Electronic Communications of the EASST
Volume 26 (2010)

Manipulation of Graphs, Algebras and Pictures

Essays Dedicated to Hangrd Kreowski
on the Occasion of His 60th Birthday

Autonomous Units for Solving the Capacitated Vehicle RagifProblem
Based on Ant Colony Optimization

Sabine Kuske, Melanie Luderer

23 pages

Guest Editors: Frank Drewes, Annegret Habel, Berthold Hoffmann, Detlef Plump

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122



http://www.easst.org/eceasst/

@ ECEASST

Autonomous Units for Solving the Capacitated Vehicle Routing
Problem Based on Ant Colony Optimization

Sabine K uske!, Melanie L uderer 2*

1 kuske@informatik.uni-bremen.dhttp://www.informatik.uni-bremen.dekuske
2 melu@informatik.uni-bremen.dattp://www.informatik.uni-bremen.de/theorie
Department of Computer Science
University of Bremen, Germany

Abstract: Communities of autonomous units and ant colony systems foaa-
mental features in common. Both consists of a set of autonsip@cting units that
transform and move around a common environment that is lysugraph. In con-
trast to ant colony systems, the actions of autonomous argétspecified by graph
transformation rules which have a precisely defined opmratisemantics and can
be visualized in a straightforward way. In this paper, we etl@h ant colony sys-
tem solving the capacitated vehicle routing problem as axonity of autonomous
units. The presented case study shows that the main chiédstcseof ant colony
systems such as tour construction and pheromone updaté® captured in a nat-
ural way by autonomous units.

Keywords: Graph transformation, autonomous units, ant colony ogation

1 Introduction

In computer science there exists a large variety of relepamiblems that are too complex to
be solved by a deterministic algorithm in an acceptable .titdence, heuristics are employed
that in many cases can help to find good solutions. In thisexdnswarm intelligence plays
an important role where, roughly speaking, a swarm is a lawpber of autonomous and self-
interested agents that act and interact in parallel. Inmg&na swarm as a whole can produce
good solutions for complex problems whereas a stand-algeet és not able to do so. One well-
studied kind of swarms are ant colonies which consist of afssitonomously behaving artificial
ants that move around a common graph and make their deciatmasding to the pheromone
concentration in their neighborhood. They are inspiredhgyway how ants find short routes
between food and their formicary and have been shown to deswiétd not only for the solving
of shortest path problems, but for a series of more compleblpms, typically occurring in
logistics (cf. PS04).

Basically, in an ant colony system, a set of ants construgtgtisns for a given problem
(mostly NP-hard) by moving along the edges of an underlyiragphy. According to the quality of
the constructed solutions the ants walk back and put sonrepiome on the traversed items, i.e.,

* The first author would like to acknowledge that her reseasgbaitially supported by the Collaborative Research
Centre 637 (Autonomous Cooperating Logistic Processes:aradigm Shift and Its Limitations) funded by the
German Research Foundation (DFG).

1/23 Volume 26 (2010)


mailto:kuske@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/~kuske
mailto:melu@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/theorie

Autonomous Units for Ant Colony Optimization @

the better the solution is the more pheromone is placed by&arDairing solution construction
the pheromone concentration as well as some further hiewrégdtie help the ants to decide where
to go in each step. Every ant has a memory for storing impbitdormation such as the length
of the traversed path, etc.

In order to prove correctness properties of ant colony dpétion algorithms, a formal mod-
eling framework with a well defined semantics is needed. Mhagg ant colony systems can be
visually represented in a straightforward way so that forudation and verification purposes,
it is desirable to have a graphical modeling framework whgserational semantics provides
graphical representations of system states. Since antsamographs, graph transformation is
a suitable approach to specify the actions of the ants. Ngthas graph transformation a well
defined semantics and a wide theory but there exist also soapd gransformation tools that
could be used to implement ACO algorithms (cRdz97 EEKR99 EKMR99]). Moreover, a
suitable concept for modeling the autonomous behavior fiameeded. A promising concept
to achieve this is that of communities of autonomous unitabse on the one hand they incor-
porate rule-based graph transformation and on the other datonomous units act and interact
autonomously in a common environment (¢€K07, KK08, HKK09]).

Essentially, every autonomous unit is composed of a setagfgiransformation rules, a con-
trol condition, and a goal. Moreover, it can ask auxiliarytsifior help and it can be equipped
with a specification of initial private states where thedathay be used to represent the mem-
ory of an ant. Autonomous units transform the common enwiramt and their private states
simultaneously while striving for their goals, can comnuaté with each other via the common
environment, and may act in parallel. A community is comgoska set of autonomous units,
a specification of initial common environments, a globaltoancondition, and an overall goal.
A current state of a community consists of a current commatir@mment plus a private state
for every autonomous unit. The semantics of a community istssf all state sequences ob-
tained by composing the semantics of the autonomous unifseicommunity in such a way
that the global control condition is not violated and thetsttate consists of an initial common
environment and an initial private state for every unit. Angformation process is successful
if it reaches the overall goal. The basic components of conities are provided by a graph
transformation approach consisting of a class of graph$ass ©f graph class expressions, a
class of rules with a rule application operator, and a cléssiwtrol conditions. In the literature
there exists a variety of graph transformation approactfe$§R0z97). They all can be used as
underlying approaches for communities.

In [KLTOQ9], it was shown that communities of autonomous units areblgtto model an ant
colony solving the Traveling Salesperson Problem. Thegmtegaper focuses on a more com-
plicated problem that can be solved in an intuitive way byatbny optimization algorithms:
the Capacitated Vehicle Routing Problem (CVRP) (cf., d@DH04, DS04). Concretely, we
present a community of autonomous units that models an #mycthat solves the CVRP. The
aim of this paper is to consolidate the conjecture that coniti@g of autonomous units are
suitable as a formal framework for modeling ant colony syste

The advantages of modeling ant colony systems as commaipiti@utonomous units are the
following. (1) Autonomous units provide ant colony systewith a well-founded operational
semantics so that verification techniques for graph tramsftion can be applied to ant colony
systems. (2) The fact that ant actions can be specified ak gaapsformation rules allows for a

Festschrift H.-J. Kreowski 2123



@ ECEASST

visual modeling of ant algorithms and hence for a visualesgentation of ant colony behavior.
(3) Existing graph transformation tools such as GrGEX8] or AGG [ERT99 can be used to
implement ant algorithms.

