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Abstract This paper shows how a central part of the Unified
Modeling Language (UML) can be integrated into a single
visual semantic model. It discusses UML models compo-
sed of class, object, state, sequence and collaboration dia-
grams and presents an integrated semantics of these models.
As formal basis the theoretically well-founded area of graph
transformation is employed which supports a visual and rule-
based transformation of UML model states. For the transla-
tion of a UML model into a graph transformation system
the operations in class diagrams and the transitions in state
diagrams are associated with graph transformation rules that
are then combined into one system in order to obtain a single
coherent semantic description. Operation calls in sequence
and collaboration diagrams can be associated with applica-
tions of graph transformation rules in the constructed graph
transformation system so that valid sequence and collabora-
tion diagrams correspond to derivations, i.e., to sequences of
graph transformation rule applications. The main aim of this
paper is to provide a formal framework that supports visual
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1 Introduction

In recent years, the Unified Modeling Language (UML)
[4,34,41] has been widely accepted as a standard language
for modeling and documenting software systems. The UML
offers a number of diagram types that can be used to describe
particular aspects of software artifacts. These diagram types
can be divided depending on whether they are intended to
describe structural or behavioral aspects. From a fundamen-
tal point of view, one meaningful way of employing UML
is to use class, state and interaction diagrams as the basic
means for system description, because class diagrams deter-
mine the fundamental object structures, state diagrams can
be employed for describing the fundamental object behavior,
and interaction diagrams serve to specify how objects interact
in a collaboration.

Unfortunately, UML diagrams were introduced without
a formal semantics that maps the diagrams to a mathemati-
cally precise semantic domain. Their interplay within a UML
model is neither formally defined, i.e., even if one has a
semantics for evey diagram type, it is still not clear how to get
an integrated formal semantics for the whole UML model.

A lot of research has been done in recent years to for-
malize single parts of UML. However, defining a formal
semantics for the UML as a whole is complex due to the
vast scope of the UML. In this paper we present a first step
towards an integrated formal semantics of UML, which takes
into account five basic diagram types, namely class, object,
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404 S. Kuske et al.

state, sequence, and collaboration diagrams. The presented
semantics is related to UML 1 but the concepts considered
here are also contained in UML 2 where collaboration dia-
grams are called communication diagrams.

For the formalization of an integrated semantics of UML
models we employ graph transformation [9,11,40], which is
a well-developed field and has many application domains,
such as graphical modeling languages like the UML. The
main part of a graph transformation system is a set of graph
transformation rules that successively transform local parts
of graphs. In general, graph transformation is very adequate
to formalize and visualize system behavior because system
states can be represented as graphs and system execution
steps as applications of graph transformation rules. In parti-
cular, the possibility of visualizing complex interconnections
as graphs and the rule-basedness of graph transformation
establishes a tight connection to some fundamental features
of UML:

1. System states in UML can be represented as object dia-
grams, which in turn can be formalized as graphs.

2. System behavior can be described in UML with state dia-
grams in which each transition corresponds to an atomic
system evolution step. Since system states are graphs, the
firing of a transition can be represented as the application
of a graph transformation rule.

3. Sequences of such atomic system evolution steps can be
described by UML interaction diagrams, i.e., sequence
and collaboration diagrams. This means that interaction
diagrams can be translated into sequences of graph trans-
formation steps.

4. Graphs can be understood as visual entities like all
diagrams in the UML. Explaining UML by graph trans-
formation means to close only a small gap between the
language to be defined, namely the UML, and the lan-
guage used as the semantic target language, namely a set
of graphs.

We do not claim that graph transformation is the only
possible framework for a formal intergrated UML seman-
tics, but it is well-tried, general and flexible enough. And as
graphs and diagrams are closely related to each other, the
intuition behind UML is not lost. Other formalizations of the

semantics of UML diagrams rely for example on Petri nets
[1], term rewriting [29,30], labeled transition systems [2,35],
temporal logic [39], set theory [43], or OCL [38]. Apart from
[1] these approaches focus on the semantics of one or two
diagram types but not on an integrated semantics for UML.
Moreover, the underlying theories do not support the visuali-
zation of system states and system behavior in the described
straightforward way.

In the integrated formal semantics of this paper, class,
object and state diagrams are mapped into a graph trans-
formation system, sequence and collaboration diagrams into
transformations performed by the system. Table 1 shows the
notions from UML that we use and the corresponding notions
in the area of graph transformations.

The aim of the presented integrated formal semantics of
UML is to get a solid basis for main research topics like
validation, verification and syntax checking. This means that
the representation of a UML model as a graph transforma-
tion system facilitates the validation of the system by com-
paring transformed system states with the expectations of
the modeler. Furthermore, the theory of graph transforma-
tion can be used to verify properties of UML models, for
example to check whether an interaction (i.e., a graph trans-
formation) can only occur in a certain set of system states.
Finally, syntactically incorrect diagrams can be discarded if
they cannot be formalized as graphs or graph transformation
rules.

To keep the technicalities feasible and to avoid overloa-
ding, we do not attempt to cover the whole of UML in this first
major step towards an integrated semantics. For example, we
do not consider UML interaction diagrams for operation spe-
cification but assume UML state diagrams and proper graph
transformational specifications instead. These graph trans-
formation rules can be regarded as UML �become� flow
relationships between object diagrams. Moreover, we consi-
der only simplified diagram types that do not cover concepts
like inheritance, composite states, etc. The missing features
will be integrated in further steps.

The proposed integrated semantics of UML is not meant as
the ultimate answer to all questions, but as one possibility that
realizes the intuitive meaning and behavior of the considered
diagrams and their interplay in a reasonable way. Alternatives
and variations are thinkable. If they would be formalized in

Table 1 UML and graph transformation notions

UML notion Notion in the graph transformation approach

Class diagram Set of system states represented by graphs and a set of graph transformation rules as semantics for operations

Object diagram System state

State diagram Graph transformation rules transforming system states into system states

Sequence diagram Derivation in the defined graph transformation system

Collaboration diagram Derivation in the defined graph transformation system
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Towards an integrated graph-based semantics for UML 405

the framework of graph transformation, too, then one would
have the chance to formulate the differences formally and to
prove them.

The structure of the rest of the paper is as follows.
Section 2 discusses the features of UML class and state
diagrams we use in this paper. Section 3 explains how class
and state diagrams can be translated into graphs and transfor-
mation rules. Section 4 shows how the graphs and the graph
transformation rules resulting from class and state diagrams
can be integrated into a single graph transformation system.
Section 5 describes the relationship between sequence and
collaboration diagrams and the respective derivations of the
graph transformation system. It is sketched how these deri-
vations can help to check whether the model is adequate,
for example, to check whether a given message sequence is
applicable in a certain system state. All concepts are illustra-
ted by a single running example. Section 6 mentions related
work. The paper closes in with some final remarks.

Two preliminary versions of this paper are [28] and [20].
The former focuses on integrating class, object, and state
diagrams whereas the latter considers also the integration of
interaction diagrams.

2 Class, object, and state diagrams

Class, object, and state diagrams are fundamental diagrams
of the UML. In the following we briefly illustrate these dia-
gram types. As already mentioned, in this approach towards
an integrated UML semantics we consider simplified ver-
sions of UML diagrams. For further details concerning UML
diagrams, the reader is referred to, e.g., [4,34,41].

2.1 Class diagrams

Class diagrams are used to represent the static structure of
object-oriented systems. They consist of classes and relation-
ships where the latter are divided into associations, generali-
zations, and dependencies. Special kinds of associations are
compositions and aggregations. A class consists of a name,
a set of attributes and a set of operations. Every class c speci-
fies a set of objects called the instances of c. An association
end is a language element of class diagrams which connects
associations with classes and contains some information such
as the role a class plays in the corresponding association or
its multiplicity. A class diagram is a graph where the nodes
represent classes, and the edges represent associations, gene-
ralizations, or dependencies. We concentrate here on binary
associations only. Some of the classes may be associations
as well. These classes are called association classes.

