (Due to the fact that model transformation processes aite,fthis means that

SEMa!) = 0 if a can be applied infinitely often to any model) This condition can be
combined with regular expressions in a straightforward. iy example, the expression
a;!; ap! requires to apply firsq; as long as possible and thanas long as possible.

5 Model Transformation Units

The previous sections provide all the ingredients that eezlad to introduce model transforma-
tion units as devices to specify model transformations hugnit consists of the type of models
to be transformed, of the actions to be performed, and ofd@h&al condition that regulates the
transformation process. Moreover, the types of input ariduiunodels are specified, including
their relation to the type of working models. The reasonsefmasate input, output and working
models is that input and output may have different types hatit may be convenient to use
further component models for intermediate processing.

In other words, an input modet of type (I1 x - - - x Iy with x) (i.e. a model of typé; x --- x Ig
that satisfies the constraixitis first of all extended to a working modelof typeT; x - -- x T by
taking the components @h as components afi according to a mappingitial. This mapping
yields for each component ofi the positions irm (i.e. the numbers out of,1.,I) where the
component should be used. Clearly, each positiam inay be associated in this way with with
at most one component of the input type. The components ofvtitking model not covered
by initial are initialized by the initial models of the respective cament types. Initial models
are chosen in some appropriate way, like 0Tpe= N, etc. Therm is transformed intar by
performing the given actions such that the control condit®satisfied. Afterwards an output
modeln of type (O; x --- x Op with y) is constructed according to a mappitggminal This
mapping selects for every positionin (i.e. for every number out of,1..,n) a component of
m. Moreover, it must be assured that the obtained motshtisfies the constraigt

Definition 5 (model transformation unit)

1. Amodel transformation unit a systermtu= (ITD,OTD,WT,A,C) where

— WTis a product typdy x --- x T; calledworking type

— ITD is theinput type declarationvhich consists of the constrained product typex
-+ x I with X) and a mappindnitial : [k] — sefl] such thainitial (i) Ninitial (j) = 0
fori# jandli=Tjfori=1,... . kandj < initial (i),

— OTD is the output type declaratiorwhich consists of a constrained product type
(O1 % -+ x On with y) and an injective mappingrminal: [n] — [I] with O = Terminali)
fori=1,....n,
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— Aiis theset of actiongvith respect to the working type and

— C s thecontrol condition

The typel = (I x --- x Iy with x) is calledinput typeof mtuand the mappingitial initial-
ization The typeO = (O1 x --- x O with y) is calledoutput typeof mtuand the mapping
terminal terminalization

2. The model transformation modeled by the model transfaamaunit mtu is a mapping
SEMmtu): M((I1 x --- x I with X)) — se{(((Oy1 x --- x On with y))) which is defined
bym = (n,...,m,) € SEM(mtu)(my,...,m) for everym= (m, ..., mg) € M((I3 x--- x
[, with X)) if and only if the following holds:

There are working modelg = (My,...,m), M = (M,...,M) € M(Ty x --- x Tj) such
that

init(T;) for j ¢initial (k]) = U initial (i) -
ik

m for i=1,...,kandj € initial (i)
€) m; =
(b) m:}m( € SEMC),
(c) m =m fori=1,...,nandterminali) = j,
(d) m € SEMYy).

The initial modelinit(Tj) in (a) may be chosen in some appropriate way, like Ofor N,
the empty string for Tj = T*, the empty set 0 fof; = se(T) or FALSEfor T; = BOOL.

In examplesjnitial will be represented in the forin— j1,..., jp if initial (i) = {j1,..., jp}
andterminalin the formi — j for terminal(i) = j.

Remark Given a model transformation umittuwith input typel = (I3 x --- x Iy with X) and
output typeO = (O; x --- x Op with y), mtucan be graphically represented by

I O

— mtu N

emphasizing thaintuspecifies a transformation of input models into output madel

5.1 Examples for Model Transformation Units

A model transformation unit that transforms right-linealhatnsky grammars into finite state
automata is given ifrigure 6 The components of this model transformation RIG2FSA are
the following:
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RLG2FSA
input: RLG&1+—1,2+—23—3,4—4
add: 5:% & init(5) =0 forX = (NUT)"w {start final}
actions: a; = (removéX),—,—,—,nodgX)) for X € N

az_ (—,— remove§(X £)),—,final(X)) for X e N
= (-, remove§(X uY)),—,edgeX,uY)) for X,Y e Nue T+
(— —,—,—,start(9))
= (-

—,removeloop(X)) for X € N

E’

cond: a1!,a2!,a3.,a4,a5!
output: FSA &1~—~22—5

Figure 6: The model transformation uRLG2FSA transforms right-linear Chomsky grammars
(RLG) into finite state automata with word transitiofsSK’)