This paper is organized as follows. $ection 2 ant colony systems for the heuristic solving of
optimization problems are briefly introduced and a paréicaint colony optimization algorithm
for solving the CVRP is recalledsection Jpresents a graph transformation approach that is used
throughout this papeiSection 4introduces autonomous units and communities of autonomous
units. Section 5shows how fundamental features of ant colony systems candoeled with
autonomous units by translating an ant colony system spltia CVRP into a community. The
conclusion is given irsection 6

2 Ant Colony Optimization

Ant colony optimization (ACO) systems are algorithmic freworks for the heuristic solving

of optimization problems, typically problems belongingthe complexity class NP-hard, since
no efficient algorithms for this kind of problems are knowatthlways solve the problem. The
idea of ACO originates in the observation of how ants find shays between food and their

formicary. An individual ant can hardly see and has a veryavaiperspective of its environ-

ment. While searching for food, it leaves a chemical sulogtam the ground, called pheromone,
which can be sensed by other ants and influence their routsialec The higher the concen-

tration of pheromone along a way, the higher the probabiligt an ant will choose this way

as well, thus leaving even more pheromone. The crucial psittiat pheromone evaporates
with time. An ant following a short route to food will returmener to the formicary so that the
pheromone concentration on shorter routes becomes memsethan on longer routes. The
higher pheromone concentration makes more ants chooséadhtersute which in turn raises

the pheromone concentration further. Finally, almost maisa&nd up choosing one short route,
although not necessarily the shortest one. Since typic@in@ation problems can be nicely

modeled as graphs, it is the prefered data structure for AG@is paper we use edge-labeled
undirected graphs with multiple (i.e. parallel) edges.

Graphs. A graphis a tupleG = (V, E, att,m), whereV is a finite set ohodesE is a finite set
of edgessuch thav andE are disjointatt : E — Uycqa,2 (\4) is a mapping that assigns to every
edge a set of one or twapurcesin V, andmis a mapping that assigndabel to every edge in
E.1 A graph with no nodes and no edges is calledetepty graphwhich is denoted by 0. The
components oG are also denoted s, Eg, attg, andmg respectively. The set of all graphs is
denoted by?.

A solution to an optimization problem consists typicallyadiour (e.g. an ordered sequence of
nodes) within the given graph. Intuitively, the complexitymost NP-hard optimization prob-
lems lies in the exponentially growing number of possiblersovhen new nodes and edges are
added. The lack of an efficient search method for the ‘besy nmeguires an (almost) exhaustive

LForke N, (1) denotes the set of subsets\wivith k elements, i.e.(}) = {V/ CV | [V| =k} where|V | denotes the
number of elements M.

3/23 Volume 26 (2010)



Autonomous Units for Ant Colony Optimization @

search of all the possible tours. To solve an optimizatiablem with ACO, some additional
information is needed. We define optimization problems Hsvis.

Optimization Problem. An optimization problem is a 6-tupl€G,d, 7,n,S,g) whereCGe ¢
is aconstruction graphd is a function that associates every edge with a cost valge (ke
distance) is a function that associates every edge with a pheromone vais a function that
associates every edge with a number as an heuristic valdbdauality of the edge5C V* is
the set ofsolutions andg assigns &ost ds) to everyse S

Basically, ACO works as follows. At first, a predefined numbg&ants are placed randomly
at some nodes. These ants decide in parallel which edgedhew fin the next step according
to a transition rule. Lea be an index to choose one pfants andJ, the set of all edges that
can be chosen from amtresiding at some node. The decision, which edgeU, to take, is
probability-based. The probabilities are calculated #evis.

e e
Pal®) = 5 o z(@]% - (O

In words this formula states that ants prefer edges with logt and a high concentration of
pheromone. The experimental parametend control the influence of the pheromone resp.
heuristic value in the decision. In every step this formdapplied, until all the ants have
constructed a complete tour.

The next step concerns the pheromone values. Simulatingvidqeoration, the values af
are reducedr(e) — (1—p)-1(e) Vee€ Ecg wherep is a pheromone decay parameter in the
interval (0,1]. Furthermore the release of pheromone of the ants is siethilat

Vee U, @

n ——L__  ectour
; _ lengthtoury ’ a
7(e) — 1(e) +aZlAra(e), with At,(e) = { gr(() ) otherwise
wheretour; is the solution constructed by aat In contrast to nature, the release of pheromone
takes place after the ants constructed a complete tour #irecamount of pheromone corre-
sponds to the overall quality of the tour (e.g. the lengttheftour). Furthermore, in some ACO
systems not every ant leaves pheromone, but just the onegt@nstructed the best tours.
Now the ants are placed again at some randomly chosen noddkeaalgorithm starts with
the modified values of pheromone. Some variants of this #&3@ yielding better performance
have been proposed in the literature. Details can be foufid$04.

2.1 Application: Capacitated Vehicle Routing Problem

An important application field of ACO concerns all kinds ofitglanning with the Traveling
Salesperson Problem (TSP) as the most famous one. Anothigepr often occurring in dis-
tribution logistics is the so called Capacitated VehiclautRg Problem (CVRP), which can be
described as follows. A number of customers must be servididseime goods that are stored at
a central depot. A number of vehicles with finite and equabcép is available. The aim is to
find a set of tours such that the demands of all customers aramdehe total cost (the sum of

Festschrift H.-J. Kreowski 4123



@ ECEASST

the distances of the tours) is minimized. Combinatorialgolution can be formally described
as a partition of the cities intm routes{Ry,...,Rn}. Each route must satisfy the condition
Y jer dem < k, wheredem describes the demand of tiih customer andk is the capacity
restriction of the vehicles. Within each partition, an asst®d permutation function specifies
the customer order.

Relaxing the conditions by allowing any partition (respesly settingk = «), the CVRP
is transformed into an instance of the Multiple TravelindeSperson Problem. Leaving the
condition unchanged but with a cost function that countsitimaber of partitions CVRP becomes
the well-known bin packing problem. CVRP contains in thissetwo NP-hard problems, which
in practice makes it a lot more complicated to solve than T@Rftample and it seems a good
idea to use ACO. A formulation of CVRP according to the deifinitof optimization problems
is quickly found. Nevertheless, there are different wayddsign the functiom : Ecg — R. One
easy possibility consists of the reciprocal cost-valuenefdédge.

Nevertheless, sometimes other methods are used to caltidaheuristic values; one elegant
way is based on the so-call&hvings algorithmStarting from the initial (and unfavored) solu-
tion, where every route consists of exactly one customeés,délculated, how the quality of the
solution changes (how much one would save), putting twoooostsi and j in one route. Let
dio denote the distance between customand the depot and; the distance between customer
i and j. Then the saving value obtained by merging the roRiesdR; together is calculated as
follows:

Sj = 2xdig+2xdjo— (dio+dij+djo)
= dio+djo—dj
Elaborated experiments concerning the performance of AGDSaving Algorithm for the
CVRP can be found inDHO04].

3 A Graph Transformation Approach

Graph transformation approaches provide the main ingneslifer communities of autonomous
units. They consist of a class of graphs, a class of rulesleaapplication operator, a class of
control conditions, and a class of graph class expressibns.graphs are used to represent the
common environments and the private states of communifies.rules are needed to transform
these graphs. Moreover, control conditions restrict the-aeterminism of rule application, and
with graph class expressions one can specify specific graizhssich as initial environments
or goals to be reached. In the literature, there exists assefidifferent graph transformation
approaches (cfH0z97).

In the following, we present a particular graph transfoioratapproach that is suitable for
modeling the CVRP based on ACO. Concretely, the graph clasdshe rule class together with
the rule application operator are a variant of the doubkhput approachJEH"97].

3.1 Graphsand Rules

The graph class consists of edge-labeled undirected gratthsnultiple edges as presented in
Section 2 For the modeling of the CVRP iBection 5ve use the following types of edge labels.