Figure 1 shows an example of a class diagram consisting
of classes and binary associations where association names
and roles are omitted. It models an office containing six

Printer

Boss

Secretary

Letter

Printout

1

1

0..1

1

0..1

Tape

1

1

1

*

1

0..1

1

*

1
print(l : Letter)

read(p : Printout)
sign(p : Printout)

type(t : Tape)
adjust(l : Letter)

version : Integer

signed : Booleanempty : Boolean

mail(p : Printout)

mailed : Boolean

record(t : Tape)

Fig. 1 A class diagram

classes, namely Printer, Secretary, Boss, Letter, Tape, and
Printout. Some of the classes contain operations which des-
cribe the actions an object of the class is able to perform. For
example, a secretary can type a letter which is recorded on
a tape or mail a printout. In the diagram there are also some
classes with attributes. For example, a tape can be empty or
not which is indicated by the boolean value of the attribute
empty of the class Tape. The associations of the class dia-
gram connect different classes and contain multiplicities that
prescribe the number of objects that can be linked to each
other. For example, one printer can be used by one secretary
and one secretary can use one printer. Analogously, one boss
has one secretary, one printer, and arbitrarily many tapes.

Class diagrams can be formally defined as directed labeled
graphs. Let A and B be alphabets. Then a directed labeled
graph over (A, B) is a system G = (V, E, s, t, l, m) where

• V is a finite set of nodes;
• E is a finite set of edges;
• s, t, : E → V assign a source node s(e) and a target

node t (e) to every e ∈ E ;
• l : V → A assigns a node label l(v) to every node v in

V ; and
• m : E → B assigns an edge label m(e) to every edge

e ∈ E .

The components of V , E , s, t , l, and m are also denoted by
VG , EG , sG , tG , lG , and mG , respectively.

In a class diagram, every node is labeled with a class name,
and every edge with a triple consisting of an association
name, a pair of roles and a pair of multiplicities. Let C be a
set of classes, let R be a set of roles, let A be a set of associa-
tion names, and let M be a set of multiplicity specifications,
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406 S. Kuske et al.

i.e., every x ∈ M specifies a set SEM(x) ⊆ N. Then a class
diagram is a directed labeled graph over (C ,A ×R2×M 2).
For every e ∈ E with m(e) = (a, r1, r2, x1, x2), the triple
(a, r1, r2) is called the names of e denoted by names(e), x1

is the source multiplicity of e denoted by sm(e) and x2 is the
target multiplicity of e denoted by tm(e).

We do not consider class inheritance yet but we believe
that this important concept of object orientation can be inte-
grated in a further step. Inheritance may also be resolved via
delegation, as pointed out for example in [19]. As mentioned
earlier, class diagrams may have aggregations and composi-
tions which are special cases of associations. They represent
relations between a whole and a part. Additionally, in the case
of compositions, the lifetime of every object depends on the
lifetime of the object which it is a part of. For example, in the
class diagram of Fig. 1, compositions could be used to express
that every printer is a part of either a secretary or a boss.
Hence, with this solution, every secretary as well as every
boss has her/his own printer. If a class diagram CD contains
aggregations or compositions, the system states represen-
ted by CD must satisfy certain requirements. For example,
chains of objects related by instances of aggregations or com-
positions are not allowed to be cyclic. Class diagrams with
aggregation and composition could be formally defined as
above, but where every edge has an additional label indica-
ting whether it represents an association, a composition or
an aggregation. Moreover, the multiplicity of the whole in
a composition must be equal to {0}. In [19] it is shown that
aggregation and composition can be equivalently substitu-
ted by simple associations with additional OCL constraints,
which have to be valid in each system state.

In the above definition of class diagrams, binary associa-
tions are represented by directed edges that have the
navigation direction of the represented association. Hence
associations with a bi-directional navigability can be repre-
sented by two directed edges with the same label but pointing
in opposite directions. If one additionally allows the use of
hyperedges instead of only binary edges, class diagrams with
n-ary associations can be defined as directed labeled hyper-
graphs in a straighforward way, so that, in particular, asso-
ciation classes could be modeled as a special kind of ternary
hyperedges (cf. [18]).

Please note that throughout this paper diagrams are depic-
ted and defined in a concrete syntax making it comprehen-
sible for the reader. However, for the detailed formalization
of our approach, especially for an implementation of it, they
are represented in a more abstract way, e.g., as instances of
a meta-model (cf. [49]).

2.2 Object diagrams

Object diagrams differ from class diagrams in the sense that
they contain objects instead of classes and links instead of

lw1 : Printer

t : Tape

ada : Boss

sam : Secretary

empty = false

Fig. 2 An object diagram

associations. Object diagrams are useful to represent the state
of a system in a special moment. The nodes of an object dia-
gram are objects and its edges are links. Analogously to class
diagrams, some objects may be links as well. An example of
an object diagram is shown in Fig. 2. It contains a printer
lw1, a boss ada, a tape t which is not empty, and a secretary
sam. The printer can be used by sam and ada and t is the tape
of ada.

Object diagrams can be formally defined as directed
labeled graphs where the nodes are labeled with objects and
the edges represent links. For each class c ∈ C , let O(c)
denote the set of all instances of c. Then an object diagram
is a directed labeled graph over (

⋃
c∈C O(c),A × R2).

An object diagram fits a class diagram if the objects are
instances of the classes, the links can be mapped to the asso-
ciations, and the multiplicity requirements are satisfied. For
example, the object diagram of Fig. 2 fits the class diagram
in Fig. 1 but drawing an additional link from sam to t would
violate the requirement that links must be instances of asso-
ciations.

Formally, an object diagram OD = (V, E, s, t, l, m) fits a
class diagram CD = (V ′, E ′, s′, t ′, l ′, m′) if there exist two
mappings gV : V → V ′ and gE : E → E ′ such that the
following holds.

• For every v ∈ V , l(v) ∈ O(l ′(gV (v))), i.e., every object
node v ∈ V that is mapped to a node v′ ∈ V ′ must be
labeled with an object of the class, v′ is labeled with.

• For every e ∈ E , gV (s(e)) = s′(gE (e)) and gV (t (e)) =
t ′(gE (e)), i.e., the mappings are structure preserving.

• For every e ∈ E , m(e) = names(gE (e)), i.e., the label of
every link edge e is equal to the names of the association
to which e is mapped by gE .

• For every e′ ∈ E ′, |{s(e) | gE (e) = e′}| ∈ SEM(sm(e′))
and |{t (e) | gE (e) = e′}| ∈ SEM(tm(e′)), i.e., the num-
ber of sources of the same kind of links is contained in
the source multiplicity specification of the association to
which the links are mapped. Analogously, the number of
targets of the links must be specified by the target multi-
plicity specification of the related association.

• If the class diagram CD contains also aggregations or
compositions, the object diagram OD must satisfy some
additional requirements such as the cycle-freeness of
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Towards an integrated graph-based semantics for UML 407

some link chains. These requirements can be expressed
by OCL expressions [19,38].

2.3 State diagrams

The dynamic behavior of object-oriented systems can be
modeled with UML state diagrams which, in general, can
be associated with classes in order to describe the behavior
of the objects of the classes. A state diagram consists of a set
of states one of which is an initial state and a set of transitions
connecting states. The states are object states and the transi-
tions specify state changes. In the following a simplified kind
of UML state diagrams is considered that allows to illustrate
the basic ideas of defining an integrated semantics for UML
class and state diagrams in a suitable way.

In this simplified model of state diagrams a node is just a
name and a transition connects two states in a directed way.
It is labeled with an event, a guard, and an action. A guard
is an OCL expression [34,48], i.e., a logic formula that eva-
luates either to true or to false and has no side effects. A
transition can only fire if its guard evaluates to true. Guards
can be used to check whether some attributes satisfy certain
requirements. For example, we could require that the opera-
tion sign(p: Printout) of the class Boss can only be executed
if the attribute signed of the parameter p is equal to false.
Another example of using guards is to require that some
objects of the current system state be in a certain state. Guards
are often used to obtain deterministic state machines: If there
are several transitions with the same source but different tar-
gets, and the firing of all these transitions means to execute the
same operation, mutual exclusive guards can be employed to
guarantee that only one of the transitions can fire. Events and
actions can be of many types [41]. In the following we restrict
ourselves to call events and a simple kind of call actions. A
(call) event represents the dispatch of an operation and may
trigger the firing of the transition it is labeled with. The object
which receives the event executes the corresponding opera-
tion. An event is of the form op(p1, . . . , pn) where op is the
name of an operation and p1, . . . , pn are parameters. A (call)
action invokes an operation of an object and is of the form
o.op(p1, . . . , pn) where o is a path in the class diagram from
the class the state diagram is associated with, say c, to some
class, say c′, of which op is an operation. In general, such
a path can be defined as an alternating sequence of classes
and associations, where the first component is the class c and
the last component is the class c′. This situation is illustrated
in Fig. 3, which shows a class diagram and a state diagram.
The class diagram contains the class c the state diagram is
associated with. The state diagram shows a transition with
call action o.op(p1, . . . , pn). The path o goes from c to the
class c′, which is indicated by the dashed arrow from c to c′.
Class c′ contains an operation op which is called for some

c’c

op(...)

o

with class c
State diagram associated 

.../o.op(p ,...,p )

Class diagram

n1

Fig. 3 Illustration of a call action

object of class c′ with the parameters p1, . . . , pn when the
transition fires.

