
Fundamenta Informaticae XX (2009) 1–25 1

IOS Press

Autonomous Units to Model Interacting Sequential and Parallel
Processes

Karsten Hölscher∗

Hans-Jörg Kreowski∗

Sabine Kuske∗

Department of Computer Science

University of Bremen

P.O.Box 330440, D-28334 Bremen, Germany

{kreo,kuske}@informatik.uni-bremen.de, khoelscher@uni-bremen.de

Abstract. In this paper, we introduce the notion of a community of autonomous units as a rule-
based and graph-transformational device to model processes that run interactively but independently
of each other in a common environment. The main components ofan autonomous unit are a set of
rules, a control condition, and a goal. Every autonomous unit transforms graphs by applying its rules
so that the control condition is satisfied. If the goal is reached the resulting transformation process
is successful. A community contains a set of autonomous units, an initial environment specification,
and an overall goal. In every transformation process of a community the autonomous units interact
via their common environment. As an example, the game Ludo ismodeled as a community of self-
controlled players who interact on a common board. The emphasis of the presented approach is laid
on the study of the formal semantics of a community as a whole and of each of its member units
separately. In particular, a sequential as well as a parallel semantics is introduced, and communities
with parallel semantics are compared with Petri nets, cellular automata, and multiagent systems.

Keywords: Autonomous units, graph transformation, formal semantics

∗The authors would like to acknowledge that their research ispartially supported by the Collaborative Research Centre
637 (Autonomous Cooperating Logistic Processes – A Paradigm Shift and its Limitations) funded by the German Research
Foundation (DFG).

2 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

1. Introduction

Data processing of today (like communication networks, multiagent systems, swarm intelligence, ubiq-
uitous, wearable and mobile computing) is often distributed and comprises various components that run
partially independent of each other, but may access and update the same information structures, com-
municate with each other and interact in various ways. They may cooperate to reach a common goal
or may compete with each other to achieve their individual aims. Typical examples of this kind are
logistic processes and systems like transport and production networks where many actors from differ-
ent companies come together and cooperate to a certain degree. But they are usually still competitors
who are not willing to transfer their control to others or to acentral entity. On the more technical level,
transport networks, for example, comprise many transport vehicles, lots of goods to be shipped, various
further components for storing, loading, reloading, etc. It is not meaningful to model such a network as
a centralized system with a single control. The same appliesto production networks with respect to the
involved machines, materials, storage areas, etc.

The main idea of this paper is to provide a formal transformational and rule-based framework for the
modeling of such systems composed of a variety of highly self-controlled components that make their
decisions on their own depending on the information they getfrom their environment.

The basic notion is that of a community of autonomous units which exist in a common environment.
There are initial environments to start computational processes, and there is an overall goal. Each au-
tonomous unit in a community has its own individual goal in addition. To reach its goal, the autonomous
unit can apply its rules or use so-called transformation units in order to describe more complex transfor-
mations than rules can do. Moreover, each autonomous unit has a control mechanism to decide which
rule or transformation unit is applied next. This establishes the autonomy of a unit.

The autonomous units in a community are not directly aware ofeach other, but they may notice
the outcome of the activities of their co-units because someof their rules may become applicable and
others may loose this possibility. In this way, autonomous units can communicate and interact. To cover
these phenomena in the process semantics of a single autonomous unit, we assume a change relation on
environments that makes the environment dynamic.

In the first part of the paper, we introduce the sequential semantics of communities of autonomous
units. It is given by all sequential processes - finite and infinite - that start in an initial environment, are
composed of rule applications and applications transformation units, and follow, in each step, the control
of the active autonomous unit. From the point of view of a single autonomous unit, this means that its
own actions (being rule applications or applications of transformation units) take place interleaved with
other changes of the dynamic environment caused by the coexisting autonomous units.

Clearly, the sequential semantics is only adequate if one deals with systems in which activities take
place one after the other. Examples of this kind are card and board games, sequential algorithms, single-
processor systems and such. Moreover, there are many modeling approaches the semantics of which
assumes one action at a time. But even sequential systems mayconsist of self-controlling components
that decide about their own activities independently of theothers like the examples of card and board
games with several players show.