5/23 Volume 26 (2010)



Autonomous Units for Ant Colony Optimization @

The symbok for denoting unlabeled edges; strings{m. ..,z}* to denote site namesap, len,

sit, load, feas sum depot ant, dem anddepotto denote attributes such as the capacity of the
trucks, the length of a tour, etc.; labels{ir: y | x € {1,dist},y € R} for pheromone quantities
and distances between locations; label§nny |y € RU{}} for the values of the function;
labels inN andR to denote demands, capacities, loads, lengths of toursaatbA; andM; with

j € N to denote ants and memories.

It is worth noting that undirected graphs can be transformexddirected graphs as used in the
double-pushout approach by replacing each undirected®dgepair of directed edges pointing
in opposite directions. The class of directed graphs obthin this way is a subclass of edge-
labeled directed graphs. Subgraphs and graph morphisndefined as follows.

Subgraphs and graph morphisms. ForG,G’ € ¢, the graphG is asubgraphof G, denoted
by GC G, if Vg C Vg, Eg C Eg, att(e) = att'(e), andm(e) = n(e) for all e € Eg. A graph
morphism g G — G is a pair(gy,ge) of mappings withgy : Vg — Vi andge : Eg — Eg such
that labels and sources are kept, i.e., foeallEg, gy (attg(e)) = atte (ge (e)) andmg (ge(€e)) =

mg(€).? The image ofG in G is the subgraply(G) of G’ such thatyg) = gv (Ve) andEyg) =

0e (Eg). In the following, the subscript¢ andE of gy andge are often omitted, i.eg(x) means
gv (x) for x € V andge (x) for x € E.

Graphs are depicted as usual with round or boxed nodes asldsmedges. A loop is some-
times omitted by putting its label inside the node to whiah ldop is attached. Since a node can
have several loops this is always done for at most one loopgu®. A node with a labedinside
will also be called ax-node. The label * is omitted in graph drawings.

Graphs can be modified by rules consisting of a negative ghradeft-hand side, a gluing
graph, and a right-hand side. Roughly speaking, the negatintext specifies components that
must not occur in the graph to which the rule is applied. Tliehand side, the gluing graph,
and the right-hand side are used to determine which compesbiould be deleted, kept and
added, respectively. In every computation step of a comiythie autonomous units transform
the common environment and their private states simuliasigo For this purpose, every unit
applies pairs of ruleéri,ro), where the first rule; is applied to the common environment and
r, to the private state.

Rulesand rulepairs. A ruleris aquadrupléN,L,K,R) of graphs withN O L O K C Rwhere
N is thenegative contexl is theleft-hand sideK is thegluing graph andRis theright-hand
side If all components of are emptyy is theempty rule The set of all rules is denoted by.
A rule pair is a pair of rules = (rq,r») wherer; is called theglobal ruleandr, the private rule

The set of all rule pairs is denoted 1.

A rule pairr = (r1,r2) wherer, is the empty rule can be regarded as a single rule. Hence,
in the following, we often do not distinguish between singlies and rule pairs with an empty
private rule.

2 For a mappingf: A — B andC C A the setf(C) is defined ag f(x) | x € C}, i.e., gv(attg(e)) = {gv (V) | v e
attg(e)}.

Festschrift H.-J. Kreowski 6/23



@ ECEASST

Arule (N,L,K,R) is depicted adl — Rwhere the nodes and edgesohave the same forms,
labels, and relative positions M andR. The forbidden nodes (i.e., the nodeshbthat do not
belong toL) are colored gray. The forbidden edges are dastiédure 1shows a rule where
the left-hand side consists of a round node, a rectaagiede and an edge connecting both.
The gluing graph consists of the round node, and the righttis&de is obtained from the gluing
graph by connecting the round node with a newode. The gray rectangle node as well as its
incident edges are forbidden.

b
@a—e----fl — e—b]

Figure 1: Arule

A rule pairr = ((Ng,L1,K1,R1), (N2, L2,K2,Ry)) (with non-empty private rule) is depicted as
L1|L2 — R1|Rz where the negative contexts and the gluing graphs are efisgsas in single
rules.

Arule (N,L,K,R) is applied to a graph as follows. (1) Choose an imgdg of L in G. (2)
Check whetheg(L) has no forbidden context given By up toL. (3) Deleteg(L) up tog(K)
from G provided that no dangling edges are produced. (4) Glaad the remaining graph K.
This means that the subgraphof R is identified with its image irZ. This construction can be
defined as follows.

Gluing of graphs. LetK C Randh: K — Z. Then thegluing of Z and R in K with respect
to his constructed as follows. Lety be the equivalence relation generatedven- VR by the
relation {(hy (v),Vv) | v € Vk } and let=g be the equivalence relation &y x Er generated by
{(he(e),e) | ec Ex}.® Let (Vz+Vr)/~v and (Ez + ERr)/~g be the respective quotient sets.
Then the gluing oZ andR in K with respect tch yields the graph

D = ((Vz+VR)/~v, (Ez + ER) /~g, att,m)
where for alle € (ErR+Ez)/~g

{ [attz (€)] if e= [¢] for somee € Ez
att(e) = N
[attr(e)] If €

[e] for somee € Er— Ex

= [€] for somee e E;

€] for somee € Er — Ex

e { Mz (e) i:

e
me(e) if e=

—

The application of a rule to a graph is formally defined asofes.

3 + denotes the disjoint union of sets
4 For a quotient seA/=, [|: A— A/~ denotes its natural associated function.

7123 Volume 26 (2010)



Autonomous Units for Ant Colony Optimization @

Rule application. Letr = (N,L,K,R) € Z, letG € 4. Thenr is applied toG by performing
the following steps. (1) Choose an injective graph morphisrh — G such that the following
conditions are satisfied. (a) If C N, there exists n@': N — G with ¢'(x) = g(x) for all x €
VLUEL. (b) Foralle € Eg —Egy ), attg(e) € Vi — (Vyu) — Vyk))- (2) Construct the intermediate
graphZ by deletingVy ) — Vyk) andEy ) — Eq) from G, (3) construct the gluing o andR
in K with respect tg|K : K — Z whereg|K(x) = g(x) for all x € Vx UEk.

The semantic relation of iis denoted bySEM(r) and consists of all pair§G,G’) such that
G’ can be derived fronG via the application of. For a setP C %, we defineSEMP) =
Urep SEM(r). For(r1,r2) € Z, the semantic relation is equal{(G1, G,), (G}, Gb)) | (Gi,Gl) €
SEM(ri),i = 1,2}, i.e., SEM(ry,r2) consists of all pairg(G1,Gy), (G},G,)) where fori = 1,2
the graphG{ can be obtained by applyingto G;.

The rule inFigure 1can be applied to a graph containing a nedennected to aa-node
but not connected to lanode. Its application removes thenode plus the edge wand adds a
b-node and an edge from thisnode tov. Because of condition (b) of the preceding definition,
the a-node is only connected tobut not to other nodes; otherwise its deletion would produce
dangling edges.