Consider for example the transition

type(t)/self .printer.print(t.letter)

of the state diagram for the class Secretary in Fig. 4. The
call event of this transition is type(t). The path corresponds
to self.printer, which is the path from the class Secretary to
the class Printer. The operation to be called for some object
of class Printer is print(t.letter).

A state diagram can be formally defined as a system STD=
(S,E × G × Act, d, s0) where S is a finite set of states, E is
a set of events, G is a set of guards, Act is a set of actions,
d ⊆ S × (E ×G × Act)× S is a finite set of transitions, and
s0 ∈ S is the initial state. The class of all state diagrams is
denoted by SD.

In Fig. 4, the state diagrams for the classes Boss, Secretary,
and Printer are depicted. The objects of class Boss can be
in the state HasSigned, HasRecorded or HasConfirmed. An
object of the class Secretary can be in the states HasMailed
or HasTyped. Finally, a printer has only the state PrinterLife.

The firing of transitions is part of the execution seman-
tics of state diagrams which is based on so-called run-to-
completion steps. Let STD be a state diagram associated
with some class c in a given class diagram CD. Let t =
(s, e, g, o.op, s′) be a transition in STD with source state s,
target state s′, event e, guard g, and call action o.op. The
firing of a transition takes place in an object diagram that fits
the class diagram CD. Every path p of the object diagram can
be mapped to a path g(p) in CD by restricting the domain of
the mappings gV and gE of Sect. 2.2 to the objects and links
of p. In this case we say that p is an instantiation of the path
g(p). Given an object diagram that fits the underlying class
diagram CD the firing of transition t = (s, e, g, o.op, s′)
comprises the following steps.

1. Check whether the following conditions are satisfied. (a)
There is an object x of class c that is in state s.1 (b) The

1 Note that initially every object is in the target state of the transition
which has the initial state as source. This means for our running example
that every boss is initially in the state HasSigned, every secretary in the
state HasMailed and every printer in the state PrinterLife.
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Fig. 4 State diagrams for Boss,
Secretary, and Printer HasSigned

read(p)/self.sign(p)

HasConfirmed

HasRecorded

read(p)/self.secretary.adjust(p.letter)
record(t)/self.secretary.type(t)

sign(p)/self.secretary.mail(p)

(a) Boss state diagram

adjust(l)/self.printer.print(l)

HasTyped
type(t)/self.printer.print(t.letter)

mail(p)
HasMailed

(b) Secretary state diagram

PrinterLife print(l)/self.boss.read(l.printout)

(c) Printer state diagram

next event in the event queue of x is equal to e. (We
assume that every object has an associated event queue.)
(c) The guard g can be evaluated to true. (d) The path o
has an instantiation in the object diagram being a path
from x to another object y.

2. Execute the call event e, send the operation call op to the
object y, and change the state of x from s to s′. The sen-
ding of an operation call to y corresponds to its insertion
in the event queue of y.

As an example consider the state diagrams in Fig. 4. In the
state diagram of the class Boss the transition from the state
HasSigned to state HasRecorded can fire if there is an object
x of class Boss such that x is in state HasSigned, the next event
to be dispatched from the event queue of x is record(t), and
there is a link from x to some secretary object y. When the
transition fires the operation type(t) of the secretary of the
boss x is called. This means that the event type(t) is written
into the event queue of the secretary.

The office process modeled by the three state diagrams in
Fig. 4 is as follows: A boss takes a dictation of a letter on tape,
then gives it to her or his secretary for typing it. The secretary
calls the printer to print the letter. The boss reads the printout
and then either signs it and tells the secretary to mail the letter
or asks the secretary to adjust it. After adjusting, the letter
is printed by the printer and read by the boss again. Possible
sequences of events for the office process can be specified
in UML with sequence or collaboration diagrams. Examples
are given in Sect. 5 later by the diagrams in Figs. 16 and 17.

For technical simplicity, we assume that the parameters of
call events are objects and that every parameter in a call action
is an object or a path to an object. Consider for example the
transition type(t)/self.printer.print(t.letter) of the state dia-
gram for the class Secretary. The parameter t is an object of
type Tape and the parameter t.letter specifies the letter lin-
ked to tape t . This assumption allows to represent parameters
visually as objects which can be transformed via graph trans-
formation rules. It is worth noting, that this assumption does
no harm because data types can be represented as classes in
a natural way.

Run-to-completion steps can be formally described by
graph transformation rules. Sections 3 and 4 show how tran-
sitions can be translated into graph transformation rules such
that the firing of a transtition corresponds to an application
of the rule.

3 Graph transformation rules for class and state
diagrams

Graph transformation originated about thirty years ago as
a generalization of the well-known Chomsky grammars to
graphs. It is a theoretically well studied area with many
application domains (see [9,11,40] for an overview). In the
following we briefly present the basic concepts of graph
transformation.

3.1 Graph transformation

The basic operation of graph transformation comprises the
local manipulation of graphs via the application of a rule. A
graph consists of a set of (attributed) nodes and a set of (attri-
buted) edges. Examples of graphs are the class diagram and
the object diagram presented in the previous section where
the nodes represent classes and objects, and the edges asso-
ciations and links, respectively.

A graph transformation rule mainly consists of two
graphs, called left-hand side and right-hand side which have
a common part. The left-hand side and the right-hand side
are object diagrams. The common part of the left- and right-
hand side is the set of all nodes and edges that are contained
in both sides. A rule with left-hand-side L and right-hand-
side R is depicted as L → R where the common nodes and
edges of L and R have the same relative position in the left-
and the right-hand side. The parts of the sides that do not
belong to the common part are exposed by bold lines and
face. An example of a rule is depicted in Fig. 5. The common
part of the rule is equal to its left-hand side which consists
of a secretary and a tape which is not empty.
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: Secretary

t : Tape

empty = false

t : Tape

empty = false version = 1

l : Letter

mailed = false

: Secretary

Fig. 5 Rule for Secretary::type(t)

For defining graph transformation rules, the notion of a
subgraph is needed. A graph G is a subgraph of a graph
H , denoted by G ⊆ H , if VG ⊆ VH , EG ⊆ EH , and
the inclusions are structure-preserving, i.e., sG(e) = sH (e),
tG(e) = tH (e), mG(e) = m H (e) for all e ∈ EG , and
lG(v) = lH (v) for all v ∈ VG . Now a graph transforma-
tion rule can be defined as a triple r = (L , K , R) of graphs
such that L ⊇ K ⊆ R.

A rule (L , K , R) is applied to a graph G by choosing an
image g(L) of the left-hand side L in the graph G and by
replacing g(L) by the right-hand side R such that the image
of the common part K is maintained. The application of the
rule in Fig. 5 adds a letter l to a diagram in which the left-hand
side occurs, and it adds a link between l and the tape and a link
between l and the secretary. The rule can be applied to the
object diagram of Fig. 2. (In our example nothing is specified
concerning the contents of the letter l and the tape t . In order
to guarantee their equality one could add a further attribute
with the contents of the letter resp. the tape and require that
they are equal if they are linked together.)

For defining rule application formally, we need the defi-
nition of a graph morphism g : G → H where G and H
are graphs. Each such morphism consists of a pair (gE , gV )

of mappings such that gE : EG → EH and gV : VG → VH

satisfy the following.

• For every e∈ E , gV (sG(e))=sH (gE (e)) and gV (tG(e))=
tH (gE (e)), i.e., the mappings are structure preserving.

