
Electronic Communications of the EASST
Volume 26 (2010)

Manipulation of Graphs, Algebras and Pictures

Essays Dedicated to Hans-Jörg Kreowski
on the Occasion of His 60th Birthday

Autonomous Units for Solving the Capacitated Vehicle Routing Problem
Based on Ant Colony Optimization

Sabine Kuske, Melanie Luderer

23 pages

Guest Editors: Frank Drewes, Annegret Habel, Berthold Hoffmann, Detlef Plump
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Autonomous Units for Solving the Capacitated Vehicle Routing
Problem Based on Ant Colony Optimization

Sabine Kuske1, Melanie Luderer2∗

1 kuske@informatik.uni-bremen.de, http://www.informatik.uni-bremen.de/∼kuske
2 melu@informatik.uni-bremen.de, http://www.informatik.uni-bremen.de/theorie

Department of Computer Science
University of Bremen, Germany

Abstract: Communities of autonomous units and ant colony systems havefunda-
mental features in common. Both consists of a set of autonomously acting units that
transform and move around a common environment that is usually a graph. In con-
trast to ant colony systems, the actions of autonomous unitsare specified by graph
transformation rules which have a precisely defined operational semantics and can
be visualized in a straightforward way. In this paper, we model an ant colony sys-
tem solving the capacitated vehicle routing problem as a community of autonomous
units. The presented case study shows that the main characteristics of ant colony
systems such as tour construction and pheromone updates canbe captured in a nat-
ural way by autonomous units.

Keywords: Graph transformation, autonomous units, ant colony optimization

1 Introduction

In computer science there exists a large variety of relevantproblems that are too complex to
be solved by a deterministic algorithm in an acceptable time. Hence, heuristics are employed
that in many cases can help to find good solutions. In this context, swarm intelligence plays
an important role where, roughly speaking, a swarm is a largenumber of autonomous and self-
interested agents that act and interact in parallel. In general, a swarm as a whole can produce
good solutions for complex problems whereas a stand-alone agent is not able to do so. One well-
studied kind of swarms are ant colonies which consist of a setof autonomously behaving artificial
ants that move around a common graph and make their decisionsaccording to the pheromone
concentration in their neighborhood. They are inspired by the way how ants find short routes
between food and their formicary and have been shown to be well-suited not only for the solving
of shortest path problems, but for a series of more complex problems, typically occurring in
logistics (cf. [DS04]).

Basically, in an ant colony system, a set of ants constructs solutions for a given problem
(mostly NP-hard) by moving along the edges of an underlying graph. According to the quality of
the constructed solutions the ants walk back and put some pheromone on the traversed items, i.e.,

∗ The first author would like to acknowledge that her research is partially supported by the Collaborative Research
Centre 637 (Autonomous Cooperating Logistic Processes: A Paradigm Shift and Its Limitations) funded by the
German Research Foundation (DFG).

1 / 23 Volume 26 (2010)

mailto:kuske@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/~kuske
mailto:melu@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/theorie

Autonomous Units for Ant Colony Optimization

the better the solution is the more pheromone is placed by an ant. During solution construction
the pheromone concentration as well as some further heuristic value help the ants to decide where
to go in each step. Every ant has a memory for storing important information such as the length
of the traversed path, etc.

In order to prove correctness properties of ant colony optimization algorithms, a formal mod-
eling framework with a well defined semantics is needed. Moreover, ant colony systems can be
visually represented in a straightforward way so that for simulation and verification purposes,
it is desirable to have a graphical modeling framework whoseoperational semantics provides
graphical representations of system states. Since ants work on graphs, graph transformation is
a suitable approach to specify the actions of the ants. Not only has graph transformation a well
defined semantics and a wide theory but there exist also some graph transformation tools that
could be used to implement ACO algorithms (cf. [Roz97, EEKR99, EKMR99]). Moreover, a
suitable concept for modeling the autonomous behavior of ants is needed. A promising concept
to achieve this is that of communities of autonomous units because on the one hand they incor-
porate rule-based graph transformation and on the other hand autonomous units act and interact
autonomously in a common environment (cf. [KK07, KK08, HKK09]).

Essentially, every autonomous unit is composed of a set of graph transformation rules, a con-
trol condition, and a goal. Moreover, it can ask auxiliary units for help and it can be equipped
with a specification of initial private states where the latter may be used to represent the mem-
ory of an ant. Autonomous units transform the common environment and their private states
simultaneously while striving for their goals, can communicate with each other via the common
environment, and may act in parallel. A community is composed of a set of autonomous units,
a specification of initial common environments, a global control condition, and an overall goal.
A current state of a community consists of a current common environment plus a private state
for every autonomous unit. The semantics of a community consists of all state sequences ob-
tained by composing the semantics of the autonomous units inthe community in such a way
that the global control condition is not violated and the start state consists of an initial common
environment and an initial private state for every unit. A transformation process is successful
if it reaches the overall goal. The basic components of communities are provided by a graph
transformation approach consisting of a class of graphs, a class of graph class expressions, a
class of rules with a rule application operator, and a class of control conditions. In the literature
there exists a variety of graph transformation approaches (cf. [Roz97]). They all can be used as
underlying approaches for communities.

In [KLT09], it was shown that communities of autonomous units are suitable to model an ant
colony solving the Traveling Salesperson Problem. The present paper focuses on a more com-
plicated problem that can be solved in an intuitive way by antcolony optimization algorithms:
the Capacitated Vehicle Routing Problem (CVRP) (cf., e.g.,[RDH04, DS04]). Concretely, we
present a community of autonomous units that models an ant colony that solves the CVRP. The
aim of this paper is to consolidate the conjecture that communities of autonomous units are
suitable as a formal framework for modeling ant colony systems.

The advantages of modeling ant colony systems as communities of autonomous units are the
following. (1) Autonomous units provide ant colony systemswith a well-founded operational
semantics so that verification techniques for graph transformation can be applied to ant colony
systems. (2) The fact that ant actions can be specified as graph transformation rules allows for a

Festschrift H.-J. Kreowski 2 / 23

ECEASST

visual modeling of ant algorithms and hence for a visual representation of ant colony behavior.
(3) Existing graph transformation tools such as GrGEN [GK08] or AGG [ERT99] can be used to
implement ant algorithms.

This paper is organized as follows. InSection 2, ant colony systems for the heuristic solving of
optimization problems are briefly introduced and a particular ant colony optimization algorithm
for solving the CVRP is recalled.Section 3presents a graph transformation approach that is used
throughout this paper.Section 4introduces autonomous units and communities of autonomous
units. Section 5shows how fundamental features of ant colony systems can be modeled with
autonomous units by translating an ant colony system solving the CVRP into a community. The
conclusion is given inSection 6.

2 Ant Colony Optimization

Ant colony optimization (ACO) systems are algorithmic frameworks for the heuristic solving
of optimization problems, typically problems belonging tothe complexity class NP-hard, since
no efficient algorithms for this kind of problems are known that always solve the problem. The
idea of ACO originates in the observation of how ants find short ways between food and their
formicary. An individual ant can hardly see and has a very narrow perspective of its environ-
ment. While searching for food, it leaves a chemical substance on the ground, called pheromone,
which can be sensed by other ants and influence their route decision. The higher the concen-
tration of pheromone along a way, the higher the probabilitythat an ant will choose this way
as well, thus leaving even more pheromone. The crucial pointis that pheromone evaporates
with time. An ant following a short route to food will return sooner to the formicary so that the
pheromone concentration on shorter routes becomes more intense than on longer routes. The
higher pheromone concentration makes more ants choose the short route which in turn raises
the pheromone concentration further. Finally, almost all ants end up choosing one short route,
although not necessarily the shortest one. Since typical optimization problems can be nicely
modeled as graphs, it is the prefered data structure for ACO.In this paper we use edge-labeled
undirected graphs with multiple (i.e. parallel) edges.