To cover parallelism, we assume that not only single rules but multisets of rules can be applied to
environments. This means that in each step many rules can be applied and single rules multiple times.
As the rules may belong to different autonomous units, the autonomous units act in parallel. A parallel
process of a single autonomous unit can be described as a sequence of application of multisets of rules

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 3

of this autonomous unit in parallel with changes of the environment.
The concept of autonomous units is approach-independent inthe sense that the classes of environ-

ments, rules, control conditions, and goals are not determined in advance but can be provided by a
transformation approach that is plugged in the community where the autonomous units interact. Never-
theless, in this paper, environments are assumed to be graphs because graphs are very generic and allow
to model the states of a wide spectrum of rule-based systems and, in particular, of all processes that can
be modeled with any of the existing graph transformation approaches.

The benefit we expect of using autonomous units is to obtain a general, easy-to-use, and visually well-
understandable formal framework with a precise semantics that allows to model systems of interacting
components so that on the one hand external control structures are set aside and on the other hand string-
based representation is replaced by graph- and rule-based representation that allows to visualize and
specify the systems more like they are.

The introduction and investigation of autonomous units is mainly motivated by the Collaborative
Research Centre 637Autonomous Cooperating Logistic Processes. This interdisciplinary project focuses
on the question whether logistic processes with autonomouscontrol may be more advantageous than
those with central control, especially regarding time, costs and robustness. The guiding principle of
autonomous units is the integration of autonomous control into rule-based models of processes. The
aims are

1. to describe algorithmic and particularly logistic processes in a very general and uniform way, based
on a well-founded semantic framework,

2. to provide a range of applications that reaches from classical process chain models like the ones by
Kuhn (see, e.g., [11]) or Scheer (see, e.g., [15]) and the well-known Petri nets (see, e.g., [13, 1]) to
agent systems see, e.g., [17]) and swarm intelligence (see,e.g., [8]),

3. to comprise the foundation of the dynamics of processes bymeans of rules where rule applications
define process, transformation, and computation steps yielding local changes.

The paper is organized as follows. In Sect. 2 we recall the notion of a graph transformation approach.
In Sect. 3 autonomous units are introduced and a sequential semantics for them is given. Sect. 4 presents
communities of autonomous units and formalizes their sequential semantics. In Sect. 5 we present a case
study modeling the players of the board gameLudoas autonomous units. Sect. 6 introcuces a formal se-
mantics for the parallel case. To shed some first light on the significance and usefulness of communities
of autonomous units with parallel-process semantics, we compare our concepts with the parallelism pro-
vided by other well-known frameworks in Sections 7-9. In particular, Sect. 7 translates place/transition
systems into communities of autonomous units and shows thatfiring sequences of multisets of transi-
tions correspond to parallel processes of the associated community. Similarly, cellular automata can be
considered as communities of autonomous units as shown in Sect. 8. Cellular automata are particularly
interesting as all their cells change states simultaneously so that the mode of computation is massively
parallel. In Sect. 9, we discuss the relationship between communities of autonomous units and mul-
tiagent systems. As the latter are defined in an axiomatic way, the former can be seen as rule-based
models providing an operational semantics for multiagent systems independently of the implementation
of agents. Sect. 10 concludes the paper.

Preliminary short versions of parts of this paper are published in [7, 10]. The basic ideas are sketched
in [6].

4 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

2. Graph transformation approaches

Whenever one has to do with dynamic graph-like structures, graph transformation (see also [14]) con-
stitutes an adequate formal specification technique because it supports the visual and rule-based trans-
formation of such structures in an intuitive and direct way.The ingredients of graph transformation are
provided by a so-called graph transformation approach. In this section, we recall the notion of a graph
transformation approach as introduced in [9] but modified with respect to the class of control conditions.

Two basic components of every graph transformation approach are a class of graphs, and a class of
rules that can be applied to these graphs. In many cases, ruleapplication is highly nondeterministic — a
property that is not always desirable. Hence, graph transformation approaches can also provide a class
of control conditions so that the degree of nondeterminism of rule application can be reduced. Moreover,
graph class expressions can be used in order to specify for example sets of initial and terminal graphs of
graph transformation processes.