• For every v ∈ VG , lG(v) = lH (gV (v)), i.e., the mapping
gV preserves node labels.

• For every e ∈ EG , mG(e) = m H (gE (e)), i.e., the map-
ping gE preserves edge labels.

The graphs G and H are called isomorphic, denoted by
G ∼= H , if gV and gE are bijections. The image of the graph
G in H is denoted by g(G), and for subsets E ⊆ EG and
V ⊆ VG , the set of images of E and V are denoted by gE (E)

and gV (V ), respectively.
The application of a rule r = (L , K , R) to a graph G

yields a graph G ′ if G ′ can be obtained as follows:

1. Choose a graph morphism g : L → G.
2. Check the contact condition that avoids dangling edges

during the application process: If the image of a node
v ∈ VL is the source or the target of an edge not in the
image of L (i.e., gV (v) = sG(e) or gV (v) = tG(e) for
some edge e ∈ EG − Eg(L)), then v must be in K , i.e.,
it cannot be deleted during the application of the rule.

3. Check the identification condition that prescribes that
only items of K can be identified via g, i.e., for all v, v′ ∈
VL with gV (v) = gV (v′) it is required that v, v′ ∈ VK ;
analogously for edges.

4. Construct the intermediate graph D by deleting from G
the edges and nodes in g(L) up to the items in g(K ), i.e.,
ED = EG − gE (EL − EK ), VD = VG − gV (VL − VK ),
and sD , tG , lG , and mG are restrictions of sG , tG , lG , and
mG , respectively so that D ⊆ G.

5. Glue R and D in K by identifying all items in K with their
images, i.e., construct a graph that is isomorphic to G ′
where VG ′ = VD 	(VR −VK ), EG ′ = ED 	(ER −EK ),2

sG ′(e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sR(e) if e ∈ ER − EK and
sR(e) ∈ VR − VK

gV (sR(e)) if e ∈ ER − EK and
sR(e) ∈ VK

sD(e) otherwise,

tG ′ is defined analogously to sG ′ , lG ′(v) = lD(v) if
v ∈ VD , lG ′(v) = lR(v) if v ∈ VR − VK , mG ′(e) =
m D(e) if e ∈ ED , and mG ′(e) = m R(e) if e ∈ ER − EK .

The application of r to G yielding G ′ is denoted by
G 
⇒

r
G ′. The gluing of R and D in K corresponds to the

construction of a pushout in the context of category theory.
Moreover, since the gluing of L and D in K yields the graph
G (or an isomporphic copy of G), the described approach
to transform graphs is called double-pushout approach [8].
This is a central approach in the area of graph transformation;
not only is it theoretically well-studied but it has also been
successfully proposed as a formally well-founded modeling
framework in many areas of computer science. Since we do
not assume that every reader of this paper is familiar with
category theory we decided to give a set-theoretical descrip-
tion of the approach.

The iterated application of graph transformation rules is
called a derivation, denoted by G

∗
⇒
P

G ′ where P is a set of

rules from which the applied rules are taken, i.e., G
∗
⇒
P

G ′

stands for all derivations G0 
⇒
r1

G1 
⇒
r2

· · · 
⇒
rn

Gn with

G0 ∼= G, Gn ∼= G ′, and r1, . . . , rn ⊆ P . An example of
a derivation is given later in Figs. 14 and 15.

2 	 denotes the disjoint union of sets.
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In order to describe class operations in an adequate way,
we allow attributes as node and edge labels [12,31]. On one
hand, attributed graph transformation allows computations
on labels of nodes and edges during the application of a graph
transformation rule. On the other hand, attributes may contain
parameters so that one rule can represent a set of concrete
variable-free graph transformation rules. For example, the
symbol t in the rule in Fig. 5 is a parameter that can be
instantiated with any name of a tape. An example for a rule
that computes on attributes will be given in Fig. 6.

In the following we are going to illustrate with our running
example how graph transformation rules can be associated
with the operations of class diagrams and with the transi-
tions of state diagrams. After that we will present in Sect. 4
how both diagram and rule types can be integrated into a
graph transformation system which specifies the integrated
semantics of class diagrams with associated state diagrams.

3.2 Associating graph transformation rules with class
diagrams

In general, the semantics of class diagrams can be defined as
the set of all its object diagrams. Each such object diagram
can be interpreted as a state of the system to be modeled,
and the execution of operations of the class diagram may
modify the state so that another object diagram is obtained.
Clearly, this requires that additionally to the semantics of
a class diagram, say CD, we specify a semantics for every
operation in CD. This semantics is a binary relation on the
semantics of CD, i.e., on the set of all object diagrams of CD.
For example, we may specify that the operation record(t) of
the class Boss applied to the object diagram of Fig. 2 changes
the value empty of t from true to false. The rule type(t) of
Fig. 5 can then be applied to the resulting object diagram.
Analogously we can assign a graph transformation rule to
every other operation of our example class diagram.

In the following we require that every rule r that models
an operation of a class c contain in the common part a (para-
meterized) object node of type c that represents the object
that executes the operation. This object node will be denoted
by mainobject(r). Please note that this requirement is mea-
ningful because it guarantees that only existing objects can
execute operations.

Since the rule Boss::read(p) does not change the object
diagram, all three parts of the rule just consist of the main
object, namely a node of class Boss. The rule for the ope-
ration sign(p) of class Boss changes the attribute signed of
a printout from false to true. The rule Secretary::adjust(l)
removes a printout of a letter and increases the version num-
ber of the letter by one. These two rules are shown in Fig. 6.
The rules for the remaining operations can also be described
with graph transformation rules.

p : Printout

signed = false

p : Printout

signed = true

l : Letter

version = x+1

: Printout

l : Letter

version = x

 : Secretary  : Secretary

 : Boss  : Boss

Boss::sign(p)

Secretary::adjust(l)

Fig. 6 Further rules for the class diagram of Fig. 1

Graph transformation rules provide a means which allows
to specify in a direct and intuitive way how object diagrams
(i.e., system states) change after the execution of an ope-
ration. Moreover, it is possible to specify preconditions for
the execution of the operations by adding requirements like
objects with specific attribute values or links into the left-
hand side. Hence, we require that effect of the execution of
class operations is given by graph transformation rules.

Given a graph transformation rule, it can be checked
automatically whether the application of a class operation
specified as a graph transformation rule yields a valid object
diagram, i.e., an object diagram fitting the underlying class
diagram CD. On the one hand the graphs in the rules must
fit the structure of CD but not the multiplicity constraints,
i.e., for every graph G in a rule there must be mappings
gV : VG → VCD and gE : EG → ECD that satisfy the first
three of the requirements given in the definition of fitting
objects. Clearly, this can be checked statically. On the other
hand, before applying a rule it must be checked that the mul-
tiplicity constraints are not violated. This can be expressed
via adequate application conditions (see also [10,21]). For
example, the fact that no second secretary can be linked to
the same boss can be expressed with the negative application
condition that forbids the existence of a link from the boss to
a secretary in the current object diagram.

3.3 Representing transitions as graph transformation rules

The transitions of a state diagram STD can also be repre-
sented by means of graph transformation rules. Let c be the
class the state diagram STD is associated with, and let o1

be an object of class c. Let t = (s, e, g, o.e′, s′) be a tran-
sition of STD where—as before – s denotes the source state
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e

s

x

s’

o1

o2

e’

y

y

x

s s’

o1

o2

tTransition rule schema
Graph transformation

e[g]/o.e’    g

Fig. 7 The state changing rule schema

of t , e the event, g the guard, o.e′ the call action, and s′ the
target state. Then the rule for t should model the dispatching
of e in the event queue of o1, the change of the state of o1

from s to s′, and the insertion of e′ in the event queue of
some object, say o2, of the class to which the path o leads.
For this purpose the rule contains in its left- and right-hand
side the object o1 (i.e., more precisely a node labeled with
a variable of type c standing for any object of type c), the
object o2 and the path from o1 to o2 corresponding to the
path o. This path is obtained from o by converting every
association e in o with m(e) = (a, r1, r2, x1, x2) into a link
with label (a, r1, r2) and every class c into an object labeled
with a variable of class c. The state s is associated with o1

in the left-hand side of the rule and changed to the state s′
in the right-hand side. The event e is connected to o1 in the
left-hand side whereas in the right-hand side e′ is connected
to the object o2.