Graphs. A graph is a tupleG = (V,E,att,m), whereV is a finite set ofnodes, E is a finite set
of edgessuch thatV andE are disjoint,att : E→

⋃
k∈{1,2}

(V
k

)
is a mapping that assigns to every

edge a set of one or twosourcesin V, andm is a mapping that assigns alabel to every edge in
E.1 A graph with no nodes and no edges is called theempty graphwhich is denoted by /0. The
components ofG are also denoted byVG, EG, attG, andmG respectively. The set of all graphs is
denoted byG .

A solution to an optimization problem consists typically ofa tour (e.g. an ordered sequence of
nodes) within the given graph. Intuitively, the complexityof most NP-hard optimization prob-
lems lies in the exponentially growing number of possible tours when new nodes and edges are
added. The lack of an efficient search method for the ‘best’ way requires an (almost) exhaustive

1 Fork∈N,
(V

k

)
denotes the set of subsets ofV with k elements, i.e.,

(V
k

)
= {V ′ ⊆V | |V|= k} where|V| denotes the

number of elements inV ′.

3 / 23 Volume 26 (2010)

Autonomous Units for Ant Colony Optimization

search of all the possible tours. To solve an optimization problem with ACO, some additional
information is needed. We define optimization problems as follows.

Optimization Problem. An optimization problem is a 6-tuple(CG,d,τ ,η ,S,g) whereCG∈G

is a construction graph, d is a function that associates every edge with a cost value (e.g. the
distance),τ is a function that associates every edge with a pheromone value,η is a function that
associates every edge with a number as an heuristic value forthe quality of the edge,S⊆V∗ is
the set ofsolutions, andg assigns acost g(s) to everys∈ S.

Basically, ACO works as follows. At first, a predefined numberof ants are placed randomly
at some nodes. These ants decide in parallel which edge they follow in the next step according
to a transition rule. Leta be an index to choose one ofn ants andUa the set of all edges that
can be chosen from anta residing at some node. The decision, which edgee∈Ua to take, is
probability-based. The probabilities are calculated as follows.

pa(e) =
[τ(e)]α · [η(e)]β

∑e∈Ua
[τ(e)]α · [η(e)]β

∀e∈Ua (1)

In words this formula states that ants prefer edges with low cost and a high concentration of
pheromone. The experimental parametersα andβ control the influence of the pheromone resp.
heuristic value in the decision. In every step this formula is applied, until all the ants have
constructed a complete tour.

The next step concerns the pheromone values. Simulating theevaporation, the values ofτ
are reduced:τ(e)← (1−ρ) · τ(e) ∀e∈ ECG whereρ is a pheromone decay parameter in the
interval(0,1]. Furthermore the release of pheromone of the ants is simulated:

τ(e)← τ(e)+
n

∑
a=1

∆τa(e), with ∆τa(e) =

{
1

length(toura) ,e∈ toura
0 otherwise

wheretoura is the solution constructed by anta. In contrast to nature, the release of pheromone
takes place after the ants constructed a complete tour, since the amount of pheromone corre-
sponds to the overall quality of the tour (e.g. the length of the tour). Furthermore, in some ACO
systems not every ant leaves pheromone, but just the ones having constructed the best tours.

Now the ants are placed again at some randomly chosen nodes and the algorithm starts with
the modified values of pheromone. Some variants of this basicACO yielding better performance
have been proposed in the literature. Details can be found in[DS04].

2.1 Application: Capacitated Vehicle Routing Problem

An important application field of ACO concerns all kinds of tour planning with the Traveling
Salesperson Problem (TSP) as the most famous one. Another problem often occurring in dis-
tribution logistics is the so called Capacitated Vehicle Routing Problem (CVRP), which can be
described as follows. A number of customers must be served with some goods that are stored at
a central depot. A number of vehicles with finite and equal capacity is available. The aim is to
find a set of tours such that the demands of all customers are met and the total cost (the sum of

Festschrift H.-J. Kreowski 4 / 23

ECEASST

the distances of the tours) is minimized. Combinatorially,a solution can be formally described
as a partition of the cities intom routes{R1, . . . ,Rm}. Each route must satisfy the condition
∑ j∈Ri

demj ≤ k, wheredemj describes the demand of thej-th customer andk is the capacity
restriction of the vehicles. Within each partition, an associated permutation function specifies
the customer order.

Relaxing the conditions by allowing any partition (respectively settingk = ∞), the CVRP
is transformed into an instance of the Multiple Traveling Salesperson Problem. Leaving the
condition unchanged but with a cost function that counts thenumber of partitions CVRP becomes
the well-known bin packing problem. CVRP contains in this sense two NP-hard problems, which
in practice makes it a lot more complicated to solve than TSP for example and it seems a good
idea to use ACO. A formulation of CVRP according to the definition of optimization problems
is quickly found. Nevertheless, there are different ways todesign the functionη : ECG→R. One
easy possibility consists of the reciprocal cost-value of the edge.

Nevertheless, sometimes other methods are used to calculate the heuristic values; one elegant
way is based on the so-calledSavings algorithm. Starting from the initial (and unfavored) solu-
tion, where every route consists of exactly one customer, itis calculated, how the quality of the
solution changes (how much one would save), putting two customersi and j in one route. Let
di0 denote the distance between customeri and the depot anddi j the distance between customer
i and j. Then the saving value obtained by merging the routesRi andRj together is calculated as
follows:

si j = 2∗di0 +2∗d j0− (di0 +di j +d j0)

= di0 +d j0−di j

Elaborated experiments concerning the performance of ACO and Saving Algorithm for the
CVRP can be found in [RDH04].

3 A Graph Transformation Approach

Graph transformation approaches provide the main ingredients for communities of autonomous
units. They consist of a class of graphs, a class of rules, a rule application operator, a class of
control conditions, and a class of graph class expressions.The graphs are used to represent the
common environments and the private states of communities.The rules are needed to transform
these graphs. Moreover, control conditions restrict the non-determinism of rule application, and
with graph class expressions one can specify specific graph sets such as initial environments
or goals to be reached. In the literature, there exists a series of different graph transformation
approaches (cf. [Roz97]).

In the following, we present a particular graph transformation approach that is suitable for
modeling the CVRP based on ACO. Concretely, the graph class and the rule class together with
the rule application operator are a variant of the double-pushout approach [CEH+97].

3.1 Graphs and Rules

The graph class consists of edge-labeled undirected graphswith multiple edges as presented in
Section 2. For the modeling of the CVRP inSection 5we use the following types of edge labels.

5 / 23 Volume 26 (2010)

Autonomous Units for Ant Colony Optimization

The symbol∗ for denoting unlabeled edges; strings in{a, . . . ,z}∗ to denote site names;cap, len,
sit, load, feas, sum, depot, ant, dem, anddepotto denote attributes such as the capacity of the
trucks, the length of a tour, etc.; labels in{x : y | x∈ {τ ,dist},y∈ R} for pheromone quantities
and distances between locations; labels in{η : y | y∈R∪{∞}} for the values of the functionη ;
labels inN andR to denote demands, capacities, loads, lengths of tours, etc.; andA j andM j with
j ∈ N to denote ants and memories.