Definition 2.1. (Graph transformation approach)
A graph transformation approach is a systemA = (G,R,X , C) the components of which are defined as
follows.

• G is a class ofgraphs.

• R is a class ofgraph transformation rulessuch that everyr ∈ R specifies a binary relation on
graphsSEM (r) ⊆ G × G.

• X is a class ofgraph class expressionssuch that eachx ∈ X specifies a set of graphsSEM (x) ⊆
G.

• C is a class ofcontrol conditionssuch that eachc ∈ C specifies a set of sequencesSEM Change(c) ⊆
SEQ(G) whereChange ⊆ G × G. 1

Remark. The relationChange describes the changes that can occur in the environment of anau-
tonomous unit. Hence, control conditions have a loose semantics which depends on the changes of the
environment given byChange .

2.1. Examples.

In the following we present some instances of the componentsof graph transformation approaches. They
are used in the following sections. Further examples of graph transformation approaches can be found
in, e.g., [14].

Graphs. A well-known instance for the classG is the class of all directed edge-labeled graphs. Such a
graph is a systemG = (V,E, s, t, l) whereV is a set of nodes,E is a set of edges,s, t : E → V assign
to every edge its sources(e) and its targett(e), and the mappingl assigns a label to every edge inE.
The components ofG are also denoted byVG, EG, sG, tG, andlG, respectively. As usual, a graphM is
a subgraph ofG, denoted byM ⊆ G if VM ⊆ VG, EM ⊆ EG, andsM , tM , andlM are the restrictions

1SEQ(G) denotes the set of finite and infinite sequences overG.

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 5

of sG, tG, andlG to EM . A graph morphismg : L → G from a graphL to a graphG consists of two
mappingsgV : VL → VG, gE : EL → EG such that sources, targets and labels are preserved, i.e., for all
e ∈ EL, gV (sL(e)) = sG(gE(e)), gV (tL(e)) = tG(gE(e)), andlG(gE(e)) = lL(e). In the following we
omit the subscriptV or E of g if it can be derived from the context.

Other classes of graphs are trees, forests, Petri nets, undirected graphs, hypergraphs, etc.

Rules. As a concrete example of rules we consider the so-called double-pushout rules [3] each of which
consists of a tripler = (L,K,R) of graphs such thatL ⊇ K ⊆ R. Graph transformation rules can be
depicted in several forms. In the following they are either shown in the formL ⊇ K ⊆ R or by drawing
only its left-hand sideL and its right-hand sideR together with an arrow pointing fromL to R, i.e.,
L → R. The different nodes ofK are distinguished by different forms and fill-styles.

The application of a rule to a graphG yields a graphG′, if one proceeds according to the following
steps: (1) Choose a graph morphismg : L → G so that for all itemsx, y (nodes or edges) ofL g(x) =
g(y) implies thatx andy are inK. (2) Delete all items ofg(L) − g(K) provided that this does not
produce dangling edges. (In the case of dangling edges the morphismg cannot be used.) (3) AddR to
the resulting graphD, and (4) glueD andR by identifying the nodes and edges ofK in R with their
images underg. The conditions of (1) and (2) concerningg are called gluing condition.

A graph transformation rule(L,K,R) with positive context is a quadruple(PC,L,K,R) such that
L ⊆ PC. It can be applied toG by applying(L,K,R) to G as described provided that there is a
morphismg′ : PC → G such that the restriction ofg′ to L equalsg. In the following, a rule with positive
context is depicted asPC ⊇ L ⊇ K ⊆ R where different fill-styles determine the nodes and edges ofL

in PC.

Graph class expressions. Every subsetM ⊆ G is a graph class expression that specifies itself, i.e.,
SEM (M) = M . Moreover, every setL of labels specifies the class of all graphs inG the labels of which
are elements ofL. Every setP ⊆ R of graph transformation rules can also be used as a graph class
expression specifying the set of all graphs that are reducedw.r.t. P where a graph is said to be reduced
w.r.t. P if no rules ofP can be applied to the graph. Another example of a graph class expression is
a subgraph condition, i.e., a graphG that admits all graphs that have (an isomorphic copy of)G as
subgraph. The least restrictive graph class expression is the termall specifying the classG.