— A model of the working type is a quintuple where the first foomponents of the working
type correspond to the four types of a right-linear gramrttag;last component is equal
to ¢ and serves to build up the finite state graph. It is initiaizngth the empty graph 0.
The alphabeE must equalNUT)* w {start final} whereN are the nonterminal symbols
andT the terminal symbols of the input grammar, astdrt andfinal will serve to label
the start and final states of the finite state graph respéctive

— The input type declaration is composed of the constrainedeintype for right-linear
grammars and the initializatianitial : [4] — se{([5]) with initial (i) = {i} fori =1,...,4.
This means that the four components of the input type arerstedur components of the
working type. Hence, the four components of every input rhade used as the first four
components in the model the model transformation unitstaoirking with.

— The output type declaration consists of the constrainedehtygde FSA" and the terminal-
izationterminalwith terminal(1) = 2 andterminal(2) = 5. Hence, every output model of
the unit is the pair consisting of the second and the last oot of the model the unit
ends working with, provided that the type of this pair equebsX.

— The set of actions dRLG2FSA consists of five kinds of actions, each of which contains
among other operations one of the graph transformatios dégicted in Figure$, 5 and
7.

1. The first actiora; = (removéX), —, —, —,nodg X)) serves to generate a state in the
graph for each nonterminal of the input grammar. More cdetreevery application
of this action generates a state with naxhevhile removing the nontermina{ from
the set of nonterminals.

2. The second actiosp = (—, —,remové(X, €)), —,final(X)) inserts final pointers at all
final states of the graph, while removing the corresponditgsrfrom the grammar.
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start(S): —
final(X): —

X
remove- loop(X): 8 — Q

Figure 7: Graph transformation rules for the actions of nho@@sformation uniRLG2FSA

3. The third actionag = (—, —,remové(X,uY)),—,edgéX,u,Y)) serves to generate
transitions from those rules of the grammar that have a nmmal in their right-
hand side. Every application a§ removes such a rule from the rule set in the third
component at the same time that a corresponding transititheigraph is generated.

4. Actionay = (—,—, —, start(S)) inserts the start pointer at the st&# Sis the start
symbol of the grammar.
5. Finally, the last actioras = (—,—, —, —,removeloop(X)) for X € N serves to re-

move all state names in order to obtain a finite state graph.

— The control conditioray!; ay!; ag!l; as; as! requires that at first all states be generated. This
is achieved by applying; as long as possible. The applicationagfas long as possible
inserts for every rule with the empty word as right-hand sitieal-pointer while removing
this rule. Thenaz requires to insert a transition for every remaining rule e the start
state is inserted bg, and afterwards all state names are removed by appbgras long
as possible.

FSA2FSA
input: FSA&1—12—2

actions: a= (—,refine
cond: a
output: FSA&1+— 2,2+ 2

Figure 8: The model transformation ufSA 2FSAtransforms finite state automata with word
transitions FSA) into finite state automatdGA

If the input model ofRLG2FSA is the right-linear grammai{S A}, {a,b,c},P,S) with P =
{(SaSg,(SaA),(SbbS, (A cccA), (A ¢)}, the output model ig{a b,c},G) whereG is the
finite state graph with word transitions ffgure 1
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Finite state graphs with word transitions can be transfdrmo finite state graphs with sym-
bol transitions by the model transformation URBA 2FSAgiven inFigure 8

The input type declaration consists of the constrained igde FSA' of finite state automata
with word transitions and the initializationitial that maps the two components of every input
model to the first two components of the working type. The wagkype of the unit is equal to
sefID) x ¢; the output type declaration consists of the model fyBéfor finite state automata
and the terminalizatioterminal, which is the identity in this case. The only actiaapplies the
rule refineof Figure 3to the graph component of the current model, while the cbotndition
requires to apply the acticaas long as possible. If the input modelfBA 2FSAis equal to the
state automatof{a, b,c},G) whereG is the finite state graph éfigure 1 the output is equal to
({a,b,c},G’) whereG' is the finite state graph iRigure 2

6 Sequential and Parallel Composition

Model transformation units can be used as building blocksnfore complex model transforma-
tion constructions obtained by sequential and parallelpmsition. This leads to the notion of
model transformation expressions on the syntactic levemahtically, the sequential composi-
tion of model transformations is just the usual one of retadi And the parallel composition
uses the fact that all models are considered as tuples of poydect types so that the product
of such types yields again models of some product type.