It is worth noting that undirected graphs can be transformedinto directed graphs as used in the
double-pushout approach by replacing each undirected edgeby a pair of directed edges pointing
in opposite directions. The class of directed graphs obtained in this way is a subclass of edge-
labeled directed graphs. Subgraphs and graph morphisms aredefined as follows.

Subgraphs and graph morphisms. For G,G′ ∈ G , the graphG is asubgraphof G′, denoted
by G⊆ G′, if VG ⊆ VG′ , EG ⊆ EG′, att(e) = att′(e), andm(e) = m′(e) for all e∈ EG. A graph
morphism g: G→G′ is a pair(gV ,gE) of mappings withgV : VG→VG′ andgE : EG→ EG′ such
that labels and sources are kept, i.e., for alle∈EG, gV(attG(e)) = attG′(gE(e)) andmG′(gE(e)) =
mG(e).2 The image ofG in G′ is the subgraphg(G) of G′ such thatVg(G) = gV(VG) andEg(G) =
gE(EG). In the following, the subscriptsV andE of gV andgE are often omitted, i.e.,g(x) means
gV(x) for x∈V andgE(x) for x∈ E.

Graphs are depicted as usual with round or boxed nodes and lines as edges. A loop is some-
times omitted by putting its label inside the node to which the loop is attached. Since a node can
have several loops this is always done for at most one loop pernode. A node with a labelx inside
will also be called anx-node. The label * is omitted in graph drawings.

Graphs can be modified by rules consisting of a negative context, a left-hand side, a gluing
graph, and a right-hand side. Roughly speaking, the negative context specifies components that
must not occur in the graph to which the rule is applied. The left-hand side, the gluing graph,
and the right-hand side are used to determine which components should be deleted, kept and
added, respectively. In every computation step of a community, the autonomous units transform
the common environment and their private states simultaneously. For this purpose, every unit
applies pairs of rules(r1, r2), where the first ruler1 is applied to the common environment and
r2 to the private state.

Rules and rule pairs. A rule r is a quadruple(N,L,K,R) of graphs withN⊇ L⊇K ⊆Rwhere
N is thenegative context, L is theleft-hand side, K is thegluing graph, andR is theright-hand
side. If all components ofr are empty,r is theempty rule. The set of all rules is denoted byR.
A rule pair is a pair of rulesr = (r1, r2) wherer1 is called theglobal ruleandr2 theprivate rule.
The set of all rule pairs is denoted bỹR.

A rule pair r = (r1, r2) wherer2 is the empty rule can be regarded as a single rule. Hence,
in the following, we often do not distinguish between singlerules and rule pairs with an empty
private rule.

2 For a mappingf : A→ B andC ⊆ A the set f (C) is defined as{ f (x) | x ∈C}, i.e., gV (attG(e)) = {gV (v) | v ∈
attG(e)}.

Festschrift H.-J. Kreowski 6 / 23

ECEASST

A rule (N,L,K,R) is depicted asN→Rwhere the nodes and edges ofK have the same forms,
labels, and relative positions inN andR. The forbidden nodes (i.e., the nodes ofN that do not
belong toL) are colored gray. The forbidden edges are dashed.Figure 1shows a rule where
the left-hand side consists of a round node, a rectanglea-node and an edge connecting both.
The gluing graph consists of the round node, and the right-hand side is obtained from the gluing
graph by connecting the round node with a newb-node. The gray rectangle node as well as its
incident edges are forbidden.

a
b
−→ b

Figure 1: A rule

A rule pair r = ((N1,L1,K1,R1),(N2,L2,K2,R2)) (with non-empty private rule) is depicted as
L1|L2→ R1|R2 where the negative contexts and the gluing graphs are represented as in single
rules.

A rule (N,L,K,R) is applied to a graph as follows. (1) Choose an imageg(L) of L in G. (2)
Check whetherg(L) has no forbidden context given byN up to L. (3) Deleteg(L) up to g(K)
from G provided that no dangling edges are produced. (4) GlueRand the remaining graph inK.
This means that the subgraphK of R is identified with its image inZ. This construction can be
defined as follows.

Gluing of graphs. Let K ⊆ R andh: K → Z. Then thegluing of Z and R in K with respect
to h is constructed as follows. Let≈V be the equivalence relation generated onVZ +VR by the
relation{(hV(v),v) | v ∈ VK} and let≈E be the equivalence relation onEZ×ER generated by
{(hE(e),e) | e∈ EK}.3 Let (VZ +VR)/≈V and (EZ + ER)/≈E be the respective quotient sets.
Then the gluing ofZ andR in K with respect toh yields the graph

D = ((VZ +VR)/≈V ,(EZ +ER)/≈E,att,m)

where for alle∈ (ER+EZ)/≈E

att(e) =

{
[attZ(e)] if e= [e] for somee∈ EZ

4

[attR(e)] if e= [e] for somee∈ ER−EK

m(e) =

{
mZ(e) if e= [e] for somee∈ EZ

mR(e) if e= [e] for somee∈ ER−EK

The application of a rule to a graph is formally defined as follows.

3 + denotes the disjoint union of sets
4 For a quotient setA/≈, [] : A→ A/≈ denotes its natural associated function.

7 / 23 Volume 26 (2010)

Autonomous Units for Ant Colony Optimization

Rule application. Let r = (N,L,K,R) ∈R, let G∈ G . Thenr is applied toG by performing
the following steps. (1) Choose an injective graph morphismg: L→ G such that the following
conditions are satisfied. (a) IfL ⊂ N, there exists nog′ : N→ G with g′(x) = g(x) for all x ∈
VL∪EL. (b) For alle∈ EG−Eg(L), attG(e)⊆VG− (Vg(L)−Vg(K)). (2) Construct the intermediate
graphZ by deletingVg(L)−Vg(K) andEg(L)−Eg(K) from G, (3) construct the gluing ofZ andR
in K with respect tog|K : K→ Z whereg|K(x) = g(x) for all x∈VK ∪EK.

The semantic relation of ris denoted bySEM(r) and consists of all pairs(G,G′) such that
G′ can be derived fromG via the application ofr. For a setP ⊆ R, we defineSEM(P) =⋃

r∈PSEM(r). For(r1, r2)∈ R̃, the semantic relation is equal to{((G1,G2),(G′1,G
′
2)) | (Gi,G′i)∈

SEM(r i), i = 1,2}, i.e., SEM(r1, r2) consists of all pairs((G1,G2),(G′1,G
′
2)) where fori = 1,2

the graphG′i can be obtained by applyingr i to Gi .

The rule inFigure 1can be applied to a graph containing a nodev connected to ana-node
but not connected to ab-node. Its application removes thea-node plus the edge tov and adds a
b-node and an edge from thisb-node tov. Because of condition (b) of the preceding definition,
the a-node is only connected tov but not to other nodes; otherwise its deletion would produce
dangling edges.

The described kind of applying graph transformation rules is a variant of the double-pushout
approach presented in e.g. [CEH+97], where also non-injective matchings of the left-hand side
are allowed and graphs are directed and node- and edge-labeled. Replacing all undirected edges
by directed ones as described above, the application of a rule as presented here is performed in the
same way as in the double-pushout approach restricted to injective matchings and edge-labeled
graphs. A node with a singlex-loop could be also modeled as a node with node labelx in the
case where not only edge labels but also node labels are allowed. However, in the double-pushout
approach, relabeling of nodes via a graph transformation rule is often not possible because this
may violate condition (b) in the second step of rule application. For this reason we use edge-
labeled graphs where this problem does not occur. An approach that includes node relabeling
explicitly can be found in [HP02].