The construction of the graph transformation rule for t can
be done automatically as indicated in Fig. 7. On the left-hand
side of Fig. 7, the transition t is depicted. The corresponding
graph transformation rule schema is shown on the right of
the figure where objects are denoted by rectangles, states by
rectangles with rounded corners, and events by ellipses. The
arrows −→ · · · −→ from o1 to o2 constitute an instantiation
of the path o. The guard g of the rule must be checked before
its application. This is indicated by denoting g below the
arrow pointing from the left-hand side to the right-hand side
of the rule. The application of the rule changes the state s of
o1 to s′, deletes event e from the event queue of o1 if it is the
first event in the queue, and inserts e′ at the end of the event
queue of o2.

In the host graphs such a rule is applied to, every object
points to the first event of its event queue which in turn points

to the next and so on. The last event in the queue points back
to the object. If the event queue is empty, it is represented
as a loop. The graph transformation rules do not contain the
entire event queues. They include only the beginning of the
queue of o1 and the end of the queue of o2. When applying
such a rule, the first event e in the event queue of o1 is deleted
so that o1 will then point to x , which is either another event or
o1 itself if the removed event was the only event in the queue.
This means that in the application of the rule the x node can
be mapped to the second event in the event queue of o1 or
to o1 itself if there is no second event. Moreover, the event
queue of o2 in the host graph can be empty or not. In the
first case, the y-labeled node is mapped to o2 whereas in
the second case it is mapped to the last event in the event
queue of o2. That is why we depict the x and the y node
as a mixture of ellipse and rectangle. Hence, the type of the
variables x and y is the union of the type containing all events
and the type containing all objects.

The rule for the transition from the state HasMailed to
HasTyped in the state diagram of the class Secretary is depic-
ted in Fig. 8. It contains objects of class Secretary and Printer.
On the left-hand side the Secretary object is attached to the
state HasMailed. On the right-hand side, the state HasTyped
is attached to the Secretary. The Secretary on the left-hand
side has a pointer to the first event type(t) of its event queue.
Applying the rule this event is deleted from the event queue
of the Secretary, and the event print(t.letter) is inserted at
the end of the printer’s event queue on the right-hand side.

Please note that for a correct implementation of our
approach the parameters of the call events point to the objects
they represent. This additional technical information can be
added to the rules in a straight-forward way and is omitted
here for a better readability of the rules. In our example we
will identify the parameter object by giving to it the same
name as to the parameter in the event.

: Printer : Printer

print(t.letter)

X

X

: Secretary

Y

HasMailedtype(t)

: Secretary

HasTypedY

Fig. 8 The rule for the transition type of Fig. 4
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4 Integration of class, object, and state diagrams

Class and state diagrams can be integrated in such a way that
every class is connected with the state diagram describing its
behavior. This leads to the notion of integrated diagrams. In
an integrated specification, integrated diagrams are transfor-
med via graph transformation rules that are obtained based
on the combination of the graph transformation rules asso-
ciated with the class diagram and the graph transformation
rules associated with the state diagrams.

4.1 Integrated diagrams

An integrated diagram is a pair INTD = (CD, mstd) where
CD is a class diagram and mstd : VCD → SD is a mapping
assigning a state diagram mstd(c) to every class c in CD such
that mstd(c) contains only events of class c.

A system state of an integrated diagram (CD, mstd) is
an object diagram that fits CD and where additionally every
object is connected with a state of the state diagram associated
with the class of the object. Moreover, as mentioned before,
every object has an event queue that may be empty. It is
worth noting that loops representing empty queues can be
distinguished from self-links by labeling all edges pointing
from or to an event with a special symbol, say queue. For
reasons of a better readability, this is omitted here.

An example of a system state of the integrated diagram
composed of the above class diagram and state diagrams is
presented in Fig. 9.

The set of all system states can be formally specified in a
rule-based way as follows:

• The initial graph can be any object diagram OD fitting
CD, i.e., for which there exist mappings gV : VOD → VCD

and gE : EOD → ECD as described in Sect. 2.
• There is a (parameterized) rule that adds exactly one

state state(o) and one empty event queue queue(o) to
every object o in OD such that state(o) is contained in
the state diagram associated with gV (o), i.e., state(o) ∈
Smstd(gV (o)). The left-hand side of the rule consists of a
node v with a variable x as label and is equal to the com-
mon part, the right-hand side consists of the node v, a

lw1 : Printer

record(t) t : Tape

PrinterLife

HasSigned

empty = true

HasMailed

ada : Boss

sam : Secretary

Fig. 9 An instance of an integrated diagram

state s, an edge going from v to s, and a loop from v to
v labeled with queue. The requirements that there must
be added exactly one state and one event queue to every
object, and that the state s must belong to the class of the
node to which v is mapped when applying the rule, can
be realized by appropriate application conditions.

• To every object, a sequence of events is added. The left-
hand side of the corresponding rule consists of an object
node v and a node v′ that can be mapped to an event or
an object, and a queue-labeled edge from v′ to v. The
common part consists of v and v′, and the right-hand side
consists of v, v′, a new node v′′ labeled with an event
occurring in the state diagram of the object to which v is
mapped, plus two queue-labeled edges e and e′ where e
points from v′′ to v and e′ from v′ to v′′. Hence, this rule
inserts an event at the end of an event queue.

4.2 Combining the rules of class and state diagrams

The execution semantics of integrated diagrams is given by
a set of graph transformation rules obtained from the com-
bination of the rules presented in the previous section. The
transition rules of state diagrams are glued with the rules
of the classes they are associated with by identifying com-
mon objects. More precisely, let r = (L , K , R) be a graph
transformation rule modeling an operation op of class c, let
t = (s, e, g, o.e′, s′) be a transition of the state diagram asso-
ciated with c such that the event e is equal to op, and let
r ′ = (L ′, K ′, R′) be the rule constructed for t as described
in Sect. 3.3 and depicted in Fig. 7. Then the integrated rule
(int(L), int(K ), int(R)) is automatically obtained according
to the following steps.

1. Construct the interface rule ir = (IL, IK, IR) of r and r ′,
where IL = IK = IR is the graph consisting of the node
mainobject(r), i.e., the object node that represents the
object that executes the operation op. Then, obviously,
IL ⊆ L , IK ⊆ K , and IR ⊆ R. Moreover, let gl′ : IL →
L ′, gk′ : IK → K ′, and gr′ : IR → R′ be defined such
that mainobject(r) is mapped to the node o1 in Fig. 7, i.e.,
the node that represents the object has fires the transition.

2. Construct a new integrated rule by gluing r and r ′ in their
common part ir. This can be done by first unifying r and r ′
disjointly and then identifying all items that correspond
to the same element in ir. Formally, this gluing of graphs
can be obtained via the pushout constructions of gl and
gl′, gk and gk′, and gr and gr′ where gl, gk, and gr are
inclusions (see [3] for more details), but it can also be
described in the set-theoretic way of Sect. 3.

For example, for the transition rule type in Fig. 8 and the
rule for Secretary::type(t) in Fig. 5 the interface rule consists
of a secretary object in its left- and its right-hand side which
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version = 1
mailed = false

: Letter

t : Tape

empty = false

: Printer

print(t.letter)

X

Y

: Printer

X

: Secretary

Y

type(t) HasMailed

t : Tape

empty = false

: Secretary

HasTyped

Fig. 10 The integrated rule for type

are mapped to the secretary nodes of the rules in Figs. 5 and
8. The integrated rule is depicted in Fig. 10 and is obtained
by gluing both rules in their secretary objects. It models the
typing of a letter provided that the secretary is in the state
HasMailed and has the event type(t) at the top of the event
queue.