Control conditions. The least restrictive control condition is the termfree that allows all parallel graph
transformations, i.e.SEM Change(free) = SEQ(G) for all Change ⊆ G × G. Another useful con-
trol condition isalap(P) whereP ⊆ R. It appliesP as long as possible. More precisely, for every
Change ⊆ G × G, SEM Change(alap(P)) consists of all finite sequences(G0, . . . , Gn) ∈ SEQ(G) for
which there is ani ∈ {0, . . . , n} such that no rule inP can be applied to the graphs in(Gi, . . . , Gn).
The conditionalap(P) can also be used to specify infinite sequences, a more complicated case that is
not needed here.

For technical simplicity we assume in the following thatA = (G,R,X , C) is an arbitrary but fixed
graph transformation approach.

The notion of a graph transformation approach is very general and requires just what is needed to
introduce autonomous units and their sequential and parallel semantics in Sections 3, 4 and 6. Graphs
are assumed to be items to which rules can be applied, and rules are assumed to provide a binary relation

6 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

on graphs. From this point of view, graphs could be called configurations, environments, objects or
something like this, and rules could be called operations, events or actions. That we speak about graphs
and rules, has the following reasons.

1. In the graph transformation literature one encounters quite a variety of different notions of graphs,
rules, rule applications, and regulations of rule applications which have some basic properties in
common. Our notion of a graph transformation approach is intended to cover most of these features
in a unifying framework.

2. The notion of a graph is very generic. There are many variants. All kinds of diagrams can be seen
as graphs. And many other structures can be nicely represented as graphs so that the requirement
of a class of graphs is not very exclusive and reflects the genericity of the concept.

3. In all the examples we have considered so far, the environments of units are or can be considered
as graphs. The examples of this paper, the Ludo game, Petri nets, and cellular automata, are quite
typical in this respect.

4. The study of autonomous units is still at the beginning. Further investigations may demand further
properties of graphs and rules which will be added to the notion of a graph transformation approach
whenever needed. Properties to be expected later on are somedistinctions between nodes and
edges or some locality of rule application, for example.

3. Autonomous units with sequential semantics

Autonomous units act and interact in a common environment which is modeled as a graph. An au-
tonomous unit consists basically of a set of graph transformation rules, a control condition, and a goal.
The graph transformation rules of an autonomous unitaut specify the transformations the unitaut can
perform. Such a transformation can be for example a movementof the autonomous unit within the cur-
rent environment, the exchange of information with other autonomous units via the environment, or local
changes of the environment. The control condition regulates the application process. For example, it may
require that a sequence of rules be applied as long as possible or infinitely often. In this first approach the
goal of an autonomous unit is a graph class expression determining how the transformed graphs should
look like, eventually.

In practice, autonomous units may also want to execute atomic environment transformations that
cannot be specified with a mere graph transformation rule butwith a set of rules that should be applied in
a specific order. For this purpose we use the concept of transformation units introduced in e.g. [9].In more
detail, transformation units encapsulate sets of rules andcontrol components that specify binary relations
on graphs. Moreover, they allow to structure large rule setshierarchically into smaller pieces because
they provide an import component. As rules, transformationunits specify binary relations on graphs.
The application of a transformation unit via an autonomous unit cannot be interrupted by environment
changes executed by other autonomous units or by local rulesof the autonomous unit.

Transformation units are inductively defined over their depth where a transformation unit has depth
zero if it does not use any other transformation unit. Otherwise its depth is the maximum of the depths
of all imported units plus one.

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 7

Definition 3.1. (Transformation unit)
1. An transformation unitof depth0 is a systemtu = (∅, P,C) whereP ⊆ R is a set of graph

transformation rules, andC is a control component withSEM (C) ⊆ G × G. The depth oftu is
denoted bydepth(tu).

2. LetU 6= ∅ be a set of transformation units and letn = max{depth(u) | u ∈ U} wheredepth(u)
denotes the depth of the unitu. Then atransformation unitof depthn + 1 is a systemtu =
(U,P,C) whereP andC are defined as in point one of this definition.

3. The components oftu are also denoted byUtu , Ptu , andCtu , respectively.

Remarks.