In general, the autonomous units of a community apply their rules in parallel. A parallel rule
application step involving two rules can be defined as follows.

Parallel rule application. Let G∈ G and fori = 1,2, let r i = (Ni,Li ,Ki,Ri) be two rules. Let
gi : Li → G be two injective graph morphisms that satisfy the conditions (a) and (b) of the def-
inition of rule application and theindependence condition g1(L1)∩g2(L2) ⊆ g1(K1)∩g2(K2).

5

Thenr1 andr2 can be applied in parallel toG by (1) deletingVgi (L)−Vgi (K) andEgi(L)−Egi(K)

(for i = 1,2), and (2) constructing the gluing of the resulting graphD andR1 + R2 in K1 + K2

with respect tog: K1+K2→ D, whereg(x) = gi(x) if x∈VKi ∪EKi , for i = 1,2.6

The definition of parallel rule application can be extended in a straightforward way from two
rules to arbitrary non-empty multisets of rules. For a multisetm of rules,SEM(m) denotes the
set of all(G,G′) ∈ G ×G whereG′ is derived fromG via the parallel application of the rules

5 ForG1,G2 ∈ G the intersectionG1∩G2 yields the pair(V,E) whereV = VG1 ∩VG2 andE = EG1 ∩EG2. Moreover,
we have(V1,E1)⊆ (V2,E2) if V1 ⊆V2 andE1⊆ E2.
6 The morphismg may be non-injective.

Festschrift H.-J. Kreowski 8 / 23

ECEASST

in m. A multiset m of rules will be called aparallel rule, and for a setP ⊆ R, the set of
all parallel rules overP is denoted byP∗. For a rule pairr = (r1, r2), SEM(r||m) denotes all
((G1,G2),(G′1,G

′
2)) ∈ (G ×G)× (G ×G) whereG′1 is derived fromG1 by applying the multiset

obtained from addingr1 to m, and(G2,G′2) ∈ SEM(r2).

3.2 Control Conditions

It is often desirable to restrict the non-determinism of rule application. This can be achieved with
control conditions. Concretely, we use as control conditions regular expressions equipped with
as long as possible.

Control conditions. Let ID be a set such thatP⊆ ID for some setPof rule pairs. Then the class
C (ID) of control conditionsoverID is inductively defined as follows:{lambda}∪ ID ∪{x! | x∈
P} ⊆ C (ID). Forc,c1,c2 ∈ C (ID), we have(c1+c2),(c1 ;c2),(c∗) ∈ C (ID).

For practical applications, the setID would consist of names referring to rule pairs (or units)
but for technical simplicity we do not distinguish between rule pairs (units) and their names.

If ID consists only of rule pairs, a semantics of control conditions can be defined in an intuitive
way. Roughly speaking, the conditionlambdaapplies no rule. Every rule pairr is a control
condition that prescribes one application ofr. The conditionc1+c2 stands for applyingc1 or
c2, c1 ;c2 means thatc1 must be applied beforec2, c∗ appliesc arbitrarily often, andr! requires
that the pairr be applied as long as possible. The operator ! applies only torules because the
possibility to iterate other control conditions as long as possible is not needed in the following.

The semantics of control conditions are sequences of graph pairs where every pair consists
of a common environment and a private state of the unit the control condition is part of. Each
pair in the sequence is obtained from the previous pair by oneof the following actions: (1)
An application of a rule pair occurring in the control condition; (2) an application of a parallel
rule to the common environment where the parallel rule is composed of global rules of other
autonomous units in the community; (3) a parallel composition of (1) and (2). This means
in particular that the semantics of control conditions is defined w.r.t. a set of active rules that
comprises the global rules of all other units in the community.

Semantics of control conditions. Let AR ⊆ R be a set of rules calledactive rulesand let
P⊆ R̃. Then for each control condition inC (P) its semanticsis defined as follows.

1. SEMAR(lambda) consists of all sequences(G0, . . . ,Gn) of graph pairs such that fori =
1, . . . ,n, (Gi−1,Gi) ∈ SEM(m) for somem∈AR∗.7

2. SEMAR(r) consists of all sequencess = (G0, . . . ,Gn) for which there exist somej ∈
{1, . . . ,n} andm1, . . . ,mn ∈ AR∗ such that fori = 1, . . . , j − 1 and i = j + 1, . . . ,n, the
pair (Gi−1,Gi) is in SEM(mi), and(G j−1,G j) ∈ SEM(r||mj).

3. SEMAR(c1+c2) = SEMAR(c1)∪SEMAR(c2).

7 In this transformation, the second component of every graphpair remains unchanged, becausem is a multiset of
single rules.

9 / 23 Volume 26 (2010)

Autonomous Units for Ant Colony Optimization

4. SEMAR(c1 ;c2) = SEMAR(c1)◦SEMAR(c2).8

5. SEMAR(c∗) = SEMAR(c)∗.

6. SEMAR(r!) consists of all sequences(G0, . . . ,Gn) ∈ SEMAR(r∗) such thatr is not appli-
cable toGn.

In Section 4we show how this definition can be employed for the more general case whereID
contains units, too.

3.3 Graph Class Expressions

In order to use graph transformation in a meaningful way, it should be possible to specify initial
and terminal graphs of graph transformation processes withgraph class expressions. In general,
a graph class expression can be any expression that specifiesa set of graphs. In particular, the
graph class expressions used in this paper are the following.

Graph class expressions. The classX of graph class expressions is recursively defined as
follows: all,empty, red(P) ∈ X with P ⊆ R where SEM(all) = G , SEM(empty) = /0, and
SEM(red(P)) consists of all graphsG to which no rule ofP can be applied. Moreover, for
I ,T ∈X , P⊆R, andC ∈ C (P), (I ,P,C,T) ∈X whereSEM(I ,P,C,T) consists of all graphs
G ∈ SEM(T) for which there is a sequence(G0, . . . ,Gn) such thatGn = G, G0 ∈ SEM(I), for
i = 1, . . . ,n (Gi−1,Gi) ∈ SEM(P), and(G0, . . . ,Gn) ∈ SEM/0(C).9

One example of a graph class expression of the last type is

complete= (empty,{nodes,edges},nodes∗ ;edges∗, red({edges})),

wherenodesandedgesare the rules inFigure 2.

nodes: c −→
c∈A

c
id

edges: −→

Figure 2: The rulesnodesandedges

The left-hand side and the gluing graph of the rulenodesare empty. The negative context
consists of a boxed node with an incidentc-loop, and the right-hand side is composed of a round
node, a boxedc-node, and anid-edge connecting both. The application ofnodesto a graphG
inserts a new round node connected to a new boxedc-node via anid-edge provided that there

8 For sets of sequencesS,S′ of graph pairs, their sequential composition is denoted byS◦S′, andS∗ is defined as⋃
i∈N Si with S0 = G ×G andSi+1 = Si ◦S.

9 Control conditions can be used to define sequences of graphs (instead of sequences of graph pairs) because, as stated
before, rules can be regarded as rule pairs with empty private component.

Festschrift H.-J. Kreowski 10 / 23

ECEASST

is no boxedc-node inG. The ruleedgesconnects two existing round nodes by an unlabeled
edge. Given some alphabetA, the expressioncompletespecifies all complete graphs composed
of round nodes in which each round node is associated with a different element fromA via an
id-edge. (Theid-edge can be considered as an attribute of round nodes which has typeA.) It is
worth noting that the ruleedgescannot produce loops because we only use injective morphisms
to choose a match of the left-hand side. In addition, we technically distinguish between round
and boxed nodes by using particularly labeled loops that indicate the respective node type (round
or boxed).