The described kind of applying graph transformation rusea variant of the double-pushout
approach presented in e.@HEH"97], where also non-injective matchings of the left-hand side
are allowed and graphs are directed and node- and edgedatitéplacing all undirected edges
by directed ones as described above, the application ofasypresented here is performed in the
same way as in the double-pushout approach restricteddctivg matchings and edge-labeled
graphs. A node with a singbeloop could be also modeled as a node with node labelthe
case where not only edge labels but also node labels aresallddowever, in the double-pushout
approach, relabeling of nodes via a graph transformatitmisuwften not possible because this
may violate condition (b) in the second step of rule appiicat For this reason we use edge-
labeled graphs where this problem does not occur. An appriteat includes node relabeling
explicitly can be found infHP03.

In general, the autonomous units of a community apply theésrin parallel. A parallel rule
application step involving two rules can be defined as fadlow

Parallel rule application. LetG e ¢ and fori = 1,2, letr; = (N;,L;,Kj,R) be two rules. Let
gi: Li — G be two injective graph morphisms that satisfy the cond#i¢e) and (b) of the def-
inition of rule application and thindependence condition; @-1) Ngz2(L2) € g1(K1) Nga(Kz).°
Thenr; andr; can be applied in parallel t6 by (1) deletingVy, ) — Vg k) andEg (1) — Eg k)
(for i = 1,2), and (2) constructing the gluing of the resulting graplandR; + R, in Ky + Kz
with respect tay: K; + K, — D, whereg(x) = g;(x) if x € Vi, UE,, fori = 1,25

The definition of parallel rule application can be extended straightforward way from two
rules to arbitrary non-empty multisets of rules. For a nseltm of rules, SEMm) denotes the
set of all (G,G') € 4 x 4 whereG' is derived fromG via the parallel application of the rules

5 ForGy, G, € ¢ the intersectiors; N G yields the pairV,E) whereV = Vg, NVg, andE = Eg, NEg,. Moreover,
we have(V,E;) C (o, Ep) if Vi C Vs andE; C E;.
6 The morphisng may be non-injective.

Festschrift H.-J. Kreowski 8/23



@ ECEASST

in m. A multiset m of rules will be called gparallel rule, and for a seP C %, the set of
all parallel rules oveP is denoted byP.. For a rule pair = (r1,r2), SEMr||m) denotes all
((G1,G2),(G],G))) € (9 x9) x (¢ x¥) whereG] is derived fromG; by applying the multiset
obtained from adding; to m, and(G,G,) € SEM(r3).

3.2 Control Conditions

It is often desirable to restrict the non-determinism o&rapplication. This can be achieved with
control conditions. Concretely, we use as control condgicegular expressions equipped with
as long as possible

Control conditions. LetID be a set such th&C ID for some seP of rule pairs. Then the class
% (D) of control conditionsoverID is inductively defined as follows{lambdg UID U{x! | x €
P} C € (ID). Forc,cq,c € €(ID), we have(c +Cz), (C1;C2), (") € € (ID).

For practical applications, the s& would consist of names referring to rule pairs (or units)
but for technical simplicity we do not distinguish betweeilerpairs (units) and their names.

If ID consists only of rule pairs, a semantics of control condgioan be defined in an intuitive
way. Roughly speaking, the conditidambdaapplies no rule. Every rule pairis a control
condition that prescribes one applicationrof The conditionc; + ¢, stands for applying; or
Co, C1;C> means that; must be applied beforey, ¢ appliesc arbitrarily often, and! requires
that the pairr be applied as long as possible. The operator ! applies oniylés because the
possibility to iterate other control conditions as long asgible is not needed in the following.

The semantics of control conditions are sequences of graph where every pair consists
of a common environment and a private state of the unit théralocondition is part of. Each
pair in the sequence is obtained from the previous pair byaidrtbe following actions: (1)
An application of a rule pair occurring in the control comafit, (2) an application of a parallel
rule to the common environment where the parallel rule ismused of global rules of other
autonomous units in the community; (3) a parallel compasif (1) and (2). This means
in particular that the semantics of control conditions ifiree w.r.t. a set of active rules that
comprises the global rules of all other units in the communit

Semaptics of control conditions. Let @%Z C % be a set of rules calledctive rulesand let
P C #. Then for each control condition f&f(P) its semanticss defined as follows.

1. SEM,»(lambdg consists of all sequencé&y,...,G,) of graph pairs such that for=
1,...,n, (Gi_1,Gj) € SEMm) for someme «/%.."

2. SEM,%(r) consists of all sequences= (Gy,...,Gy) for which there exist somg <
{1,...,n} andmy,...,m, € &%, such that foi =1,...;j—1 andi = j+1,...,n, the
pair (Gi—1,Gi) is in SEMm;), and(Gj_1,G;) € SEMr||m;).

3. SEMy (€1 +C2) = SEMyz(C1) USEMy(C2).

7 In this transformation, the second component of every gmhremains unchanged, becamsés a multiset of
single rules.

9/23 Volume 26 (2010)



Autonomous Units for Ant Colony Optimization @

4. SEMy(c1;¢C2) = SEMyz(c1) 0o SEMy(c2) B
5. SEMng(C*) = SEMVQ{%(C)*.

6. SEM,(r!) consists of all sequencé6y,...,Gn) € SEM,(r*) such thar is not appli-
cable toG,.

In Section 4we show how this definition can be employed for the more gécase wherdD
contains units, too.

3.3 Graph Class Expressions

In order to use graph transformation in a meaningful waydusd be possible to specify initial
and terminal graphs of graph transformation processesgképh class expressions. In general,
a graph class expression can be any expression that specffedsof graphs. In particular, the
graph class expressions used in this paper are the following

Graph class expressions. The classZ” of graph class expressions is recursively defined as
follows: all,emptyred(P) € 2" with P C % where SEMall) = ¢4, SEMempty = 0, and
SEMred(P)) consists of all graph& to which no rule ofP can be applied. Moreover, for
I,Te Z,PC %, andCe % (P), (I,PC,T) € 2 whereSEM1,P,C,T) consists of all graphs

G € SEM(T) for which there is a sequend€,...,G,) such thatG, = G, Go € SEM(), for
i=1,...,n(Gj_1,Gj) € SEMP), and(Gy,...,Gn) € SEMy(C).°

One example of a graph class expression of the last type is
complete= (empty{nodesedge$,nodes;edges,red({edge$)),

wherenodesandedgesare the rules irrigure 2

_
nodes ceA id

edges o--®¢ — eo—e@

Figure 2: The rulesodesandedges

The left-hand side and the gluing graph of the rnt@esare empty. The negative context
consists of a boxed node with an incidedbop, and the right-hand side is composed of a round
node, a boxea-node, and and-edge connecting both. The applicationnafdesto a graphG
inserts a new round node connected to a new baxedde via arid-edge provided that there

8 For sets of sequencé&S of graph pairs, their sequential composition is denote®by, andS' is defined as
Uien S with =9 x ¢ andS*1 =S oS

9 Control conditions can be used to define sequences of graysitsad of sequences of graph pairs) because, as stated
before, rules can be regarded as rule pairs with empty pra@nponent.