Definition 6 (compositional expressions)
1. The sett’2" of compositional expressions is defined recursively:

(a) model transformation units are 2",

(b) cxq,...,CX% € 2" impliescxq;...;Cx € €Z
(sequential composition),

(C) cX1,...,Cx € €2 impliescx || ... || cx € €2
(parallel composition).

2. The semantic relation of a compositional expressioa €% is defined according to its
syntactic structure:

(a) If cx= mtufor some model transformation unit, th&&Mcx) = SEMmtu).

(b) If cxq;...;cx for some model transformation units¢ with i = 1,... k, then
SEMcXg; ... ;ex) = SEM(Cx) o... o SEMcx)where

SEM(cx)o SEMex ) (m) = |J  SEMcxa)(m)

m' eSEM(cx;)

for eachi € {1,...,k— 1} and eachmin the domain ofSEMcX;).

(€) (my,....,m) € SEMcxy || ... || cX)(my,...,m) if and only if m{ € SEM(cx ) (my) for
i=1,....k
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6.1 Examples

The sequential compositidRLG2FSA; FSA 2FSAof the model transformation units 8ection 5
transforms right-linear grammars into finite state aut@nsatthat the language generated by the
input grammar is recognized by the automaton.

The formal language theory offers many examples of secalea@mpositions of model trans-
formations like the transformation of right-linear grammhato finite state automata followed
by their transformation into deterministic automata folém by the transformation of the latter
into minimal automata.

A typical example of a parallel composition is given by theegtion processes of two finite
state automata that run simultaneously. If they try to acttepsame input strings, this parallel
composition simulates the product automaton that acchptsmtersection of the two accepted
regular languages.

To make the definition of compositional expressions morasparent, one may assign an
input type and an output type to each compositional expyasdihen the relational semantics of
an expression turns out to be a relation between input amibtypes.

Definition 7 (input and output types) The input tyjreand the output typeut of a composi-
tional expressiorx € €% is recursively defined.

1. If cx= mtufor some model transformation unit with input typand output typeD, then
in(mtu) = I, out(mtu) = O,

2. If cx=1cxg;...;cx for some model transformation units¢ with i = 1,...,k, then
in(Cxq;...;C%) = in(Cxy) andout(CXy;. . .;CX) = out(CX),

3. Ifex=1cx | ... || cx for some model transformation unitsg with i = 1,... k, then
in(cxy || ... || o) =in(cxq) || ... || in(cx) and out(cxy || ... || ¢%) = out(cxt) || ... ||
out(cx), where the parallel composition of model types is definedbsvis

@ (T || T")= (T xT') provided thafl andT’ are free,

(b) T || ((T" with X)) = ((T || T') with X) provided thafT is free,

() ((T withx) || T"=((T || T") with x) provided thafl’ is free, and
(d) ((T withX) || ((T" with X)) = (T || T" with xAX),

Due to these definitions, it is easy to see that compositiexaiessions describe transforma-
tions from input models to output models.

Observation SEM(cx)(m) € set{Mt(out(cx))) for all me MN(in(cx)).

The compositions can be quite intuitively depicted:
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try;tro
I » I &> I2 tro Oz -
try || tro

I O
1= try !

Iy |12 01|02
P 0O,

» i

The sequential and parallel compositions on the level of eht@dnsformation expressions
have the disadvantage that their results cannot be subjdégtther constraints. This is partic-
ularly problematic with respect to the parallel compositlmecause the composed units run in
parallel, but without any interaction. This is quite allhtgorovided that the components are
meant to run independently of each other. But in many casparaflel composition one intends
that the components exchange information or process sotaesuiaultaneously. Such interre-
lations and interactions could be achieved by adding furtbestraints and control conditions.
This requires either to extend the notion of constraints @natrol conditions to the level of
model transformation expressions or to flatten such exjoresato model transformation units.
The latter is done in the following.

6.2 Sequential Composition

Let mty = (ITD;, OTD;,, WT;,A;,C) for i = 1,2 be two model transformation units with input
typesli = (li1 x --- x lj with ) and output type©; = (Oj1 x --- x O, with y;). By defi-
nition of the semantics of the sequential compositiotyy; mtw, the following holds: m” =
(M, ...,m) € SEMmtu; mtwp)(m) for m= (my,...,my) € M(l1) if and only if there is an

m with m’ € SEMmty)(m) and m” € SEMmtw,)(m'). This means in particular that' €
M(O1) NM(I2) and thereforen, = ky. To avoid too much technical trouble, we assume in addi-
tion thatWT =WT; =Op x --- x Op, =I1 X --- X Iy, = WT,. Then the sequential composition
of mtw, andmtu, can be simulated by the model transformation unit

mtumtug; mtwp) = (ITD1, OTDy, WT, A1 UA2,C(Cy,Co,y1,%2,A1,A2))

where the control condition is chosen in such a way that a hcatesformation process A:*;
1UA2

m’ is accepted if and only if it decomposes irﬁm% m T*> m’ with the following properties:
1 2
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1.m T*> ™ is accepted b,
1