4 Communities of Autonomous Units

Every community is mainly composed of a set of autonomous units that act and interact in a com-
mon environment (see e.g. [HKK09] where a sequential and a parallel semantics of communities
is introduced).

4.1 Autonomous Units

Autonomous units transform a common graph and have an additional private graph where they
can store private information. Since the rule set of an autonomous unit can be very large, struc-
turing concepts should be provided to keep it manageable. Autonomous units allow to import
auxiliary units and provide control conditions as well as graph class expressions. Auxiliary units
differ from autonomous units in the sense that they do not contain graph class expressions. The
graph class expressions of every autonomous unit are used tospecify the initial private states
as well as the goal. The latter consists of a private goal concerning the private state and a goal
concerning the common environment that the autonomous unitwants to reach.

Autonomous units. A unit of import depth0 is a systemunit = (I ,U,P,C,g) whereI ∈X is
the initial private graph class expression, U = /0, P⊆ R̃, C ∈ C (P∪U), andg ∈X ×X is
thegoal. A unit of import depth n+1 is a systemunit = (I ,U,P,C,g) whereU is a set of units
of import depth at mostn, and I , P, C, andg are defined as above. A unit(I ,U,P,C,g) is an
auxiliary unit if I = all, g= (all,all), and everyu∈U is an auxiliary unit. A unit(I ,U,P,C,g) is
anautonomous unitif everyu∈U is an auxiliary unit. The set of autonomous units is denoted by
AUT. The components ofunit are also denoted byIunit, Uunit, Punit, Cunit, andgunit, respectively.

Every autonomous unit can be converted into a flattened unit with import depth zero. The rule
set and the control condition of the flattened unit can be constructed as follows.

Flattening. For unit = (I ,U,P,C,g) its flattened rule set Rules(unit) and itsflattened control
condition flC(unit) is defined as follows. IfU = /0, Rules(unit) = P andflC(unit) = C. If U 6= /0,
Rules(unit) = P∪

⋃
u∈U Rules(u) andflC(unit) =C[a] wherea: U →C (R̃) is defined asa(u) =

flC(u) andC[a] is obtained by replacing every occurrence ofu with a(u) (for eachu∈U).

The parallel semantics of autonomous units consists of all sequences of graph pairss =
((G0,G′0), . . . ,(Gn,G′n)) such thatG′0 is an initial private graph ands is allowed by the flattened

11 / 23 Volume 26 (2010)

Autonomous Units for Ant Colony Optimization

control condition with respect to some underlying set of active rules. Moreover,s is successful
if the last graph pair inssatisfies the goal of the unit.

A community consists of a set of autonomous units, a specification of all possible initial en-
vironments, a global control condition, and an overall goal. In the following, global control
conditions are regular expressions equipped with the parallel operator||.

Global control conditions. Let Aut⊆AUT. Then the set ofglobal control conditionsGC (Aut)
is recursively defined as follows:{aut0|| · · · ||autk | auti ∈ Aut, i = 0, . . . ,k} ⊆ GC (Aut). For
c,c1,c2 ∈ GC (Aut), we have(c1+c2),(c1 ;c2), (c∗) ∈ GC (Aut).

Global control conditions specify sequences of states where every state consists of a common
environment plus a private state for every autonomous unit in a community. The global control
conditionaut0|| · · · ||autk prescribes the parallel running ofaut0, . . . ,autk. The semantics of the
remaining control conditions are defined as expected. In thefollowing we define states and the
semantics of global control conditions.

Semantics of global control conditions. For Aut⊆ AUT, a state is a pair(G,map) where
G ∈ G and map: Aut→ G is a mapping. Thesemanticsof each global control condition in
GC (Aut) is defined as follows.

1. SEMAut(aut0|| · · · ||autk) consists of all sequences((G0,map0), . . . ,(Gn,mapn)) such that
for i = 0, . . . ,k, ((G0,map0(auti)), . . . ,(Gn,mapn(auti)))∈SEMAR(auti)(flC(auti)), where
AR(auti) =

⋃
aut∈{aut0,...,autk}−{auti}Rules(aut), and for eachaut∈ Aut−{aut0, . . . ,autk},

map0(aut) = · · ·= mapn(aut).

2. SEMAut(c1+c2) = SEMAut(c1)∪SEMAut(c2),

3. SEMAut(c1 ;c2) = SEMAut(c1)◦SEMAut(c2), and

4. SEMAut(c∗) = SEMAut(c)∗.

The components of communities are given as follows.

Community. A communityis a tuple(Init ,Aut,Cond,Goal) whereInit ,Goal∈X , Aut⊆AUT,
andCond∈ GC (Aut).

The parallel semantics of a community consists of all state sequences that are allowed by the
global control condition and start with an initial state consisting of an initial common environ-
ment and an initial private state for each autonomous unit. The state sequences are successful if
they reach the overall goal.

Parallel community semantics. LetCOM= (Init ,Aut,Cond,Goal) be a community. Then the
parallel community semanticsof COM, denoted byPAR(COM) consists of all state sequences
s = ((G0,map0), . . . ,(Gn,mapn)) such thatG0 ∈ SEM(Init), map0(aut) ∈ SEM(Iaut) (for each
aut∈ Aut), ands∈ SEMAut(Cond). Moreover,s is successfulif Gn ∈ SEM(Goal).

Festschrift H.-J. Kreowski 12 / 23

ECEASST

5 An ACO Community for Solving the CVRP

In this section we present the components of the ACO community COMCVRP for modeling the
Capacitated Vehicle Routing Problem (CVRP) introduced inSection 2. The initial environment
specification ofCOMCVRPspecifies the construction graph of the problem; the set of autonomous
units consists of the autonomous unitsAnt1, . . . ,Antk (k ∈ N), andEvap&Select; and the global
control conditionCond is equal to(Ant1|| . . . ||Antk||Evap&Select)∗. In our first approach the
overall goal is equal toall.

Roughly speaking, the communityCOMCVRPworks as follows. The ant unitsAnt1, . . . ,Antk
model the ants, which in parallel traverse the graph according to the savings heuristics introduced
in Section 2and the current pheromone trails, and search for a solution for the CVRP. When all
ants have finished their search, the autonomous unitEvap&Selectfirst carries out evaporation of
the current pheromone trails. After that it selectsw ants with best solutions. Now each selected
ant leaves a pheromone trail on its solution path according to the quality of the solution. All the
units act in parallel. To ensure the described order we use negative contexts as well as control
conditions.

5.1 The Initial Environment

The underlying structure of the construction graph of the ACO system modeling the CVRP is
a complete graph with some additional information such as initial pheromone concentration,
distances, etc. This construction graph can be defined by thegraph class expression depicted
in Figure 3. It uses as initial expression the graph class expressioncompleteintroduced in
Subsection 3.3. Its rule depotselects the depot and has to be applied exactly once. The rule
custadds a number representing the demand to every customer node, i.e., to every node apart
from the depot. The ruleinit labels every edgee of the initial graph with adistance dand it
inserts two edges between each two nodes of the graph, one labeled with theheuristic value∞
the other with aninitial pheromone value z. The rulesavecomputes the heuristic value of every
edge based on the savings heuristics. The control conditionrequires that the depot is selected
first. The terminal graph class expressionred({init ,save,cust}) guarantees that the rulescust,
init, andsaveare applied as long as possible.