Figures 11, 12 and 13 depict further integrated rules for
our running example. The set of all integrated graph transfor-
mation rules which can be associated in the described way

X

l : Letter

version = x+1

: Printer

print(l)

l : Letter

version = x

: Printout

: Printer

HasTyped Y

X

Y

: Secretary

Y

HasTyped

: Letter

p : Printout

mailed = false

mail(p)

Secretary::adjust(l)

Secretary::mail(p)

: Secretary

HasTyped

: Secretary

Y

adjust(l)

: Secretary

: Letter

HasMailed

mailed = true

Fig. 11 Further integrated rules for Secretary operations

: Boss

p : Printout

signed = false

p : Printout

signed = true

type(t)

X

: Secretary

: BossHasRecorded

t : Tape

empty = false

t : Tape

empty = true

X

Y

X

mail(p)

X

Y

X

Y

X Y

Y

X

: Boss

read(p)

HasRecorded

: Boss

sign(p)

Y

read(p)

: Boss

Y

Y

record(t)

HasSigned

HasRecorded

HasConfirmed

: BossHasRecorded

: BossHasSigned

Boss::read(p)

Boss::record(t)

Boss::read(p)

Boss::sign(p)

: Secretary

: Secretary : Secretary

adjust(p.letter)

: Boss

sign(p)

X

HasConfirmed

: Secretary : Secretary

Fig. 12 Integrated rules for Boss operations

with an integrated diagram INTD is called the set of integra-
ted rules for INTD.

4.3 Integrated specifications and their semantics

An integrated specification is a triple IS = (INTD, I, R)

where INTD is an integrated diagram, I is a system state of
INTD, called the initial system state, and R is the set of inte-
grated rules for INTD. In the system state I , all objects are in
their initial states, all event queues up to one are empty, and
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PrinterLife

: Boss

PrinterLife

: Boss

X

read(l.printout)

l : Letter

signed = false

: Printout

l : Letter

Y

X

: Printer

Y

print(l)

: Printer

Printer::print(l)

Fig. 13 Integrated rule for Printer operation

the only non-empty event queue contains the event of a tran-
sition, the source of which is an initial state. The semantics of
an integrated specification is denoted by SEM(INTD, I, R)

and consists of all the derivations G
∗
⇒
R

G ′ such that G ∼= I .

An example of an integrated specification is (INTD, I, R)

where INTD is composed of the class diagram in Fig. 1
and the state diagrams in Fig. 4. The initial diagram is the
integrated diagram of Fig. 9 and R consists of the rules
presented in Fig. 11, 12 and 13. Figures 14 and 15 illustrate
how the different system states (i.e., system states represen-
ted by integrated diagrams) can be derived with the example
specification. The derivation starts with the integrated dia-
gram of Fig. 9 and applies at first the rule ada.record(t). This
means that after dispatching the event record(t) the attribute
empty of the tape is changed from true to false. Additio-
nally, the event record(t) is deleted from the event queue
of ada, type(t) is inserted in the event queue of sam, and
the state of ada changes from HasSigned to HasRecorded.
Afterwards sam.type(t) is applied which changes the state of
sam to HasTyped, deletes type(t) from its event queue, and
inserts print(t.letter) in the event queue of ada. Moreover, a
letter l is created and linked to tape t and sam. The rest of
the derivation models the following process: letter l is prin-
ted and then read by ada. Afterwards it is adjusted by sam,
printed again, and read again by ada. Finally, the printout is
signed by ada and mailed by sam.

5 Integrating sequence and collaboration diagrams

State diagrams describe the behavior of individual objects.
It is very difficult to understand the interactions of different
objects only by looking at the set of state diagrams. For this
purpose, UML offers interaction diagrams, i.e., sequence and
collaboration diagrams.

lw1 : Printer

record(t) t : Tape

lw1 : Printer

t : Tape

empty = false

lw1 : Printer

l : Letter

t : Tape

lw1 : Printer

l : Letter

p : Printout

t : Tape

lw1 : Printer

l : Letter

p : Printout

t : Tape

sam.type(t)

print(t.letter)

lw1.

(t.letter.printout)

ada.read

PrinterLife

HasSigned

empty = true

PrinterLife

type(t)

HasRecorded

PrinterLife

HasRecorded

HasTyped

version = 1

empty = false

PrinterLife

HasRecorded

HasTyped

version = 1

signed = false

empty = false

PrinterLife

HasRecorded

HasTyped

version = 1

signed = false

empty = false

HasMailed

HasMailed

mailed = false

mailed = false

mailed = false

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

print(t.letter)

read(t.letter.printout)

adjust(t.letter)

(t.letter)

sam.adjust

ada.record(t)

Fig. 14 Derivation (part 1)

5.1 Sequence and collaboration diagrams

We only consider interaction diagrams at instance level,
which consist of objects sending messages to each other.
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lw1 : Printer

l : Letter

p : Printout

lw1 : Printer

l : Letter

p : Printout

lw1 : Printer

l : Letter

p : Printout

lw1 : Printer

l : Letter

t : Tape

t : Tape

t : Tape

t : Tape

lw1 : Printer

l : Letter

t : Tape

(t.letter.printout)

ada.read

(t.letter.printout)

sam.mail

PrinterLife

HasRecorded

HasTyped

version = 2

signed = false

PrinterLife HasTyped

version = 2

HasConfirmed

signed = false

PrinterLife HasTyped

version = 2

HasSigned

signed = true

PrinterLife

version = 2

HasSigned

empty = false

empty = false

empty = false

empty = false

PrinterLife

HasRecorded

HasTyped

version = 2

empty = false

mailed = false

mailed = false

mailed = false

mailed = false

mailed = true

HasMailed

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

print(.letter)

read(t.letter.printout)

sign(t.letter.printout)

mail(t.letter.printout)

lw1.print(t.letter)

ada.sign

(t.letter.printout)

Fig. 15 Derivation (part 2)

Such a diagram represents a part of a concrete system execu-
tion. Sequence and collaboration diagrams contain basically
the same information, but focus on different aspects, which
are discussed in the following paragraphs (see also [7]).

Sequence diagrams display interactions in two dimen-
sions. The horizontal dimension shows objects while the
vertical dimension represents time. A vertical lifeline is
connected to each object. Messages are shown as labeled
arrows from the lifeline of the sending object to the lifeline
of the receiving object. The arrows are ordered along the ver-
tical time axis, i.e., those closer to the top are sent earlier than
those further below.

A collaboration diagram (at instance level) is an object dia-
gram with superimposed behavior. Numbered messages can
be attached to the links, together with an arrow indicating the
direction. There are some other features available in collabo-
ration diagrams we do not consider here. In their basic form,
collaboration and sequence diagrams offer different views on
the same information: the sequence diagram emphasizes time
aspects by a message ordering from top to bottom, whereas
the collaboration diagram emphasizes structure aspects by
explicitly showing the links between the objects (and expres-
sing the message sequence only by a numbering system).

5.2 Relating sequence and collaboration diagrams
to derivations

Every derivation in the graph transformation system can be
mapped to a sequence and a collaboration diagram. Fig. 16
shows the sequence diagram corresponding to the derivation
in Figs. 14 and 15. It contains a Boss, a Secretary and a Printer
object. The first rule application ada.record() removes the
event record(t) from the queue of the Boss object and puts
the event type(t) in the queue of the Secretary object, i,e.,
during the first rule application the boss sends the message
t ype(t) to her secretary. This rule application corresponds to
the first arrow in the sequence diagram from Boss to Secre-
tary, labeled with type(t). (Please note that the application
of the rule record(t)corresponds to an arrow labeled with
type(t), because rules are labeled with events whereas arrows
are labeled with call actions.) The last but one rule appli-
cation ada.sign(t.letter.printout) corresponds to the arrow
from Boss to Secretary, labeled with mail(t.letter.printout).
The last rule application sam.mail(t.letter.printout) is not
mapped into the sequence diagram, because it does not put an
event in any queue. The first graph of the derivation contains
already the event record(t) in the queue of the Boss object.
Nothing is said about how and when it was put there, so there
is no arrow labeled with record(t) in the sequence diagram.

Due to the fact that the arrows in sequence diagrams are
labeled with call actions and the rules with call events, rule
applications that do not insert a call event into the event
queue of some object are not reflected in interaction dia-
grams. Hence, different derivations can be mapped to the
same collaboration/sequence diagram. For example, the deri-
vation in Figs. 14 and 15 excluding the last rule application
also maps to the sequence diagram shown in Fig. 16.
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read(t.letter.printout)

read(t.letter.printout)

sign(t.letter.printout)

adjust(t.letter)

type(t)

print(t.letter)

print(t.letter)

mail(t.letter.printout)

: Boss : Secretary : Printer

Fig. 16 Sequence diagram for the derivations in Figs. 14 and 15

To construct a collaboration diagram for a given deriva-
tion, we proceed as follows: (1) Every object that exists in
the graph during the derivation is added to the collaboration
diagram. (2) The creation of an event by a rule application
corresponds to the sending of a message. In the order of the
single derivation steps we add the messages to the collabora-
tion diagram: A derivation step that removes an event from
the queue of an object a and puts event e in the queue of
object b leads to a message from a to b that calls the opera-
tion e. Hence, a link labeled with the call event e and a small
arrow that indicates the direction of the message is inserted
between a and b. (3) All objects that are not source or target
of a message are removed. If there are no events created in
the derivation, we would get an empty collaboration diagram.
Fig. 17 depicts the collaboration diagram for the derivation
in Figs. 14 and 15.