Festschrift H.-J. Kreowski 10/ 23



@ ECEASST

is no boxedc-node inG. The ruleedgesconnects two existing round nodes by an unlabeled
edge. Given some alphabgt the expressiocompletespecifies all complete graphs composed
of round nodes in which each round node is associated witffexetit element fromA via an
id-edge. (Thed-edge can be considered as an attribute of round nodes wastypeA.) It is
worth noting that the ruledgescannot produce loops because we only use injective morghism
to choose a match of the left-hand side. In addition, we tiealig distinguish between round
and boxed nodes by using particularly labeled loops thatatel the respective node typeynd

or boxed.

4 Communities of Autonomous Units

Every community is mainly composed of a set of autonomous timat act and interact in a com-
mon environment (see e.¢dKK09] where a sequential and a parallel semantics of communities
is introduced).

4.1 Autonomous Units

Autonomous units transform a common graph and have an additprivate graph where they
can store private information. Since the rule set of an artwus unit can be very large, struc-
turing concepts should be provided to keep it manageabléondmous units allow to import
auxiliary units and provide control conditions as well agr class expressions. Auxiliary units
differ from autonomous units in the sense that they do notatorgraph class expressions. The
graph class expressions of every autonomous unit are usggktify the initial private states
as well as the goal. The latter consists of a private goalemig the private state and a goal
concerning the common environment that the autonomouswamits to reach.

Autonomous units. A unit of import depth0 is a systenunit = (I,U,P,C,g) wherel € 2" is
theinitial private graph class expressipl) =0, P C #%,C e ¢(PuUU),andge 2 x 2 is
thegoal. A unit of import depth n+ 1 is a systenunit = (1,U,P,C,g) whereU is a set of units
of import depth at most, andl, P, C, andg are defined as above. A urit,U,P,C,qg) is an
auxiliary unitif I = all, g= (all,all), and everyu € U is an auxiliary unit. A unit1,U,P,C,g) is
anautonomous unif everyu € U is an auxiliary unit. The set of autonomous units is denoted b
AUT. The components afnit are also denoted Byinit, Uunit, Punit, Cunit, @ndgunit, respectively.

Every autonomous unit can be converted into a flattened uthitimport depth zero. The rule
set and the control condition of the flattened unit can betcocied as follows.

Flattening. Forunit= (1,U,P,C,9) its flattened rule set Rulésnit) and itsflattened control
condition flQunit) is defined as follows. 1) = 0, Rulegunit) = P andflC(unit) =C. If U # 0,
Rulegunit) = PUJycy Rulegu) andflC(unit) = C[a] wherea: U — € (%) is defined ag(u) =
fIC(u) andC[a] is obtained by replacing every occurrenceuafith a(u) (for eachu € U).

The parallel semantics of autonomous units consists ofegjuesnces of graph pais=
((Go,Gp),---,(Gn,Gp)) such thatGy is an initial private graph anslis allowed by the flattened

11/23 Volume 26 (2010)



Autonomous Units for Ant Colony Optimization @

control condition with respect to some underlying set ofvactules. Moreoversis successful
if the last graph pair i satisfies the goal of the unit.

A community consists of a set of autonomous units, a spetditaf all possible initial en-
vironments, a global control condition, and an overall gol the following, global control
conditions are regular expressions equipped with the lpacglerator|.

Global control conditions. Let AutC AUT. Then the set aflobal control conditions/%’(Aut)
is recursively defined as follows{auty||- - ||aut | aut € Auti = 0,...,k} C 4% (Aut). For
C,C1,C € 9% (Aut), we have(c; + ), (C1;Co), (C*) € 4€ (Aut).

Global control conditions specify sequences of states evbeery state consists of a common
environment plus a private state for every autonomous aratéommunity. The global control
conditionauty||- - - ||autk prescribes the parallel running afit, ..., aut,. The semantics of the
remaining control conditions are defined as expected. Ifidli@ving we define states and the
semantics of global control conditions.

Semantics of global control conditions. For Aut C AUT, a stateis a pair (G,map where
G € ¥ andmap: Aut — ¢ is a mapping. Theemanticsof each global control condition in
9% (Aut) is defined as follows.

1. SEMayt(autpl|-- - [|auts) consists of all sequencésGo,map),...,(Gn,map,)) such that
fori=0,...,k ((Go,map(aut)),...,(Gn,mam(aut))) € SEM,au) (fIC(aut)), where
A% (aut) = Uaute {aun,....aut—{aus} RUIESAUL), and for eactaut € Aut— {aut, ..., aut},
map,(aut) = --- = mag,(aut).

2. SEMayt(€1 4 €2) = SEMayt(€1) U SEMayt(C2),

3. SEMaut(C1;C2) = SEMayt(C1) 0 SEMayt(C2), and

4. SEMayi(c*) = SEMaut(C)*.

The components of communities are given as follows.

Community. A communityis a tuple(Init, Aut Cond Goal) wherelnit, Goal€ 2, AutC AUT,
andConde ¢4% (Aut).

The parallel semantics of a community consists of all statpiences that are allowed by the
global control condition and start with an initial state sizting of an initial common environ-
ment and an initial private state for each autonomous uti¢ State sequences are successful if
they reach the overall goal.

Parallel community semantics. Let COM= (Init, Aut,Cond Goal) be a community. Then the
parallel community semantiasf COM, denoted byPAR COM) consists of all state sequences
s= ((Go,mam),...,(Gn,mam)) such thatGy € SEMInit), mag(aut) € SEMl4y) (for each
aut € Aut), ands € SEMyt(Cond). Moreover,sis successfuif G, € SEMGoal).

Festschrift H.-J. Kreowski 12 /23



@ ECEASST

5 An ACO Community for Solving the CVRP

In this section we present the components of the ACO comm@iMcyrp for modeling the
Capacitated Vehicle Routing Problem (CVRP) introduce&éation 2 The initial environment
specification oCOMcyrpspecifies the construction graph of the problem; the settohamous
units consists of the autonomous uritst, ..., Ant; (k € N), andEvap& Select and the global

control conditionCondis equal to(Ant||...||Ant||Evap& Selecj*. In our first approach the
overall goal is equal tall.
Roughly speaking, the communi§OMcyrpworks as follows. The ant uninty, ..., Ant

model the ants, which in parallel traverse the graph acogri the savings heuristics introduced
in Section 2and the current pheromone trails, and search for a solutiothé& CVRP. When all
ants have finished their search, the autonomoushwvap Selecffirst carries out evaporation of
the current pheromone trails. After that it selestants with best solutions. Now each selected
ant leaves a pheromone trail on its solution path accordirigd quality of the solution. All the
units act in parallel. To ensure the described order we ugative contexts as well as control
conditions.

5.1 Thelnitial Environment

The underlying structure of the construction graph of theDA§y/stem modeling the CVRP is
a complete graph with some additional information such &glrpheromone concentration,
distances, etc. This construction graph can be defined bygrdgeh class expression depicted
in Figure 3 It uses as initial expression the graph class expressionpleteintroduced in
Subsection 3.3 Its rule depotselects the depot and has to be applied exactly once. The rule
custadds a number representing the demand to every customey ire¢déo every node apart
from the depot. The rul&it labels every edge of the initial graph with adistance dand it
inserts two edges between each two nodes of the graph, cgledabith theheuristic valueco
the other with annitial pheromone value.ZThe rulesavecomputes the heuristic value of every
edge based on the savings heuristics. The control conditigunires that the depot is selected
first. The terminal graph class expressiedl({init,savecust}) guarantees that the rulesst
init, andsaveare applied as long as possible.