2. M € SEMy;) NSEMxy),

3. m T*>TT'(’ is accepted b{,.
2

Such a control condition may have the form of a transitioriesys

A?|<_7Cl —7Y1/\X1 EaCZ

requiring that at the beginning the actionsAaf are iterated regardinG,, that the result must
obeyy; andx; and that finally actions o, are iterated regardings.
It is not difficult to show that the following correctness uésholds.

Observation SEMmtu; mtu) = SEM(mtumtug; mtw,) ).

6.3 Parallel Composition

Let mty = (ITD;,OTD,,WT;,A;,Ci) for i = 1,2 be two model transformation units each with
input typel; = (lij1 x - -- x lj ; with x) and initializationinitial; : [kj] — sefl;] as well as output
typeO; = (Oj1 % --- x Oj y, With y;) and terminalizatiorterminal: [nj] — [l;]. Then the parallel
composition ofmtw, andmtu, can be simulated by the model transformation unit

mtumty, || mtwp) = (ITD,OTD,WTy x WT,,A,C)
where

— ITD consists of the input typk || 12 and the initializatiorinitial; : [ki + ko] — sefl1 +12]
with initial (i) = initial 1(i) for i € [k;] andinitial (i) = 11 + initial 2(i — k) for i = ky +
1,.... Kk +ko,

— OTD consists of the output typ®; || O, and the terminalizatioterminal: [ny + ny] —
[I11+12] with terminal(i) = terminak (i) for i € [n1] andterminal(i) = 11 4 terminab(i —ny)
fori=n+1,...,n+ny,

— A=A/ x A with Ay = Ay U {—}1andAy = AU {-}", and

— the control conditionC is chosen in such a way that a model transformation process
(Thy, Ty) ::> (my/,my’) is accepted if and only if it decomposes irmm = m;’ and
A
M, = M, so that the former is accepted By and the latter byC, after removal of
A
the void steps given by the performance of the void actiens. ., —).
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The construction relies on the cartesian product of typdsations. Because the working type
components 1t become the componerits+ 1 tol; + |, the initialization and terminalization
must be adapted accordingly. The actiongmity andmty, are extended by the void action
(—,...,—) with I; andl, components respectively. This is necessary because thasofmtu
andmtw, may run in parallel, but the model transformation processesf different lengths in
general so that they cannot run fully simultaneously.

It is again not difficult to show the following correctnessué.

Observation SEMmty || mt) = SEMmtumtu || mtw)).

7 Related Work

In this section we briefly describe a selection of relatedkvemmcerning model transformation.
Since there exists quite an amount of publications we ptgitirselves to papers that are con-
cerned with model transformations in the context of grajpigformation. Moreover, we also
mention some work that is concerned with the composition @fi@htransformation definitions.

Model transformations based on graph transformation. One approach to define model
transformations is by triple grammarSdh94 KS06 SK0§. Each rule of a triple grammar
can be easily transformed into a forward rule, a source auid,a backward rule. The source
rules are used to generate source models that — representgdpn triples — have the form
(S 0,0) where S represents the source model. The forward rules are usedtiuge target
models from source models. These target models — représasigraph triples — have the form
(SC,T) whereT is the target model. The backward rules are used to transfdarget model
(0,0, T) to a source mod€ISC,T). In [EEE"07], it is shown that any source consistent model
transformation based on triple grammars is backward infion preserving. This means that
the target model (generated by the forward rules of the gramoan be transformed into the
source model via the backward rules of the grammar. Rougltditen, a model transformation
MT is source consistent if there is a transformation thatgates the source model fraif, 0, 0)
and that completely determines the matches in the sourcelrobthe forward rules applied in
MT.

In [EEOY, models are graphs equipped with a semantics given as d sehwlation rules,
and a model transformation is composed of generating firgitagrated model by graph trans-
formation rules and restricting it then to the target models shown under which conditions
semantical correctness and completeness of model tramsions are achieved. IK{isOq,
an approach to model transformation is presented that tesesfdrmation units based on typed
attributed graph transformation. It provides criteriaggntactic correctness as well as for termi-
nation and confluence.

