
An Evolutionary Graph Transformation System
as a Modelling Framework for Evolutionary

Algorithms?

Hauke Tönnies

University of Bremen, Department of Computer Science
P.O.Box 330440, D-28334 Bremen, Germany

hatoe@informatik.uni-bremen.de

Abstract. In this paper an heuristic method for the solving of complex
optimization problems is presented which is inspired equally by genetic
algorithms and graph transformation. In short it can be described as a
genetic algorithm where the individuals (encoding solutions of the given
problem) are always graphs and the operators to create new individuals
are provided by graph transformation. As a case study this method is
used to solve the independent set problem.

1 Introduction

Solving combinatorial optimization problems, especially those whose decision
variant belong to the complexity class of NP-complete, remains an important
and highly active field of research, partly because of their importance in many
industrial areas, partly because of the still unclear relationship between opti-
mization problems that are NP-complete and optimization problems that are
known to be solvable in polynomial time. A broad and diverse number of im-
portant optimization problems are NP-complete which means that in most cases
realistic sizes of problem instances can only be solved by heuristic methods since
an important property of NP-complete problems is that the worst case time be-
haviour of the currently best algorithm to solve them is exponential in the size
of the problem instance.

This paper proposes to use graphs and graph transformation as a rule-based
formal framework for modelling evoluionary algorithms which finally leads to
a system called evolutionary graph transformation system. Graphs are quite
generic data structure and therefore suitable for the modelling of a lot of in-
teresting and complex optimization problems. The common search algorithms
on graphs traverse the graphs to find either an optimal or an optimal-close
solution, depending on the complexity of the problem. Graph transformation

? The author would like to acknowledge that his research is partially supported by the
Collaborative Research Centre 637 (Autonomous Cooperating Logistic Processes: A
Paradigm Shift and Its Limitations) funded by the German Research Foundation
(DFG).

works directly on the representation of the problem, i.e. the graph, and alter
the graph in a way that it represents a new and maybe better solution of the
problem. Since graph transformation rules perfom local changes on graphs, it is a
straight-forward idea, to model a mutation operator with graph transformation.
Altogether with a suitable fitness and selection function and some rules for the
initialization of the graphs, a nice way of modelling evolutionary algorithms is
achieved.

The paper is organized as follows. In section 2 graphs and graph transfor-
mation are formally introduced. In section 3 it is shown how an evolutionary
algorithm can be modelled by an evolutionary graph transformation system to
solve the maximum independet set problem. The conclusion is given in section
5.

2 Graphs and Graph Transformation for Modelling static
and dynamic systems

In this paper, undirected, edge-labelled graphs are assumed, although the pre-
sented method is suitable for any kind of graphs. In the following, we present
some formal definitions:

Let V be some set. Then
(
V
k

)
denotes the set of all subsets of V containing

exactly k elements. Moreover, V 1+2 is a notational shorthand for the union(
V
1

)
∪
(
V
2

)
.

Definition 1 (Undirected, edge-labelled graph)

Let Σ be an arbitrary set of labels. An undirected, edge-labelled graph is a
quadruple G = (V,E, att, l), where

1. V is the set of nodes,
2. E is the set of edges,
3. att : E → V 1+2 and
4. l : E → Σ are total functions.

An edge e with att(e) = {v} for one v ∈ V is called loop. The sets V and
E and the functions att and l of a graph G will be denoted V (G), E(G), attG,
lG respectively. To cover unlabeled graphs a special element ∗ ∈ Σ is assumed,
which is not drawn in the visualization of graphs. The set of all graphs over Σ
is denoted by GΣ .

Definition 2 (Subgraph)

Let G and G′ be two graphs. G is subgraph of G′, if V (G) ⊆ V (G′) and
E(G) ⊆ E(G′), att(e) = att′(e) and l(e) = l′(e) for all e ∈ E(G).

Given a graph, a subgraph is obtained by removing some nodes and edges subject
to the condition that the removal of a node is accompanied by the removal of
all its incident edges. Let G be a graph and X = (V (X), E(X)) ⊆ (V,E) be a

pair of sets of nodes and edges. Then G−X = (V − V (X), E − E(X), att, l) is
only then properly defined, if the above condition is met.

Definition 3 (Graphmorphism)

Let G and G′ be two graphs. A graph morphism α : G → G′ is a pair of
functions αV : V 1+2 → V 1+2 and αE : E(G) → E(G′) that are structure-
preserving.

The image g(G) of a graphmorphism α : G→ G′ in G′ is called match of G
in G′ and is subgraph of G′.

Fig. 1. Replacing subgraph G by a new graph

2.1 Graph Transformation

The idea of graph transformation consists in replacing a subgraph of a given
graph by another graph (see Fig. 1). Usually this replacement is based on rules,
the so called graph transformation rules.

Definition 4 (Graph transformation rule)

A graph transformation rule r consists of three graphs L,K,R ∈ GΣ with
L ⊇ K ⊆ R.