1. In [9], the componentC of Definition 3.1 is calledcontrol conditionbut it is different from the
control conditions in the graph transformation approachesdefined in Section 2 because it speci-
fies a binary relation and not a set of sequences. A typical example of a control component for
transformation units is a finite automaton the edges of whichare labeled with rules and imported
transformation units. It specifies all pairs of graphs(G,G′) that can be obtained by applying the
rules and transformation units on a path from the initial state of the automaton to a final state
(in the same order as the edges in the path are visited) starting with G and ending withG′. In
general, the control components of the above definition can be regarded as a specific case of the
control conditions of Section 2 because every pair(G,G′) allowed by a control component of a
transformation unit can be regarded as the set of all finite sequences fromG to G′.

2. The transformation units in [9] contain also graph class expressions in order to specify start and
end graphs of graph transformations. This specific feature of transformation units is not needed
in the following. However, it is worth noting that graph class expressions can be represented as
control components in a straightforward way, so that every transformation unit of [9] can be easily
translated into a transformation unit the graph class expressions of which specify the class of all
graphs. Hence, the above definition does not really restrictthe concept of transformation units.

As in [9] we concentrate here on a sequemtial semantics of transformation units that contains all
pairs of graphs(G,G′) so thatG′ can be obtained fromG via the successive application of local rules
and imported transformation units and(G,G′) is specified byC.

Definition 3.2. (Semantics of transformation units)
Let tu = (U,P,C) be a transformation unit. Let(G0, . . . , Gn) ∈ SEQ(G). Then(G0, Gn) ∈ SEM (tu)
if

• there is a sequence(x1, . . . , xn) ∈ SEQ(U ∪ P) such that fori = 1, . . . , n

(Gi−1, Gi) ∈ SEM (xi),

and

• (G0, Gn) ∈ SEM (C).

8 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

It is worth noting that the semantics of autonomous units is inductively defined meaning that it
covers the case where no transformation unit is imported andin the case where the set of imported
transformation units is not empty the semantics of every imported transformation unit is recursively
computed.

Now autonomous units can be defined.

Definition 3.3. (Autonomous unit)
An autonomous unitis a systemaut = (g, U, P, c) whereg ∈ X is thegoal, U is a set of transformation
units,P ⊆ R is a set of graph transformation rules, andc ∈ C is a control condition. The components of
aut are also denoted bygaut , Uaut , Paut , andcaut , respectively.

Every autonomous unit induces a set of atomic (i.e. not interruptible) environment transformations
that consist of the semantic relation of all local rules plusthe relations given by its transformation units.

Definition 3.4. (Atomic transformations)
The set ofatomic transformationsof an autonomous transformation unitaut = (g, U, P, c) is defined as
AT (aut) =

⋃
x∈U∪P SEM (x) .

An autonomous unit modifies an underlying environment whilestriving for its goal. Its semantics
consists of a set of transformation processes being finite orinfinite sequences of environment transforma-
tions. An environment transformation is the application ofa local rule, the invocation of a transformation
unit, or an environment change performed by some other autonomous unit that is working in the same
environment. These environment changes are given as a binary relation on environments. Hence, in this
sequential approach a transformation process of an autonomous unit interleaves local rule applications
and applications of used transformation units with environment changes specified by other components.

Autonomous units regulate their transformation processesby choosing in every step only those rules
and transformation units that are allowed by its control condition. A finite transformation process is
called successful if its last environment satisfies the goalof the autonomous unit. Every infinite transfor-
mation process is successful if it contains infinitely many environments that satisfy the goal.

Definition 3.5. (Sequential semantics of autonomous units)
1. Letaut = (g, U, P, c) be an autonomous unit and letChange ⊆ G × G. Let s = (G0, G1, . . .) ∈

SEQ(G). Thens ∈ SEM Change(aut) if

• for i = 1, . . . , |s| − 1 if s is finite 2 and fori ∈ N
+ if s is infinite

(Gi−1, Gi) ∈ AT (aut) ∪ Change

• s ∈ SEM Change(c).

2. The sequences is called asuccessful transformation processif s is finite andG|s|−1 ∈ SEM (g) or
if s is infinite and there is an infinite monotone sequencei0 < i1 < i2 < · · · with Gij ∈ SEM (g)
for all j ∈ N.