The rulescust init, andsaveof Constructiongraphare parameterized, i.e., their labels contain
variables. Each of these parameterized rules represeritfimite set of rules: one for each
possible instantiation of its variables. Concretely, thgablex can be instantiated with a natural
number, andl, d;, andd, with non-negative real numbers. (The vakis fixed and represents
the initial pheromone value.) Hence, when applying a patarized rule, a value for each of
its variables must be chosen. More information and pa#icaspects concerning parameterized
rules and their application can be found in elgEPT06 PS04 Kus03.

The meaning of the graph class express@onstructiongraph is to formally specify the
class of initial environments consisting of all terminahghs that can be generated from a com-
plete graph by the rules such that the control condition tisféad. In practice, the community
COMcyrp Would rather start its work on already existing initial constion graphs instead of
generating them nondeterministically.

13/23 Volume 26 (2010)



Autonomous Units for Ant Colony Optimization @

Constructiongraph
initial: complete
rules:
depot ° — e )depot
]
dem
cust & depot oy
init: ~~ e—e gz
save —
dist: dp

conds:depot; (cust+ init + savg*
terminal:red({init, savecust})

Figure 3: The graph class expressioanstructiongraph

5.2 TheAnt Units

In general, every ant builds a solution tour by traversing ¢dbmmon environment according
to the current pheromone trails. It first selects its inipakition. Afterwards, it constructs a
solution tourt. Then it puts some pheromone bii it is selected to do so. Every ant urint;
uses the auxiliary unit®ur;j, andput_pherg. The control condition is equal to

initial _position; ; tour; ; put_pherg

whereinitial _position; is the rule pair depicted iRigure 4

icf‘@ﬁ

depot

Figure 4: The rulenitial _position,

It puts the anfAnt; to the depot and generates its membrywhere it stores the current load

Festschrift H.-J. Kreowski 14/ 23



@ ECEASST

tour;
usesfeasibleneighbors, prob;

rules:
move

private:

return:

global:

private:

conds: feasibleneighbors ; (prob; ; move+ return))* ; feasibleneighbors ; stop

Figure 5: The auxiliary unitour;

of the vehicle represented nt; (load), the capacity of the vehiclegqp), its current location
(sit) and the total length of the tourte(). This information is represented by edges labeled
with the respective labeldo@ad, cap, sit andlen), which are each attached to a node with the
corresponding value inside.

The unittour; is given inFigure 5 The global and private parts of the unit’s rule pairs are
depicted one below the other. Witbur; the ant builds a solution tour depending on probabilities
for the next move to a feasible neighbor calculated from #wngs heuristics and the current
pheromone trails. It contains the auxiliary unfeasibleneighbors and probj, and the rule
pairsmove returnandstop The control condition requires to apply the rule pairgveor return
arbitrarily often, and afterwards, the rule patopis applied once. Before each application of

15/23 Volume 26 (2010)



Autonomous Units for Ant Colony Optimization @

movethe unitprob; is called. Moreover, the unfeasibleneighbors is executed before each
application ofprob; and ofreturn as well as before the application of the last rule |séap

The unitfeasibleneighbors is given inFigure 6 It computes the feasible neighbors for an
ant unitAnt; and stores them in the memory of the ant. Feasible neighibersustomer-nodes
that are not yet visited and whose demand still fits into thecke. Every application of the
only rule pairfeasadds one feasible neighbor to the memory. Moreover, it Usestixiliary
unit deletenonfeasiblethat removes all neighbors from the memory that are condedte a
feasedge toM; and whose demand exceeds the remaining capacity of theeefilde assume
that the demand of each customer fits into one vehicle.) Bhietessary because after adding
a feasible customer to a tour, the former feasible neighimang not fit into the vehicle anymore.
For reasons of space limitations a drawinglefetenonfeasiblds omitted.

feasibleneighbors
usesdeletenonfeasible

conds:deletenonfeasible fead

Figure 6: The auxiliary uniteasibleneighborg

The unitprob; is given inFigure 7 It provides the denominator of the probability that a feasi
ble neighbor is chosen for a next move (&puation 1of Section 3. The rulebegininitializes
this value with 0. The rule pasummust be applied as long as possible. For not counting a
feasible neighbor several timesmchanges each labé&asinto ok At the end the unitela-
belall_private; (ok,feas)s applied which undoes this relabeling, i.e., it changkeskaédges into
feasedges. It is very simple and hence not depicted.

With the rule paimoveof the unittour; the ant moves to a feasible neighbor with the proba-
bility depicted under the arrow of the rule pamovein Figure 5 Moreover, in the memory the
current load of the vehicle, the path followed so far, andtthal length of the tour are updated.
With the rule pairreturn the ant returns to the depot if no feasible neighbor is left @sets its
current load to 0. Afterwards it starts to construct a newt@ub Finally, when all nodes are
visited, the rule paistopis applied to delete the load and the capacity from the memsmwyell
as the edge between the ant and the depot in the common eneinbibbecause none of them are
needed for the pheromone update which is the next and IgsbEtae run ofAnt;. Moreover,
the rule pairstopcommunicates the information about the length of the fowidti®n via the
common environment by inserting an edge labeled Veittfrom the ant-nodé\; to a new node
labeled with the length of the solution.

The unit put_pherg is depicted inFigure 8 It works a little different for ants, who should
leave a pheromone trail and those who should not. Both kifidsts apply different rules,

Festschrift H.-J. Kreowski 16 /23



@ ECEASST

proby
usesrelabelall _private;

rules:
Su m

begin 0 ‘ — 0

conds:begin; sun ; relabelall _private;(ok,feas)

Figure 7: The auxiliary uniprob

but the structure of rule applications is the same. In boesdhe ant traverses the solution
path stored in its memory and meanwhile deletes it. (Becthespath stored in the memory is
shaped like a blossom with the depot in the middle, first tregdls” (subtours) are deleted and
finally the depot.) This behavior is represented by the ralesstart.a (resp. start.b) and put
(resp. deleteonly) and the subexpression of the control conditicstgt a + start b) ; (putl +
deleteonlyl))*. One application oftart followed by applications oput (resp. deleteonly) as
long as possible traverses one subtour of the found tounbiggj and ending at the depot. The
rule pairs delete the traversed path from the memory (lga¥ia depot)put additionally leaves

a pheromone trail in the common environment with the val® Wheres is the length of the
solution tour. Afterwards the remaining subtours are trse@ until no further subtour is left in
the memory. Then the respectisoprules can be applied, which deletes the Apfrom the
common environment as well as its complete memory. Pleasetinat due to the independence
condition for parallel rule application the rulstart a andput can only be applied in parallel by
different ants to different pheromone edges so that sepberbmone updates of the same edge
are always executed sequentially.