The graph to transform is called hostgraph. An application of a graph trans-
formation rule r on a hostgraph G consists of three steps:

1. A graph morphism α : L → G is chosen respecting two application condi-
tions:
(a) Contact condition: The removal of the match α(L) in G must not leave

edges without attachment.
(b) Identification condition: If two nodes or edges of L are identified in the

match α(L) they must be in K.
2. The match α(L) is removed up to α(K) from G yielding a new graph Z =
G− (α(L)− α(K)).

3. The graph R is added to Z by gluing Z with R in α(K) yielding the graph
H = Z + (V (R) − V (K), E(R) − E(K), att′, l′) with att′(e′) = attR(e′),
if att(e′) ∈ (V (R) − V (K))1+2 and att′(e′) = αV (attR(e′)) otherwise and
l′(e′) = lR(e′) for all e′ ∈ E(R)− E(K).

Fig. 2. Graph transformation rule

Analyzing in this respect the replacement of Fig. 1, the corresponding graph
transformation rule is easy to obtain. The graphs L and R are obviously the
graphs H and the graph depicted above the arrow in the figure. The graph K
helps to unambigously embed the graph R in the hostgraph after the removal
of α(L)− α(K). That means, all the vertices and edges of L that we still need,
should be in K. This leads to the rule depicted in Fig. 2.

The application of this rule on the host graph G yields the graph G′. In
general, the application of a rule r to a graph G is denoted by G =⇒

r
G′ and

is called a direct derivation. A sequence G0 =⇒
r1

G1 =⇒
r2

. . . =⇒
rn

Gn of direct

derivations can also be denoted by G0
n=⇒
P

Gn, if r1, . . . , rn ∈ P or G ∗=⇒
r
G′ for

G = G0 and G′ = Gn. The string r1, . . . , rn is called application sequence of the
derivation G0 =⇒

r
G1 =⇒

r
. . . =⇒

r
Gn.

Graph transformation comprises a broad and wide area of application, for
an overview see for example [1] . In this paper we focus on the application in
the area of operations research. Before we show how graph transformation can
be used to model algorithms to solve problems, we have to introduce one more
important concept: the graph transformation unit. A graph transformation unit
uses subsets of graphs specified by so called graph class expressions and so called
control conditions to cut down the derivation process.

Definition 5 (Graph class expression)

A graph class expression is a syntactical entity X that specifies a set of graphs
SEM(X) ⊆ GΣ .

A popular example of a graph class expression is a set of labels ∆ ⊆ Σ such
that

SEM(∆) = {G ∈ GΣ | l(e) = ∆ ∀e ∈ E(G)}

Definition 6 (Control condition)

A control condition is a syntactical entity C that specifies a language L(C)
such that an application sequence s is permitted if and only if s ∈ L(C).

Control conditions are useful to reduce the inherent non-determinism of ap-
plications of graph transformation rules. Without control conditions, any rule of
the set P can be applied arbitrarily at any time, but sometimes it is preferable
to control for example the order of the rule applications. In this case, regular ex-
pressions serve as an useful control conditions: Let r1r∗2r3 be a regular expression

as a control condition. All application sequences must then start with applying
the rule r1, following the application of an arbitrarily number of times rule r2
and ending with the application of rule r3. Another useful control condition con-
sists in applying a rule as long as possible before other rules can be applied. To
denote this control condition, we write an exclamation mark after the rule (e.g.
r1r2!r3). More about graph transformation units and further examples of graph
class expressions and control conditions can be found in [2], [3], [4].

Now we have all the components to define formally a graph transformation unit:

Definition 7 (Graph transformation unit)

A graph transformation unit is quadruple tu = (I, P, C, T) where I, T are
graph class expressions, P a set of rules and C a control condition.

A graph transformation unit defines a binary relation on the set of all graphs
GΣ . Intuitivly, a graph G is tu-related to G′, denoted by G =⇒

tu
G′, iff G ∈

SEM(I), G′ ∈ SEM(T) and G
∗=⇒
P

G′ respecting the control condition C. As

it is shown in the following sections, graph transformation units are useful in
modelling algorithms on graphs.

Sometimes it is useful not only to transform a single graph, but a set or a
multiset of graphs. Let tu be a transformation unit and M : GΣ → N a multiset
of graphs. A multiset transformation M =⇒

tu
M ′ transform all graphs of M by

applying the transformation unit tu on all graphs of M . The multiset M ′ consists
then of all transformed graphs. More about graph multiset transformation can
be found in [5].

3 Solving Combinatorial Optimization Problems with
Evolutionary Graph Transformation Systems

As mentioned before, the following heuristic needs the combinatorial optimiza-
tion problem to be represented as a graph. Keeping in mind that most of the
interesting combinatorial problems are modelled as graphs anyways, this restric-
tion can be seen as an advantage to avoid finding an appropriate coding. The
key idea of this method consists of a so called evolutionary graph transformation
system that uses graph transformation units as a mutation operator to create
new graphs which encode new solutions to the given problem.

3.1 An Evolutionary Graph Transformation System for the
Independent Set Problem

First of all, a formal definition of an evolutionary graph transformation system
is given.