2Fors = (G0, . . . , Gn) the lengthn + 1 of s is denoted by|s|.

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 9

4. Communities of autonomous units

Autonomous units are meant to work within a community of autonomous units that modify the common
environment together. In the sequential case these modifications take place in an interleaving manner.
Every community is composed of an overall goal that should beachieved, an environment specifica-
tion that specifies the set of initial environments the community may start working with, and a set of
autonomous units. The overall goal may be closely related tothe goals of the autonomous units in the
community. Typical examples are the goals admitting only successful semantic sequences w.r.t. one or
all autonomous units in the community.

Definition 4.1. (Community)
A communityis a triple CAU = (Goal , Init ,Aut), whereGoal , Init ∈ X are graph class expres-
sions called theoverall goaland theinitial environment specification, respectively, andAut is a set of
autonomous units.

In a community all autonomous units work in a self-controlled way by applying their rules or their
transformation units to the common environment. The changerelation integrated in the semantics of
autonomous units makes it possible to define an interleavingsemantics of a community in which every
autonomous unit may perform its transformation processes.For this purpose it is necessary to define for
every autonomous unit the set of atomic transformations of all other autonomous units in the community.

Definition 4.2. (Change relation)
Let CAU = (Goal , Init ,Aut) be a community. Then for eachaut ∈ Aut thechange relationw.r.t. aut

is defined asChange(aut) =
⋃

aut ′∈Aut−{aut} AT (aut ′).

Every transformation process of a community must start witha graph specified as an initial en-
vironment of the community. Moreover, it must be in the sequential semantics of every autonomous
unit participating in the community. Analogously to successful transformation processes of autonomous
units, a finite transformation process of a community is successful if its last environment satisfies the
overall goal. Every infinite transformation process of a community is successful if it meets infinitely
many environments that satisfy the overall goal.

Definition 4.3. (Sequential community semantics)
1. LetCAU = (Goal , Init ,Aut). Then thesequential community semanticsof CAU , denoted by

SEM (CAU), consists of all finite or infinite sequencess = (G0, G1, . . .) ∈ SEQ(G) such that
G0 ∈ SEM (Init) ands ∈ SEM Change(aut)(aut) for all aut ∈ Aut.

2. The sequences is asuccessful transformation processif s is finite andG|s|−1 ∈ SEM (Goal) or
or there is an infinite monotone sequencei0 < i1 < i2 < · · · with Gij ∈ SEM (g) for all j ∈ N.

Remarks.

1. As the definition of the community semantics shows, there is a strong connection between the
semantics of a communityCAU = (Goal , Init ,Aut) and the semantics of an autonomous unit
aut ∈ Aut . More precisely, the semantics ofCAU is a subset of the semantics ofaut w.r.t. the
change relationChange(aut). Formally, this means thatSEM (CAU) ⊆ SEM Change(aut)(aut)
for all aut ∈ Aut .

10 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

2. One may take the intersection of the sequential semanticsof all autonomous units with respect to
their own change relation and restrict it to the sequences starting in an initial environment. Then
one gets the sequential semantics of the community. This reflects the autonomy because no unit
can be forced to do anything that is not admitted by its own control. To put it in another way, every
transformation process of a community is a subset of the transformation processes obtained by
the intersection of the semantics of all autonomous units inthe community, i.e.,SEM (CAU) ⊆⋂

aut∈Aut SEM Change(aut)(aut). In the case where the initial environment expression specifies
the class of all graphs, we get the equality, i.e.,SEM (CAU) =

⋂
aut∈Aut SEM Change(aut)(aut)

3. Obviously, only atomic transformations of the participating autonomous units are applied in every
transformation process, i.e. for everys = (G0, G1, . . .) ∈ SEM (CAU) we have(Gi−1, Gi) ∈⋃

aut∈Aut AT (aut) wherei = 1, . . . , |s| − 1 if s is finite andi ∈ N
+ if s is infinite. The proof

is straightforward: By Def. 4.3 we have thats ∈ SEM Change(aut)(aut) for all aut ∈ Aut . Let
aut ∈ Aut . Then by Def. 3.5 we get fori = 1, . . . |s| − 1 if s is finite and fori ∈ N

+ if s

is infinite that(Gi−1, Gi) ∈ AT (aut) ∪ Change(aut). By Def. 4.2(Gi−1, Gi) ∈ AT (aut) ∪⋃
aut ′∈Aut−{aut} AT (aut ′). This implies that(Gi−1, Gi) ∈

⋃
aut∈Aut AT (aut).