5.3 TheUnit Evap& Select

Evap& Selectis given inFigure 9 It is responsible for the evaporation of pheromone tréils,
the selection of thev best solutions provided by the ants, and for marking thesats with a
put pheraloop.

With the rulecheck which is applied only once at the beginning, the unit chegksther all
ants have finished their search. This is the case if all ants Waitten the length of the found
solution into the common environment. With the help of thé velabelall _global evaporation
takes place by multiplying the pheromone value of every @mene edge in the common en-

17 /23 Volume 26 (2010)



Autonomous Units for Ant Colony Optimization ﬁ

putpherqg

rules: put.phero put.phero

‘

start a:

T:x Jd
depot
no_phero no_phero
‘ ‘
start b: —
put phero put phero
‘ ‘
put —
TZXId r:x-i-lsICI
no_phero no_phero
delete, ‘ . ‘
only °
put.phero
‘
stopa: — 0 0
no_phero
‘
stopb: — 0 0

conds: (6tarta + start b) ; (putl + deleteonly!))* ; (stopa + stopb)

Figure 8: The auxiliary uniput_pherg

Festschrift H.-J. Kreowski 18/23



@ ECEASST

Evap& Select
usesrelabelall _global

rules:
len len
check . — .
put phero
o )
1]
select

—

-l-e-n--|E| |j>|i
no_phero
| | C)
reject  [AHELI] —

conds:check; relabelall_global(t: z,r: (1—p)*2z); select ; reject

Figure 9: The autonomous urittvap Select

vironment with(1— p), wherep € (0,1] is a pheromone decay parameter. After that, the rule
selectis appliedw times (in the control condition this is abbreviated $slect). It finds an
ant with the best solution, marks it with a loppt.pherq and deletes the information about the
length of the ant’s solution from the common environmentctEturther application ogelect
finds a next best solution. Whewnbest solutions are found, the rulgjectis applied as long as
possible to equip the remaining ant nodes wittogohercaloop. This rank-based approach could
be extended by thelitist strategy(see e.g. DS04). In this strategy the best solution so far is
memorized and when pheromone update takes place, this étsiiadditional pheromone. (In
our modeling of the CVRP, we do not consider this strategybse of space limitations.)

Remark. The presented modeling can be used to prove correctnessriiespa few of which
are informally described here.

1. In every execution aihitial -position;;tour; a solution is constructed, i.e., a set of cycles
of the construction graph is traversedAgt; and stored in its memory such that the depot
belongs to every cycle, and every customer occurs exactlg inexactly one cycle.

2. The unitrelabel all_global models pheromone evaporation.

3. The unitput pherg models pheromone update, remoyes; from the common environ-
ment, and deletes its memory.

19/23 Volume 26 (2010)



Autonomous Units for Ant Colony Optimization @

4. Each execution ofAnty||...||Ant||[Evap& Selec} models an iteration of the correspond-
ing ACO-Algorithm, i.e., (1) solution construction, (2) gtomone evaporation, and (3)
pheromone update.

For reasons of space limitations, proofs of the first threp@rties are omitted and the proof of
the fourth is roughly sketched.

Proof sketch of the fourth property.et Aut CVRP= {Anty, ..., Ant,, Evap& Selec}. Moreover,

let RulesCVRP= |J,,eaut cvrpRUlESAUL). Before the first iteration the current state is equal
to (G,map) with G € SEM Constructiongraph) and map,(aut) = 0 for all aut € Aut CVRP.
Assume that aften iterations the current state is equal @&, map whereG' is obtained fronG

via the pheromone evaporation and the pheromone updatles optevious iterations. Let

S € SEMautcvrr(ANty|| - - - ||Ant||[Evapk Select

be the transformation sequence of the- 1)!" iteration. Thers= ((Gp,mag), ..., (Gm,mag,))
with Go = G’ andmap, = mapand for eactaut € Aut CVRR,

((GO7 man(aUt))v ceey (va mapn(aUt))) € SEM?uIesCVRRRuIes{aut) (ﬂc(caut))'

This means by the definition of the semantics of control dions that at first every ant has
to execute its rulenitial _position then itstour-unit, and finally itsput_phercunit. The rules
in U'j‘zl RulegAnt;) — (U'J-‘Zl Rulegput phero,)) satisfy the independence condition so that they
can be applied in parallel. (Please note that according dod#finition of the semantics of
global control conditions, only rules of different autonoms units can be applied in parallel
which also implies that the independence condition of pelralle application has to be checked
only parallel applications of global rules.) The rulespat pherocan only be applied if the
corresponding ants are equipped withw_phero or ano_pheraloop. This loops can only be
generated by the autonomous uBvtaps Selectwhich in turn can start working as soon as every
unit has finished to execute itsur-unit, because its first ruleheckcan only be applied after
each ant has applied the ridmpwhich is the last rule that is applied iour.

According to the first property of the remark, every ant cards a tour by executing the rule
initial _positionand then itdour-unit. After the application o€heck the unitrelabelall_global
is applied which according to the second property modelsgohene evaporation. Afterwards,
the autonomous uniEvap& Selectexecuteselect’ followed by as many applications as possible
of reject It can be easily shown by induction that for each ant eitherrule selector the
rule rejectis applied exactly once for every ant. As soon as an ant hasgsgaat phero or its
no_phercloop by the ruleselector reject it can start to apply the rules giut phera (Due to
the independence condition of parallel rule applicatiamriies ofput. phero(of different ants)
can be applied in parallel if and only if they do not augmeetgheromone quantity of the same
edge.) By the third property the executionmft pheromodels pheromone update and deletes
the ants from the common environment as well as all privatest Hence, the environment
G is obtained fromG’ via pheromone evaporation and pheromone update. Altogetheet
that each execution dinty||--- ||Ank||Evap& Selectmodels solution construction, pheromone
evaporation and pheromone update in this order. O

Festschrift H.-J. Kreowski 20/23



@ ECEASST

6 Conclusion

In this paper, we have modeled an ACO algorithm for the Caatel Vehicle Routing Problem
as a community of autonomous units. The autonomous behaf/@rery ant as well as evapo-
ration and selection of the best ants have been modeled@saubus units running in parallel.
The construction graph has been specified by the initialrenment specification of the com-
munity, and the order in which solution construction, pineooe evaporation, and pheromone
update take place has been modeled with the units’ contraitons as well as with (negative)
context conditions of the units’ graph transformation sul8ince all ACO algorithms basically
work according to the same underlying algorithm, we beligha they all can be modeled as
communities of autonomous units in a natural way.

For solving ACO algorithms in a proper way, we have extendex garallel working au-
tonomous units of HIKKO9] by auxiliary units that allow to encapsulate auxiliaryksisn sep-
arate units and to manage large rule sets. However, thisagateis merely "syntactic sugar”
because the parallel semantics is defined for the flatteniéd Ve have used a separate state
for every autonomous unit in order to represent memoriestst & very similar notion of pri-
vate states has been introduced KiKP8]. In general, communities with private states can be
simulated by communities without private states by addiacheprivate state disjointly to the
common environment and labeling it in such a way that it caadmessed by exactly one unit.
However, for a proper modeling of ACO algorithms it is meafith to separate private states
(i.e., memories) from the common environment.