The rulescust, init, andsaveof Constructiongraphare parameterized, i.e., their labels contain
variables. Each of these parameterized rules represents aninfinite set of rules: one for each
possible instantiation of its variables. Concretely, the variablex can be instantiated with a natural
number, andd, d1, andd2 with non-negative real numbers. (The valuez is fixed and represents
the initial pheromone value.) Hence, when applying a parameterized rule, a value for each of
its variables must be chosen. More information and particular aspects concerning parameterized
rules and their application can be found in e.g. [EEPT06, PS04, Kus02].

The meaning of the graph class expressionConstructiongraph is to formally specify the
class of initial environments consisting of all terminal graphs that can be generated from a com-
plete graph by the rules such that the control condition is satisfied. In practice, the community
COMCVRP would rather start its work on already existing initial construction graphs instead of
generating them nondeterministically.

13 / 23 Volume 26 (2010)

Autonomous Units for Ant Colony Optimization

Constructiongraph
initial: complete

rules:
depot: −→ depot

cust: depot
dem −→

x∈N xdem

init: −→
d∈R

dist: d

τ : z

η : ∞

save: dist: d

dist: d1 dist: d2

η : ∞

depot

−→ dist: d

dist: d1 dist: d2

η : d1 +d2−d

depot

conds:depot; (cust+ init + save)∗

terminal:red({init ,save,cust})

Figure 3: The graph class expressionConstructiongraph

5.2 The Ant Units

In general, every ant builds a solution tour by traversing the common environment according
to the current pheromone trails. It first selects its initialposition. Afterwards, it constructs a
solution tourt. Then it puts some pheromone ont if it is selected to do so. Every ant unitAntj
uses the auxiliary unitstour j , andput pheroj . The control condition is equal to

initial positionj ; tour j ; put pheroj

whereinitial positionj is the rule pair depicted inFigure 4.

depot

c
id /0 −→

depot

c
id

A j

ant
c

depot

0M j
len

sit 0

i

load

cap

Figure 4: The ruleinitial positionj

It puts the antAntj to the depot and generates its memoryM j where it stores the current load

Festschrift H.-J. Kreowski 14 / 23

ECEASST

tourj
uses:feasibleneighborsj , probj

rules:

move:

global: c
A j

ldemiddist: d

τ : x

η : y

ant c

A j

ldemiddist: d

τ : x

η : y ant
−→
xα ·yβ

z

private: M j s

z

m
load

len

sit

sum

feas

c

M j s+d

c

m+ l
load

len

sit

return:

global:

c
A j

iddist : d
ant

depot

c A j
iddist: d ant

depot
−→

private: M j slen

sit

c

feas

m
load

M j s+d

c

len

sit

0 load
−→

stop:

A j

ant
depot

M j

feas
slen

m
load

i
cap

−→
depot

A j slen

M j slen

conds: (feasibleneighborsj ; (probj ; move+ return))∗ ; feasibleneighborsj ; stop

Figure 5: The auxiliary unittour j

of the vehicle represented byAntj (load), the capacity of the vehicle (cap), its current location
(sit) and the total length of the tours (len). This information is represented by edges labeled
with the respective labels (load, cap, sit and len), which are each attached to a node with the
corresponding value inside.

The unit tour j is given inFigure 5. The global and private parts of the unit’s rule pairs are
depicted one below the other. Withtour j the ant builds a solution tour depending on probabilities
for the next move to a feasible neighbor calculated from the savings heuristics and the current
pheromone trails. It contains the auxiliary unitsfeasibleneighborsj and probj , and the rule
pairsmove, returnandstop. The control condition requires to apply the rule pairsmoveor return
arbitrarily often, and afterwards, the rule pairstop is applied once. Before each application of

15 / 23 Volume 26 (2010)

Autonomous Units for Ant Colony Optimization

movethe unitprobj is called. Moreover, the unitfeasibleneighborsj is executed before each
application ofprobj and ofreturn as well as before the application of the last rule pairstop.

The unit feasibleneighborsj is given inFigure 6. It computes the feasible neighbors for an
ant unitAntj and stores them in the memory of the ant. Feasible neighbors are customer-nodes
that are not yet visited and whose demand still fits into the vehicle. Every application of the
only rule pairfeasadds one feasible neighbor to the memory. Moreover, it uses the auxiliary
unit deletenonfeasiblethat removes all neighbors from the memory that are connected via a
feas-edge toM j and whose demand exceeds the remaining capacity of the vehicle. (We assume
that the demand of each customer fits into one vehicle.) This is necessary because after adding
a feasible customer to a tour, the former feasible neighborsmay not fit into the vehicle anymore.
For reasons of space limitations a drawing ofdeletenonfeasibleis omitted.

feasibleneighborsj
uses:deletenonfeasible

rules:

feas:
c

l

id

dem

A j

dist: d
ant M j

c

i m
cap load

−→
m+l≤i

c

l

id

A j

dist : d
ant

dem

M j

c

i m
cap load

feas

conds:deletenonfeasible; feas!

Figure 6: The auxiliary unitfeasibleneighborsj

The unitprobj is given inFigure 7. It provides the denominator of the probability that a feasi-
ble neighbor is chosen for a next move (seeEquation 1of Section 2). The rulebegin initializes
this value with 0. The rule pairsummust be applied as long as possible. For not counting a
feasible neighbor several timessumchanges each labelfeasinto ok. At the end the unitrela-
bel all privatej (ok,feas)is applied which undoes this relabeling, i.e., it changes all ok-edges into
feas-edges. It is very simple and hence not depicted.

With the rule pairmoveof the unittour j the ant moves to a feasible neighbor with the proba-
bility depicted under the arrow of the rule pairmovein Figure 5. Moreover, in the memory the
current load of the vehicle, the path followed so far, and thetotal length of the tour are updated.
With the rule pairreturn the ant returns to the depot if no feasible neighbor is left and resets its
current load to 0. Afterwards it starts to construct a new subtour. Finally, when all nodes are
visited, the rule pairstopis applied to delete the load and the capacity from the memoryas well
as the edge between the ant and the depot in the common environment because none of them are
needed for the pheromone update which is the next and last step of one run ofAntj . Moreover,
the rule pairstopcommunicates the information about the length of the found solution via the
common environment by inserting an edge labeled withlen from the ant-nodeA j to a new node
labeled with the length of the solution.

The unit put pheroj is depicted inFigure 8. It works a little different for ants, who should
leave a pheromone trail and those who should not. Both kinds of ants apply different rules,

Festschrift H.-J. Kreowski 16 / 23

ECEASST

probj

uses:relabel all privatej

rules:

begin: /0 M j −→ /0

0

M j

sum

sum:
c
id

A j

τ : x

η : y

ant M j

c

z

feas

sum
−→

c
id

A j

τ : x

η : y

ant M j

z+xα ·yβ

c

sum

ok

conds:begin; sum! ; relabel all privatej (ok,feas)

Figure 7: The auxiliary unitprobj

but the structure of rule applications is the same. In both cases the ant traverses the solution
path stored in its memory and meanwhile deletes it. (Becausethe path stored in the memory is
shaped like a blossom with the depot in the middle, first the ”petals” (subtours) are deleted and
finally the depot.) This behavior is represented by the rule pairs start a (resp. start b) andput
(resp. deleteonly) and the subexpression of the control condition ((start a + start b) ; (put! +
deleteonly!))∗. One application ofstart followed by applications ofput (resp. deleteonly) as
long as possible traverses one subtour of the found tour beginning and ending at the depot. The
rule pairs delete the traversed path from the memory (leaving the depot);put additionally leaves
a pheromone trail in the common environment with the value 1/s, wheres is the length of the
solution tour. Afterwards the remaining subtours are traversed until no further subtour is left in
the memory. Then the respectivestop-rules can be applied, which deletes the antA j from the
common environment as well as its complete memory. Please note that due to the independence
condition for parallel rule application the rulesstart a andput can only be applied in parallel by
different ants to different pheromone edges so that severalpheromone updates of the same edge
are always executed sequentially.