5. Modeling Ludo players as autonomous units

Board games are a typical example of communities of autonomous units with sequential semantics where
the board provides the common environment and the players are the autonomous units. As a concrete
example we consider in this section the gameLudo. 3

The graph transformation approach used in this example consists of labeled directed graphs and
double-pushout rules (cf. [3]). The control conditions used are regular expressions and priorities. As
graph class expressions we use subgraph conditions and the graph class expressionall specifying the
class of all graphs.

A possible environment graph ofLudo is the initial game situation where four players of different
colors have all their tokens at the start place and there is one die showing an arbitrary number between
one and six. This graph is depicted in Fig. 1. Every player is drawn as a kind of actor labeled with a color
out of b(lue),y(ellow), r(ed), andg(reen) so that every player has a different color. Technically, a player
is a labeled node. The players are connected via some directed edges indicating the playing succession.
The game board consists of a start node and four home nodes forevery player and a set of round nodes.
The start node of ac-labeled player is depicted as ac-labeled hexagon. The home nodes which are drawn
as rhombuses are labeled with the one-element set{c}. Everyc-labeled player has fourc-labeled tokens
that all sit at her/his start node at the beginning of a game. The fact that a token of colorc is sitting at
a nodev is visualized with ac-labeled token that is connected tov via an undirected edge. Technically,
this can be modeled by means of ac-labeled loop connected to the nodev. The directed edges between
the nodes of the game board indicate where and in which direction the tokens can move around the game
board.

Every round node and every directed edge between round and home nodes are labeled with a set
M ⊆ {b, y, g, r}. The label of every round node contains all colors that can visit this node. Since at the
beginning of a game all round nodes are vacant, i.e. they can be visited by all colors, they are all labeled

3There exist several distinct versions of the gameLudo. In this paper we consider one of the standard German versions.

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 11

Figure 1. An environment ofLudo

with {b, y, g, r}. The labels of the edges connecting home and round nodes contain also all colors the
tokens of which can move via these edges. For example, only yellow tokens can move to a home node of
a yellow player. Moreover, no yellow token may go over the edge labeled withN y = {b, g, r}, because
it has to enter its home. Please note that the labels of most ofthe nodes and edges of Fig. 1 are depicted
below the graph in order to keep the graph easy to read.

The goal of every player is to have all four tokens at home, onein each home node. To reach a home
place, a token must go from the start place over the round fields in the indicated direction. To move a
token, a die must be thrown. If a six is thrown the current player must move one of her/his tokens from
the start node to the first round node, i.e. to the round node connected to the start node. If there is no
token left at the start node, the player can take any other of her/his tokens. A six allows for throwing
again. We assume here that the blue player starts to play. This is why theb-labeled player is holding the
die (represented by the edge from the player to the die). Afterwards it is the turn of the yellow player.

Every player ofLudocan be realized as the autonomous unit depicted in Fig. 2. Thegoal of a player
c is the subgraph condition consisting of the home ofc in which every node is connected to ac-labeled
token. The rules and the transformation units model all possible actions of a player. The possible values
of the variables occurring in the left- or right-hand side are put under the arrow. If the label of a node
or an edge is not significant it is omitted in the rule, i.e. an item without a label can be matched to an
item with any label. The rulego-to-startpointof the autonomous unitplayermoves a token that has been
kicked out to its home node. As the control condition prescribes this rule has the highest priority, i.e. it

12 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

againready

cc

ready turn
x in {1,...,5}

cnm−6:

cnm:

rules:

player(c:[b,g,y,r])

cc
66

c c

kicked−out

c
x c

x

c c c c

go−to−startpoint:

conds: go−to−startpoint > (move−6(c),move(c)) > (cnm−6,cnm)

goal:
{c} {c} {c}

units: move−6(c), move(c)

Figure 2. A Ludo player

should be always applied if possible. The rulecnm-6and the rules represented bycnmare applied if no
token can be moved by the player, i.e. they have the lowest priority. The rulecnm-6asks the die to throw
again andcnmasks the die to turn to the next player if a number between one and five was thrown.