Definition 8 (Evolutionary graph transformation system)

Let Σ be a set of labels and GΣ the set of all graphs over Σ according to
definition 1. An evolutionary graph transformation system is a system

evoGTS = (init,mut, fitness, selection, T, n)

where

1. init is a graph transformation unit,
2. mut is a graph transformation unit,
3. fitness : GΣ → R is a total function,
4. selection :Mfinite(GΣ)→Mfinite(GΣ) is a total function, whereMfinite(GΣ)

denotes the set of all finite multisets of GΣ ,
5. T :Mfinite(GΣ)∗ → BOOL is a total function and
6. n ∈ N a natural number.

It is now shown, how these components interplay to solve a given optimization
problem. As a running example a maximum independent set in the given graph
is searched.

Fig. 3. Initiation rule

Fig. 4. Mutation rules

3.2 Solving Problems

1. The first step consists of initializing the set POP0 through the transforma-
tion unit init.

POP0 =⇒
init

POP1 (1)

In this case, all graphs are initialized by putting an unlabeled loop to every
node. The corresponding rule is depicted in Fig. 3. The control condition
consists of applying this rule an arbitrary number of times and the terminal
graphs, that is the succesfully initialized graphs, are exactly the graphs where
every node has exactly one loop labeled with OK.

2. Once the multiset is initialized, the transformation unit mut is used to create
a new multiset, which we will call, in analogy to other genetic algorithms,
children.

POP1 =⇒
mut

children1 (2)

In case of the independent set problem a mutation consists of putting one
random node, which has not been marked before, into the current inde-
pendent set. The adjacent nodes are marked, so that the constraints of an
independent set are never violated. The corresponding rule is depicted in
Fig. 4 and the control condition is (r1)(r2)!.

3. Out of the two multisets POP1 and children1 the function selection chooses
some graphs to form the multiset POP2(the new parent generation) usually
based on the fitness values. It seems a good idea to use well-known selection
functions from other evolutionary algorithm.

selection(POP1 + children1) = POP2 (3)

One suitable fitness function for the independent set could be the following:
Let S be the current independent set of a graph G.

fitness(G) =

{
∞ if S = ∅∑

s∈S grad(s)

|S| otherwise

4. It is checked, whether the function T (POP1, POP2) yields true. If it does,
the best graphs (e.g. the graphs with the lowest fitness-value) from POP2

are returned. If it does not, the procedure beginning from step 2 starts again,
using the multiset POP2 as the multiset to be mutated.

In Fig. 5 a possible run of the evolutionary graph transformation system is
shown, where the maximum independent set can be found in only one of the
graphs in the last population.

4 Conclusion

In this paper, an evolutionary graph transformation system as a modelling frame-
work for evolutionary algorithms has been proposed. In particular, it was shown
how an evolutionary graph transformation system for the independent set prob-
lem could be modelled, which has turned out suitable to heuristically solve the
problem. There is a broad and wide field for future research, so only a few exam-
ples are mentioned here. Future work could also extend the presented evolution-
ary graph transformation system, e.g. by providing a recombination operator or
by allowing the simultaneous application of a set of rules and thus achieving
parallelism. Furthermore, multi-criteria optimization can easily introduced by
adjusting the fitness-function ([6]). Besides further theoretical investigation, this
and other case studies should be implemented with one of the existing graph
transformation system, e.g. GrGen ([7]) to gain some benchmarks and to prove
the practical usefulness of modelling evolutionary algorithms with evolutionary
graph transformation systems.

Fig. 5. Searching the maximum independent set

References

1. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages and Tools. World Scientific, Singapore (1999)

2. Kreowski, H.J., Kuske, S., Rozenberg, G.: Graph transformation units - an overview.
In Degano, P., Nicola, R.D., Meseguer, J., eds.: Concurrency, Graphs and Models.
Volume 5065 of Lecture Notes in Computer Science. (2008) 57–75

3. Kreowski, H.J., Kuske, S.: Graph transformation units with interleaving semantics.
Formal Aspects of Computing 11(6) (1999) 690–723

4. Kuske, S.: Transformation Units—A Structuring Principle for Graph Transforma-
tion Systems. PhD thesis, University of Bremen (2000)

5. Kreowski, H.J., Kuske, S.: Graph multiset transformation as a framework for mas-
sively parallel computation. In: Proc. 4th Intl. Conference on Graph Transforma-
tions (ICGT 2008). Volume 5214 of Lecture Notes in Computer Science. (2008)
351–365

6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley
& Sons, Inc., New York, NY, USA (2001)

7. Geiß, R., Kroll, M.: GrGen.NET: A fast, expressive, and general purpose graph
rewrite tool. In Schürr, A., Nagl, M., Zündorf, A., eds.: Proc. 3rd Intl. Workshop
on Applications of Graph Transformation with Industrial Relevance (AGTIVE ’07).
Volume 5088 of Lecture Notes in Computer Science. (2008) 568–569