Furthermore, we have defined the syntax and semantics ofetertasses of global and unit
control conditions consisting of regular expressions redeel by a parallelism operator in the
global case and extended by and an operator that presanilbgply a rule as long as possible in
the case of control conditions for units.

The modeling of ACO systems as communities of autonomous has the following advan-
tages. (1) The specification of ants as autonomous unitsda®vthe ants with a well-defined
operational semantics. (2) The graph transformation rolesitonomous units allow for a vi-
sual specification of ant behavior instead of string-basmligo code as it is often used in the
literature. (3) The existing graph transformation systéofise.qg. ERT99 GKO0Sg]) are likely to
facilitate the visual simulation of ant colonies and hereartverification (see alsd{ol08]).

In the future, the following points will be further inveséited. (1) The formal semantics of
communities of autonomous units constitutes a basis fafipgaorrectness results by induction
on the length of the transformation sequences or for exagiother characteristics (such as
termination) by making use of the wide theory of rule-basexply transformation (se&pz97).
This should be further explored. (2) This and further casdies should be implemented with
one of the existing graph transformation systems so thagtierging behavior of ant colonies
can be visually simulated, and ACO algorithms can be verified the implementation purpose
we plan to use GrGerdK08] because it is one of the fastest and most flexible graphfoans
mation systems. Further case studies could take into atooone advanced elitist strategies as
well as dynamic aspects (see e §SpP2 DS04 MGRDO5 RDH04, RMLGO7]). (3) Another
interesting task is to investigate how communities of aotoous units can serve as a modeling
framework for swarm intelligence in general.

21/23 Volume 26 (2010)



Autonomous Units for Ant Colony Optimization @

Acknowledgements. We are grateful to Hauke Tonnies for his contribution to evjus ver-
sion of this paper and to the referees for their valuable cenim

Bibliography

[CEH*97]

[DS04]

[EEKR99]

[EEPTO6]

[EKMR99]

[ERT99]

[ES02]

[GKOS]

[HKKO9]

[Hol08]

[HPO2]

A. Corradini, H. Ehrig, R. Heckel, M. Lowe, U. Montanaf. Rossi. Algebraic
Approaches to Graph Transformation Part I: Basic ConcepdsCxouble Pushout
Approach. Pp. 163-245 iiRpz97.

M. Dorigo, T. StutzleAnt Colony OptimizationMIT-Press, 2004.

H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenbeeglq.). Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: lisgtions, Lan-
guages and TooldVorld Scientific, Singapore, 1999.

H. Ehrig, K. Ehrig, U. Prange, G. TaentzEBundamentals of Algebraic Graph
Transformation EATCS Monographs. Springer, 2006.

H. Ehrig, H.-J. Kreowski, U. Montanari, G. Rozempdeds.).Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 3: €wrency, Paral-
lelism, and Distribution World Scientific, Singapore, 1999.

C. Ermel, M. Rudolf, G. Taentzer. The AGG-Approadtanguage and Environ-
ment. In Ehrig et al. (eds.}dandbook of Graph Grammars and Computing by
Graph Transformation, Vol. 2: Applications, Languages dials Pp. 551-603.
World Scientific, Singapore, 1999.

C. J. Eyckelhof, M. Snoek. Ant Systems for a Dynamid®TSAnts Caught in a
Traffic Jam. In Dorigo et al. (edsAnt Algorithms - Third International Workshop,
ANTS 2002Lecture notes in Computer Science 2462, pp. 88—-98. 2002.

R. Geil3, M. Kroll. GrGen.NET: A Fast, Expressive, aBéneral Purpose Graph
Rewrite Tool. In Schirr et al. (edsfroc. 3rd Intl. Workshop on Applications of
Graph Transformation with Industrial Relevance (AGTIVE).OLecture Notes in
Computer Science 5088, pp. 568—-569. 2008.

K. Holscher, H.-J. Kreowski, S. Kuske. AutonomoUumits to Model Interacting
Sequential and Parallel Procesdesndamenta Informatica@2(3):233-257, 2009.

K. Holscher.Autonomous Units as a Rule-based Concept for the Modelingiof
tonomous and Cooperating Processesgos Verlag, 2008. PhD thesis.

A. Habel, D. Plump. Relabelling in Graph Transforioat In Corradini et al. (eds.),
Proc. First International Conference on Graph Transforioat(ICGT '02). Lecture
Notes in Computer Science 2505, pp. 135-147. 2002.

Festschrift H.-J. Kreowski 22 /23



@ ECEASST

[KKO7] H.-J. Kreowski, S. Kuske. Autonomous Units and Th8gmantics - The Parallel
Case. In Fiadeiro and Schobbens (edRg¢ent Trends in Algebraic Development
Techniques, 18th International Workshop, WADT 2Q@&ture Notes in Computer
Science 4408, pp. 56-73. 2007.

[KKO8] H.-J. Kreowski, S. Kuske. Communities of Autonomauaits for Pickup and De-
livery Vehicle Routing. In Schurr et al. (edsBroc. 3rd Intl. Workshop on Appli-
cations of Graph Transformation with Industrial Releva@&TIVE '07) Lecture
Notes in Computer Science 5088, pp. 281-296. 2008.

[KLTO9]  S.Kuske, M. Luderer, H. Tonnies. Autonomous uri@ssolving the traveling sales-
person problem based on ant colony optimizatiorPioc. 2nd International Con-
ference on Dynamics in Logistics (LDIC 2009P09. To appear.

[Kus02] S. Kuske. Parameterized Transformation Units. &udron and Corradini (eds.),
Proc. GETGRATS (General Theory of Graph Transformatiorte8ys) Closing
Workshop Electronic Notes in Theoretical Computer Science 51. 20@%ages.

[MGRDO5] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, . Donati. Ant Colony Sys-
tem for a Dynamic Vehicle Routing Probledournal of Combinatorial Optimiza-
tion 10(4):327-343, 2005.

[PS04] D. Plump, S. Steinert. Towards Graph Programs fopsrgorithms. In Ehrig
et al. (eds.)Proc. 2nd Intl Conference on Graph Transformation (ICGT).04ec-
ture Notes in Computer Science 3256, pp. 128—-143. 2004.

[RDHO4] M. Reimann, K. Doerner, R. F. Hartl. D-Ants: SavirBased Ants divide and con-
quer the vehicle routing probler@omputers & ORB1(4):563-591, 2004.

[RMLGO7] A. E. Rizzoli, R. Montemanni, E. Lucibello, L. M. Gabardella. Ant colony op-
timization for real-world vehicle routing problemSwarm Intelligencel(2):135—
151, 2007.

[R0z97] G. Rozenberg (ed.Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundation¥Vorld Scientific, Singapore, 1997.

23/23 Volume 26 (2010)



	Introduction
	Ant Colony Optimization
	Application: Capacitated Vehicle Routing Problem

	A Graph Transformation Approach
	Graphs and Rules
	Control Conditions
	Graph Class Expressions

	Communities of Autonomous Units
	Autonomous Units

	An ACO Community for Solving the CVRP
	The Initial Environment
	The Ant Units
	The Unit Evap&Select

	Conclusion