Given a set R of rules, we can associate with every inter-
action diagram ID a set ruleseq(ID) ⊆ R∗ of rule sequences
as follows. In the order of the messages we choose rules to
be applied: For a message e from an object a to an object b
we have to find a rule that removes an event from the queue
of a and put the event e into the queue of b. The seman-
tics of the interaction diagram ID, denoted by SEM(ID),

: Secretary: Printer

: Boss
1: type(t)

2: print(t.letter)

3: read(t.letter.printout)

4: adjust(t.letter)

5: print(t.letter)

6: read(t.letter.printout)

7: sign(t.letter.printout)

8: mail(t.letter.printout)

Fig. 17 Collaboration diagram for the derivations in Figs. 14 and 15

consists of all derivations G0 
⇒
r1

G1 
⇒
r2

· · · 
⇒
rn

Gn such

that r1 · · · rn ∈ ruleseq(ID).
To sum up, every derivation can be mapped to one sequence

and collaboration diagram, and every valid sequence and
collaboration diagram can be mapped to a non-empty set
D of derivations such that every derivation in D reflects
the sequence of message passing. But clearly, a derivation
contains much more information, e.g., the effect of an
operation call to objects, attributes and links.

5.3 Integrated specifications including interaction diagrams

Now we can redefine the concept of an integrated specifica-
tion by including interaction diagrams. This leads to the defi-
nition IS = (INTD, I, R, ID) where (INTD, I, R) is defined
as before and ID is an interaction diagram. The semantics of
an integrated specification IS = (INTD, I, R, ID) consists
of all derivations in SEM(INTD, I, R) ∩ SEM(ID).

Two interesting questions are (1) whether a derivation can
be found for a given interaction diagram at all, that is whe-
ther the interaction diagram is valid, and (2) whether the
interaction can occur in a given system state. The thorough
answer of question (1) will be of future work. However, a
very first approach towards a solution to this problem is to
construct all derivations that only involve instantiations of
the graphs in the rules (these are finitely many up to naming
of objects) and to check whether one gets in this way a deri-
vation the initial graph of which is or can be extended to a
valid system state. This extension must be done so that no
dangling edges can occur during the derivation. To illustrate
this, we check whether there is a derivation for the sequence
of integrated rules Boss::record(t) Secretary::type(t) that are
the first two rules determined by the diagrams in Figs. 16
and 17. To this aim we proceed as follows. An instantia-
tion of the left-hand side of Secretary::type(t) and an ins-
tantiation of the right-hand side of Boss::record(t) are glued
together such that on one hand the rule Secretary::type(t)
can be applied to the resulting graph, say G, and on the other
hand the rule Boss::record(t) can be applied backwards to G.
In the worst case, we have to consider all gluings in order
to get an initial valid system state. One gluing is depicted
in Fig. 18 and is obtained from amalgamating all common
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lw1 : Printer

t : Tape

empty = false

type(t)

HasRecorded

HasMailed

ada : Boss

sam : Secretary

Fig. 18 Gluing of two rule sides

lw1 : Printer

record(t) t : Tape

HasSigned

empty = true

HasMailed

ada : Boss

sam : Secretary

Fig. 19 Result of a reverse rule application

objects and links of the right-hand side of Boss::record(t) and
the left-hand side of Secretary::type(t). (Please note that the
variable Y of the left-hand side of Secretary::type(t) as well
as the variable X of the right-hand side of Boss::record(t)
are instantiated with the secretary object. The variable X
of Secretary::type(t) is instantiated with the printer and the
variable Y of Boss::record(t) is instantiated with the boss.
The Secretary node is instantiated with sam, the Boss with
ada and so on.)

Another way to glue these two instantiated graphs would
be the disjoint union of both.

The reverse application of the rule Boss::record(t) to the
graph of Fig. 18 results in the diagram depicted in Fig. 19
which can be easily extended to the system state in Fig. 9.

The generalization of this illustration towards an algorith-
mic solution to the case of arbitrary long sequences of rules
is a topic of future research.

To answer the second question the modeler can check by
example whether the specified interaction can occur in states
where it should and cannot occur in states where it should not.
Thus the formalization of UML diagrams by graph transfor-
mation gives feedback to the modeler about the applicability
of the message sequence specified in the interaction diagram.

In the system state depicted in Fig. 20, the sequence of
messages modeled in Figs. 16 and 17 is not applicable for two
reasons. The only event the diagram shows is record(t), so
the rule for record(t) is the only one that should be considered
for application. However, the attribute empty of tape t has not
the value true. But even if it had, the sequence would not be
applicable since the secretary is in state HasTyped, in which

lw1 : Printer

record(t) t : Tape

PrinterLife

HasSigned ada : Boss

sam : Secretary

empty = false

HasTyped

Fig. 20 System state not being an initial state for the interactions spe-
cified in the diagrams of Fig. 16 and 17

she does not react to type events. This is reasonable and is
due to the following correctness properties of the integrated
specification: No boss can record something on a full tape and
no secretary can type a letter if he is in the state HasTyped.

With the first graph in Fig. 14 as initial graph, a map-
ping can be found from objects in the graph to objects in the
sequence diagram, and a rule application for each arrow can
also be found. If the modeler rates this sequence of system
states as reasonable, this would reinforce the modeler’s belief
in the correctness of the model. Otherwise, either the interac-
tion diagrams or the model, i.e., the integrated specification
has to be changed.

6 Related work

Much research has been done concerning the formalization
of UML semantics, so that it goes beyond the scope of this
paper to refer to all of them. Hence, in this section we men-
tion only a selection of contributions to the formalization of
UML semantics. First of all there exist many papers that
study the formalization of state diagrams. This seems to
be natural since state diagrams specify the dynamic beha-
vior of objects. Hence, the first of the following paragraphs
mentions different approaches to formalize the operational
semantics of state diagrams. The second paragraph gives a
slight insight into other approaches that deal with an integra-
ted UML semantics. Since we propose graph transformation
as formal model, the last paragraph contains a selection of
further papers that bring UML diagrams and the theory of
graph transformation together.

Operational semantics of state diagrams. In the literature
there exist a series of approaches that formalize the ope-
rational semantics of state diagrams. They mainly differ in
the underlying formal methods. More precisely, Schettini
and Peron [32,33], Kuske [27], and Varró [46] define confi-
gurations of state diagrams as graphs so that every run-to-
completion step includes the application of one or a set of
graph transformation rules. Clearly, these approaches follow
the same basic ideas as we do, but they are concentrated on a
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single diagram type. Another approach is presented by Lilius
and Paltor in [29,30] where state diagrams are translated into
(conditional) term rewriting systems and then into input lan-
guages for specific model-checkers. In [17], Gnesi, Latella
and Massink represent state diagrams as hierarchical auto-
mata the operational semantics of which is given by labeled
transition systems, that in turn can be used as a model for pro-
ving the satisfiability of logic formulas. Labeled transition
systems are also used as the formal basis for the semantics of
state diagrams by Reggio et al. [35] and von der Beek [2]. In
[39], Rossi, Enciso, and Guzmán give a state diagram seman-
tics based on temporal logic. A compositional semantics of
state diagrams based on set theory is presented by Simons
in [43]. Another approach that translates state diagrams and
collaboration diagrams into Petri nets is given by Hu and
Shatz in [25]. Although some of the mentioned papers use
additionally interaction diagrams to describe the behaviour
of several state diagrams or to represent counter-examples,
they do not focus on the formal and explicit integration of
different diagram types into one the same formal framework.