5.3 The Unit Evap&Select

Evap&Selectis given inFigure 9. It is responsible for the evaporation of pheromone trails,for
the selection of thew best solutions provided by the ants, and for marking thesew ants with a
put phero-loop.

With the rulecheck, which is applied only once at the beginning, the unit checkswhether all
ants have finished their search. This is the case if all ants have written the length of the found
solution into the common environment. With the help of the unit relabel all global evaporation
takes place by multiplying the pheromone value of every pheromone edge in the common en-

17 / 23 Volume 26 (2010)

Autonomous Units for Ant Colony Optimization

put pheroj

rules:

start a:

depot

c
id

A j

put phero

τ : x

M j s

a

depot

len

sit

c

−→

depot

c
id

A j

put phero

τ : x+1/s

M j s

a

depot

len

sit
c

start b:
A j

no phero

M j

a

depot

sit

c

−→
A j

no phero

M j

a

depot

sit
c

put: c
id

A j

put phero

τ : x

M j s

a

depot

len

sit

c

−→ c
id

A j

put phero

τ : x+1/s

M j slen

sit
c

delete
only

:
A j

no phero

M j

a

depot

sit

c

−→
A j

no phero

M j

sit
c

stop a:
A j

put phero

M j s

a

depot

len

sit
−→ /0 /0

stop b:
A j

no phero

M j s

a

depot

len

sit
−→ /0 /0

conds: ((start a + start b) ; (put! + deleteonly!))∗ ; (stop a + stop b)

Figure 8: The auxiliary unitput pheroj

Festschrift H.-J. Kreowski 18 / 23

ECEASST

Evap&Select
uses:relabel all global

rules:

check:

l1A1
len
.
.
.

Ak lklen

−→

l1A1
len
.
.
.

Ak lklen

select:
l iAi

len

A j l j
len

−→
l j > l i

Ai

put phero

reject: l iAi
len −→ Ai

no phero

conds:check; relabel all global(τ : z,τ : (1−ρ)∗z) ; selectw ; reject!

Figure 9: The autonomous unitEvap&Select

vironment with(1−ρ), whereρ ∈ (0,1] is a pheromone decay parameter. After that, the rule
selectis appliedw times (in the control condition this is abbreviated byselectw). It finds an
ant with the best solution, marks it with a loopput phero, and deletes the information about the
length of the ant’s solution from the common environment. Each further application ofselect
finds a next best solution. Whenw best solutions are found, the rulereject is applied as long as
possible to equip the remaining ant nodes with ano phero-loop. This rank-based approach could
be extended by theelitist strategy(see e.g. [DS04]). In this strategy the best solution so far is
memorized and when pheromone update takes place, this tour gets additional pheromone. (In
our modeling of the CVRP, we do not consider this strategy because of space limitations.)

Remark. The presented modeling can be used to prove correctness properties a few of which
are informally described here.

1. In every execution ofinitial positionj ; tour j a solution is constructed, i.e., a set of cycles
of the construction graph is traversed byAntj and stored in its memory such that the depot
belongs to every cycle, and every customer occurs exactly once in exactly one cycle.

2. The unitrelabel all global models pheromone evaporation.

3. The unitput pheroj models pheromone update, removesAntj from the common environ-
ment, and deletes its memory.

19 / 23 Volume 26 (2010)

Autonomous Units for Ant Colony Optimization

4. Each execution of(Ant1|| . . . ||Antk||Evap&Select) models an iteration of the correspond-
ing ACO-Algorithm, i.e., (1) solution construction, (2) pheromone evaporation, and (3)
pheromone update.

For reasons of space limitations, proofs of the first three properties are omitted and the proof of
the fourth is roughly sketched.

Proof sketch of the fourth property.Let Aut CVRP= {Ant1, . . . ,Antk,Evap&Select}. Moreover,
let RulesCVRP=

⋃
aut∈Aut CVRPRules(aut). Before the first iteration the current state is equal

to (G,map) with G ∈ SEM(Constructiongraph) and map0(aut) = /0 for all aut ∈ Aut CVRP.
Assume that aftern iterations the current state is equal to(G′,map) whereG′ is obtained fromG
via the pheromone evaporation and the pheromone updates of then previous iterations. Let

s∈ SEMAut CVRP(Ant1|| · · · ||Antk||Evap&Select)

be the transformation sequence of the(n+1)th iteration. Thens= ((G0,map0), . . . ,(Gm,mapm))
with G0 = G′ andmap0 = mapand for eachaut∈ Aut CVRP,

((G0,map0(aut)), . . . ,(Gm,mapm(aut))) ∈ SEMRulesCVRP−Rules(aut)(flC(Caut)).

This means by the definition of the semantics of control conditions that at first every ant has
to execute its ruleinitial position, then itstour-unit, and finally itsput phero-unit. The rules
in

⋃k
j=1Rules(Antj)− (

⋃k
j=1Rules(put pheroj)) satisfy the independence condition so that they

can be applied in parallel. (Please note that according to the definition of the semantics of
global control conditions, only rules of different autonomous units can be applied in parallel
which also implies that the independence condition of parallel rule application has to be checked
only parallel applications of global rules.) The rules input phero can only be applied if the
corresponding ants are equipped with aput phero- or ano phero-loop. This loops can only be
generated by the autonomous unitEvap&Selectwhich in turn can start working as soon as every
unit has finished to execute itstour-unit, because its first rulecheckcan only be applied after
each ant has applied the rulestopwhich is the last rule that is applied intour.

According to the first property of the remark, every ant constructs a tour by executing the rule
initial positionand then itstour-unit. After the application ofcheck, the unitrelabel all global
is applied which according to the second property models pheromone evaporation. Afterwards,
the autonomous unitEvap&Selectexecutesselectw followed by as many applications as possible
of reject. It can be easily shown by induction that for each ant either the ruleselector the
rule reject is applied exactly once for every ant. As soon as an ant has gotits put phero- or its
no phero-loop by the ruleselector reject, it can start to apply the rules ofput phero. (Due to
the independence condition of parallel rule application the rules ofput phero(of different ants)
can be applied in parallel if and only if they do not augment the pheromone quantity of the same
edge.) By the third property the execution ofput pheromodels pheromone update and deletes
the ants from the common environment as well as all private states. Hence, the environment
Gm is obtained fromG′ via pheromone evaporation and pheromone update. Altogether we get
that each execution ofAnt1|| · · · ||Antk||Evap&Selectmodels solution construction, pheromone
evaporation and pheromone update in this order.

Festschrift H.-J. Kreowski 20 / 23

ECEASST

6 Conclusion

In this paper, we have modeled an ACO algorithm for the Capacitated Vehicle Routing Problem
as a community of autonomous units. The autonomous behaviorof every ant as well as evapo-
ration and selection of the best ants have been modeled as autonomous units running in parallel.
The construction graph has been specified by the initial environment specification of the com-
munity, and the order in which solution construction, pheromone evaporation, and pheromone
update take place has been modeled with the units’ control conditions as well as with (negative)
context conditions of the units’ graph transformation rules. Since all ACO algorithms basically
work according to the same underlying algorithm, we believethat they all can be modeled as
communities of autonomous units in a natural way.