Examples of model transformation tools based on graphftanation are VIATRAZ2 YB07],
GReAT BNvBKO06] and ATOM? [dLVAO04]. VIATRAZ integrates graph transformation and ab-
stract state machines. Basically, model transformatiepssare captured by graph transforma-
tion rules whereas abstract state machines control the ofdale application. GReAT mainly
consists of a pattern specification language, a transfamatle language and a control flow
language. The graph transformation rules of GReAT incluteeskample input and output in-
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terfaces where the former can receive graph objects fromque rules and the latter can send
graph objects to another rule. ATGNbcuses on modeling complex systems composed of var-
ious formalisms and allows to transform them into a singlecmn formalism based on graph
transformation. IndLT04], ATOM?3 is combined with AGG for validation purposes.

In general, the mentioned publications on model transféonavith graph transformation are
very close to our approach — they are however restrictecatstorm mainly graphs, not tuples
of graphs, sets or sequences as proposed in this paper.

Composition of model transformations. In the literature one can find two main types of
composition techniques for model transformation defingioexternal and internal composition.
The first one chains model transformations sequentiallyredsethe second composes the rules
of a set of model transformation definitions into one tramsfation definition. In this sense the
compositions presented in Subsectiéridand6.3 can be considered as internal compositions.

In [Wag0g, the composition of model transformation definitions vigpsrimposition is de-
scribed, which is a feature of the ATLAS Transformation Laage PKO095. Superimposition of
modules is an internal composition technique where moagie superimposed on top of each
other yielding a module that contains the union of all transfation rules. INnYCWDAQ9], the au-
thors consider composition of model transformation dedéing that transform high-level models
into low-level models by defining a correspondence modédl spacifies the relations between
the high-level meta models. The low-level correspondenceeahis automatically generated
so that the low-level models can be composed homogeneolustitis way, new concerns can
be added to existing model transformation definitions. @vpg], two approaches for reusing
model transformation definitions are proposed. The firstisrmalled factorization and it al-
lows to extract common parts of model transformation defing obtaining in this way a base
transformation definition which can be reused. The secomderas composition of transfor-
mation definitions which have compatible source metamool@islifferent target metamodels.
Metamodels are related via small new metamodels and thsforamations are integrated via
an integration transformation definition that locates amuhects the join points (without know-
ing the rules but some kind of trace information) by usingcatied refinement rules. One ap-
proach towards composition of model transformations basegraph transformation is studied
in [BHEO9Y where models are typed graphs that are mapped to semantigig® The authors
define spatial compositionality of semantic mappings whalghly spoken means that the se-
mantics of a model is equal to the semantics that is obtaiyeenibedding the semantics of
a piece of the model into some context. It is assumed thatahmeaistic mappings are graph
transformation systems with a functional behavior and #hewn under which conditions they
behave compositionally. IiKKSO07], a first approach towards structured model transformation
is proposed that allows package import, package merge arefagjzation according to a stan-
dardized packaging concept of the UML. In particular, théhars extend triple graph grammars
by the mentioned concepts.

8 Conclusion

In this paper, we have introduced the notion of model transédion units as a generalization
of graph transformation units. Models are tuples of grapttsather data structures like strings,

Proc. GraMoT 2010 20/ 24



@ ECEASST

sets, numbers, etc. Models of this kind cover graphical nsodee UML diagrams as well as
set-theoretic models like grammars and automata. Theyawsformed componentwise by rule
applications in the cases of graphs and by applicationstaft§ipe operations in the other cases.
Besides a set of such actions, a model transformation umiiges descriptions of input, output,
and working models as well as a control condition to regullageuse of actions. Semantically,
a transformation of input models into output models is djEmti Moreover, we have studied
sequential and parallel compositions of model transfaionatnits as means to build up complex
transformations from simple ones.

Although the considerations in this paper seem to be progisnore work is needed to un-
derpin the significance of this novel approach, includirgftiilowing points.

1. As pointed out inSection 4 the introduced kind of model transformation is nondeter-
ministic. Therefore, sufficient conditions are often okirst that guarantee termination,
completeness and functionality where the first propertymadiat there is no infinite run,
the second one requires at least one output for each inpditthanlatter one requires at
most one output for each input.

2. Concerning our running example, it is known from the &tare that a right-linear gram-
mar generates the same language as is recognized by thestatéeautomaton resulting
from the transformation. One intention of our approach isupport such correctness
proofs. Therefore, notions of correctness and an apptegui@of theory must be studied
in the future.

3. An interesting question in this respect is whether and ti®ge correctness notions are
compatible with the sequential and parallel compositiomshsit the correctness of the
components yields the correctness of the composed modsfdranation.

4. Further explicit and detailed examples are needed &ir#lite all introduced concepts more
convincingly, in particular examples for parallel and segfial composition with interac-
tion between components.
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