Integrated semantics. In [1], Baresi and Pezzè study how
class, state, and collaboration diagrams can be automati-
cally translated into high-level Petri nets via the so called
CR-approach which is based on graph transformation.
Moreover, it is discussed how required properties of UML
specifications could be verified on the formal model. The
translation of a UML specification into a formal model via
the CR-approach needs three types of rules, one for transla-
ting the UML syntax, another one for translating the UML
semantics, and a third one that allows to visualize situations in
the formal model in a UML-like manner. As we have illus-
trated in this paper, such a translation into a formal model
and back again is not necessary if one takes graph transfor-
mation as the formal model, because in this case the only
requirements are that diagrams be regarded as graphs and
class operations as graph transformation rules. In [49,50],
Ziemann, Hölscher, and Gogolla introduce a similar approach
of an integrated semantics of UML that mainly differs from
the one presented in this paper in the following aspects: In
[49,50] class operations are specified with collaboration dia-
gams which contain a set of names of suboperations associa-
ted with an order prescribing their application order. These
collaboration diagrams are translated into sets of graph trans-
formation rules that are applied in the specified order. Many
of these graph transformation rules model basic operations
like the creation/deletion of an object or a link, or the setting
of an attribute. In contrast, in our approach a class opera-
tion is modeled by a single graph transformation rule which
performs a series of such basic operations in one application
step so that the modeler can directly specify the visual effect
of an operation call. For example, the setting of an attribute
is modeled in [49,50] with two graph transformation rules,

whereas in our approach an attribute is set within the applica-
tion of one graph transformation rule which can additionally
have further effects like the creation of a series of new links,
etc. Moreover, in [49,50], system states are represented in a
very complex way so that it is difficult to understand what
they represent, i.e., the benefits of a visual representation get
mostly lost. For example, the insertion of a link results in a
graph transformation rule the left-hand side of which consists
of eight nodes and six edges and the right-hand side of eleven
nodes and thirteen edges. In our approach the insertion of a
link is modeled with a much simpler rule consisting of two
nodes in its left and right-hand side and an additional edge in
its right-hand side. On the other hand, [49,50] integrates also
use case diagrams which are not considered in this approach
but we are quite sure that they can be integrated straightfor-
wardly in an analogous way. Hence, the approach in [49,50]
is somewhat nearer to UML because it models class opera-
tions by collaboration diagrams and integrates use case dia-
grams. On the other hand it is harder to understand because
system states and the rule sets modeling class operations do
not have an intuitive visualization due to the fact that they
represent a lot of technical details.

UML diagrams and graph transformation. Apart from the
already mentioned papers that use graph transformation for
formalizing state diagrams, there remain other papers that
relate UML diagrams with graph transformation that are
worth to be mentioned. In [13], Engels et al. transform col-
laboration diagrams into graph transformation rules with the
aim to provide an interpreter and to allow modeling at the
meta-model level. Varró and Pataricza [47] propose a graph
transformation-based framework for defining the semantics
of mathematical models in a UML notation. Bottoni, Parisi-
Presicce, and Taentzer [5] present a graph transformation
approach to maintain code and UML specifications consis-
tent. Cordes, Hölscher, and Kreowski [7] present a transla-
tion of sequence diagrams into collaboration diagrams that
is based on graph transformation rules. In [22], Hausmann,
Heckel, and Taentzer propose a formal interpretation of UML
use case, activity, and collaboration diagrams based on con-
cepts from the theory of graph transformation. In [15],
Engels, Heckel, and Küster present meta-model based map-
ping rules that translate elements of UML models into a
semantic domain. Those rules consist of a meta-model part
M , a part of a concrete UML diagram D and the component
of the semantic domain to which D should be translated. In
[24], Heckel, Küster and Taentzer propose triple grammars
and attributed graph transformation for defining such meta-
model mapping rules. In [14], Engels et al. propose dynamic
meta-modeling rules as a notation for describing consistency
conditions for UML diagrams. In [42], Schmidt and Varró
present the tool CheckVML that can be used for checking
dynamic consistency properties of UML models. In [16],
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Engels, Heckel, and Küster introduce the Consistency Work-
bench, which is a tool for defining and establishing consis-
tency in a UML-based development process. Both tools are
based on graph transformation.

In many cases, the basic idea coincides with ours, i.e., to
describe the meaning of UML diagrams by means of trans-
formation rules on suitable graphical or similar structures.
But while most other approaches focus on one diagram type
or combine only a few of them, our intention is to integrate
many or even all types of diagrams into one semantical fra-
mework that not only provides the diagrams with meaning,
but also covers their interaction.

7 Conclusion

We have introduced a graph transformational description for
central language features of UML. In our approach, sys-
tem states are represented as object diagrams combined with
object states and event queues. Operations from class dia-
grams and transitions from state diagrams are described by
single graph transformation rules, respectively. These rules
are combined into integrated rules that manipulate system
states. Every application of an integrated rule models the
firing of a transition, i.e., in every transformation step, the
event of the transition is executed and the event queues as
well as the current states of the involved objects are upda-
ted. The integrated rules together with an initial system state
yield a coherent single graph transformation system repre-
senting the integrated semantics of the class, object, and state
diagrams of an UML model.

Moreover, we have shown how interaction diagrams can
be integrated into this approach. These diagrams specify
interactions of objects, i.e., sequences of messages sent from
one object to another. A message requests an operation exe-
cution and therefore corresponds to the creation of a call
event. Since most rules not only consume but also create
events, there is a close relationship between interaction dia-
grams and derivations of the graph transformation system.
An interaction diagram can be found for every derivation.
On the other hand, we sketched how it can be checked whe-
ther there exists a derivation for an interaction diagram. In
this case the interaction diagram is consistent with the system
modeled by class and state diagrams and formalized by the
graph transformation system.

Our approach provides various benefits:

1. Syntax check: UML diagrams with incorrect syntax do
not have a formalization in form of a graph transforma-
tion system.

2. Validation: The graph transformation system can be used
to validate that the described system meets the intended
system by (1) applying rules to system state graphs and

examining the resulting graphs and (2) checking whether
an interaction modeled in a sequence or collaboration
diagram can occur in a system state in which it should
and cannot occur in system states in which it should not.

3. Verification: Properties of states and state transitions can
be verified. Referring to our running example, it can
be verified that, e.g., (1) printouts never change from
signed to unsigned, (2) secretaries do not mail unsi-
gned printouts and (3) version numbers of letters are
never negative. Those properties directly follow from
the absence of transformation rules with the respective
effects. Nevertheless, as soon as model-checkers for
graph transformation systems become available verifica-
tion of UML specifications based on graph transforma-
tion can be automated. In this context it is worth noting
that a model-checker for graph transformation systems is
being developed within the GROOVE project (where the
name GROOVE stands for GRaphs for Object-Oriented
VErification) at the University of Twente (cf. [26,36,
37]).

There remain some open questions to be worked out in
the future:

1. The presented integrated semantics covers only basic
features of UML. Hence it has to be investigated how
other language elements like composite states, different
kinds of events or asynchronous messages can be hand-
led.

2. In general, one cannot assume that an operation can
always be associated with a single graph transformation
rule which specifies its semantics, because the operation
may be too complicated. For those cases, more sophisti-
cated concepts of graph transformation are needed that
allow to encapsulate sets of graph transformation rules
and which provide control mechanisms for the applica-
tion process of rules (cf. [23]).

3. In complex cases the integration of various UML dia-
grams may lead to large diagrams which are difficult to
handle and to understand. Therefore, for practical use,
structuring concepts for graphs should be incorporated
in the presented approach (cf., e.g, [6,44]).

4. To be able to use our approach in practice, adequate
transformation tools are needed. It should be thoroughly
investigated in which way existing tools can be employed
to achieve this aim. Just to mention a few, we believe
that for example the AGG-system [45] from the Techni-
cal University of Berlin could be used for specification
simulation and the GROOVE-system for verification.

5. How do we cope with under-specification? It is desirable
that a UML model can be translated into a graph transfor-
mation system even if important information is missing,
such as semantics of operations in classes.
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6. So far, the approach requires that the semantics of opera-
tions be given as graph transformation rules with object
diagrams as graphs. In UML, these rules can be repre-
sented as two object diagrams with a 〈〈become〉〉 flow
relationship in between. Nevertheless, it should also be
examined if operations could be specified in a suitable
way with interaction diagrams.

Acknowledgments We are grateful to the anonymous reviewers for
their valuable comments on a previous version of this paper.
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