For solving ACO algorithms in a proper way, we have extended the parallel working au-
tonomous units of [HKK09] by auxiliary units that allow to encapsulate auxiliary tasks in sep-
arate units and to manage large rule sets. However, this extension is merely ”syntactic sugar”
because the parallel semantics is defined for the flattened unit. We have used a separate state
for every autonomous unit in order to represent memories of ants. A very similar notion of pri-
vate states has been introduced in [KK08]. In general, communities with private states can be
simulated by communities without private states by adding each private state disjointly to the
common environment and labeling it in such a way that it can beaccessed by exactly one unit.
However, for a proper modeling of ACO algorithms it is meaningful to separate private states
(i.e., memories) from the common environment.

Furthermore, we have defined the syntax and semantics of concrete classes of global and unit
control conditions consisting of regular expressions extended by a parallelism operator in the
global case and extended by and an operator that prescribes to apply a rule as long as possible in
the case of control conditions for units.

The modeling of ACO systems as communities of autonomous units has the following advan-
tages. (1) The specification of ants as autonomous units provides the ants with a well-defined
operational semantics. (2) The graph transformation rulesof autonomous units allow for a vi-
sual specification of ant behavior instead of string-based pseudo code as it is often used in the
literature. (3) The existing graph transformation systems(cf. e.g. [ERT99, GK08]) are likely to
facilitate the visual simulation of ant colonies and hence their verification (see also [Höl08]).

In the future, the following points will be further investigated. (1) The formal semantics of
communities of autonomous units constitutes a basis for proving correctness results by induction
on the length of the transformation sequences or for examining other characteristics (such as
termination) by making use of the wide theory of rule-based graph transformation (see [Roz97]).
This should be further explored. (2) This and further case studies should be implemented with
one of the existing graph transformation systems so that theemerging behavior of ant colonies
can be visually simulated, and ACO algorithms can be verified. For the implementation purpose
we plan to use GrGen [GK08] because it is one of the fastest and most flexible graph transfor-
mation systems. Further case studies could take into account more advanced elitist strategies as
well as dynamic aspects (see e.g. [ES02, DS04, MGRD05, RDH04, RMLG07]). (3) Another
interesting task is to investigate how communities of autonomous units can serve as a modeling
framework for swarm intelligence in general.

21 / 23 Volume 26 (2010)

Autonomous Units for Ant Colony Optimization

Acknowledgements: We are grateful to Hauke Tönnies for his contribution to a previous ver-
sion of this paper and to the referees for their valuable comments.

Bibliography

[CEH+97] A. Corradini, H. Ehrig, R. Heckel, M. Löwe, U. Montanari, F. Rossi. Algebraic
Approaches to Graph Transformation Part I: Basic Concepts and Double Pushout
Approach. Pp. 163–245 in [Roz97].

[DS04] M. Dorigo, T. Stützle.Ant Colony Optimization. MIT-Press, 2004.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.).Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages and Tools. World Scientific, Singapore, 1999.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer.Fundamentals of Algebraic Graph
Transformation. EATCS Monographs. Springer, 2006.

[EKMR99] H. Ehrig, H.-J. Kreowski, U. Montanari, G. Rozenberg (eds.).Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 3: Concurrency, Paral-
lelism, and Distribution. World Scientific, Singapore, 1999.

[ERT99] C. Ermel, M. Rudolf, G. Taentzer. The AGG-Approach:Language and Environ-
ment. In Ehrig et al. (eds.),Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 2: Applications, Languages andTools. Pp. 551–603.
World Scientific, Singapore, 1999.

[ES02] C. J. Eyckelhof, M. Snoek. Ant Systems for a Dynamic TSP - Ants Caught in a
Traffic Jam. In Dorigo et al. (eds.),Ant Algorithms - Third International Workshop,
ANTS 2002. Lecture notes in Computer Science 2462, pp. 88–98. 2002.

[GK08] R. Geiß, M. Kroll. GrGen.NET: A Fast, Expressive, andGeneral Purpose Graph
Rewrite Tool. In Schürr et al. (eds.),Proc. 3rd Intl. Workshop on Applications of
Graph Transformation with Industrial Relevance (AGTIVE ’07). Lecture Notes in
Computer Science 5088, pp. 568–569. 2008.

[HKK09] K. Hölscher, H.-J. Kreowski, S. Kuske. AutonomousUnits to Model Interacting
Sequential and Parallel Processes.Fundamenta Informaticae92(3):233–257, 2009.

[Höl08] K. Hölscher.Autonomous Units as a Rule-based Concept for the Modeling ofAu-
tonomous and Cooperating Processes. Logos Verlag, 2008. PhD thesis.

[HP02] A. Habel, D. Plump. Relabelling in Graph Transformation. In Corradini et al. (eds.),
Proc. First International Conference on Graph Transformation (ICGT ’02). Lecture
Notes in Computer Science 2505, pp. 135–147. 2002.

Festschrift H.-J. Kreowski 22 / 23

ECEASST

[KK07] H.-J. Kreowski, S. Kuske. Autonomous Units and TheirSemantics - The Parallel
Case. In Fiadeiro and Schobbens (eds.),Recent Trends in Algebraic Development
Techniques, 18th International Workshop, WADT 2006. Lecture Notes in Computer
Science 4408, pp. 56–73. 2007.

[KK08] H.-J. Kreowski, S. Kuske. Communities of AutonomousUnits for Pickup and De-
livery Vehicle Routing. In Schürr et al. (eds.),Proc. 3rd Intl. Workshop on Appli-
cations of Graph Transformation with Industrial Relevance(AGTIVE ’07). Lecture
Notes in Computer Science 5088, pp. 281–296. 2008.

[KLT09] S. Kuske, M. Luderer, H. Tönnies. Autonomous unitsfor solving the traveling sales-
person problem based on ant colony optimization. InProc. 2nd International Con-
ference on Dynamics in Logistics (LDIC 2009). 2009. To appear.

[Kus02] S. Kuske. Parameterized Transformation Units. In Bauderon and Corradini (eds.),
Proc. GETGRATS (General Theory of Graph Transformation Systems) Closing
Workshop. Electronic Notes in Theoretical Computer Science 51. 2002. 12 pages.

[MGRD05] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, A.V. Donati. Ant Colony Sys-
tem for a Dynamic Vehicle Routing Problem.Journal of Combinatorial Optimiza-
tion 10(4):327–343, 2005.

[PS04] D. Plump, S. Steinert. Towards Graph Programs for Graph Algorithms. In Ehrig
et al. (eds.),Proc. 2nd Intl Conference on Graph Transformation (ICGT’04). Lec-
ture Notes in Computer Science 3256, pp. 128–143. 2004.

[RDH04] M. Reimann, K. Doerner, R. F. Hartl. D-Ants: SavingsBased Ants divide and con-
quer the vehicle routing problem.Computers & OR31(4):563–591, 2004.

[RMLG07] A. E. Rizzoli, R. Montemanni, E. Lucibello, L. M. Gambardella. Ant colony op-
timization for real-world vehicle routing problems.Swarm Intelligence1(2):135–
151, 2007.

[Roz97] G. Rozenberg (ed.).Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations. World Scientific, Singapore, 1997.

23 / 23 Volume 26 (2010)

	Introduction
	Ant Colony Optimization
	Application: Capacitated Vehicle Routing Problem

	A Graph Transformation Approach
	Graphs and Rules
	Control Conditions
	Graph Class Expressions

	Communities of Autonomous Units
	Autonomous Units

	An ACO Community for Solving the CVRP
	The Initial Environment
	The Ant Units
	The Unit Evap&Select

	Conclusion