Every player contains the two transformation unitsmove-6andmove. The transformation unitmove
is depicted in Fig. 3. It models all moves of a token if no six isthrown. (The moves corresponding to
a six are contained in the transformation unitmove-6. It is similar tomoveand therefore not depicted.)
The transformation unitmovecontains four rules. The first,mf moves a token from the first round node
(the one connected to its start node)x nodes ahead wherex ∈ {1, . . . , 5} is the number thrown by the
die. This move can only be performed if the target node is not occupied and if there is still a token at the
start node. Moreover, the token can only be moved if it is the turn of its player. This is indicated by the
arrow pointing from playerc to the die. On the left-hand side the die has aready-loop which means that
the die has already thrown itself. On the right-hand side thedie is asked to turn. The rulemfkois similar
to mf. The difference is that another token is kicked out. The rulego moves a token from a round or a
home node to another round or home node. The rulegokomoves a token from a round node to another
node where it kicks out a token. The rulesgo andgokocan only be applied if the first two rules are not
applicable, because the first round node must be left if it is occupied by a token of colorc and if there is
still a token at the start node. If this move is not possible any other token can be taken.

It is worth noting that players select their tokens nondeterministically. More sophisticated rules
would allow to decide whether it is appropriate to choose a token that can kick out another one, etc. The
rules for making such decisions possible are more complicated, because they have to consider a wider
context of the environment (e.g. such a rule could check whether the kicking out of another token brings

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 13

L +{c} M−{c}L

L +{c}ML (M+{z})−{c}

L M−{c}L+{c}

L L+{c}

kicked−out

(M+{z})−{c}

 z z c

 c c c c

x in {1,...,5}

 c c c c

 c c

x in {1,...,5}

 c

x in {1,...,5},

x in {1,...,5}

c c

c

ready
x

c

turn
x

c

z
z

c

c
x

ready

c

turn
x

c

ready
x

c

turn
x

M

c

ready
x

c

turn
x

mf:
rules

move(c:[b,y,g,r])

11

M

x x

M = {b,y,g,r}

mfko:

11

kicked−out

x x

1

N_1 N_2

1

N_1 N_2
M

x x

N_x N_x

goko:

go:

1

N_1 N_2

1

N_1 N_2

6

c in M,

c in N_1,...,N_x, x

N_x N_x

conds: (mf,mfko) > (go,goko)

M = {b,y,g,r}
or M= {c},

c in M,

c in N_1,...,N_x,

Figure 3. The transformation unitmove

14 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

yx
x,y in {1,..,6}

ready

turn

yx
x,y in {1,..,6}

ready

yagain
6 y in {1,..,6}

ready

rules:

die

start:

turn&throw:

throw−again:

conds: start ; (throw−again | turn&throw)*

Figure 4. The autonomous unitdie

the own token into a ”dangerous” position). For reasons of space limitations they are kept simple in this
paper.

The other autonomous unit ofLudomodels the die and is depicted in Fig. 4. The autonomous unit
die has no special goal, i.e. it admits every graph as a goal. The only functionality of die is to throw
itself and to move to the next player. The first rule throws thedie. The second rule turns and throws
the die in the case where the die gets a correspondingturn-message from the player. With the third rule
the die throws itself again without moving to the next player. This can be only done if a six was thrown
before. The control condition requires that thestart rule be applied once at first. Afterwards any of the
two remaining rules can be applied arbitrarily often.

The gameLudo(including the board, up to four players, one die and the gamerules) can be modeled
as the communityLudo= (one(player), Iniconf,{player(b), player(y), player(g), player(r), die}) where
the overall goalone(player) specifies all graphs in which at least one player unit has reached its goal
andIniconf specifies all possible initial environments ofLudo.

The Ludo case study has been implemented and tested in Java. The implementation is based on
the graph transformation engine of the AGG system (cf. [5]).Since this system neither provides all of
the necessary control conditions nor supports transformation units, two attempts have been made. In
the first attempt, theLudo community has been translated into a single flat AGG graph transformation
grammar. Here the missing control conditions have been simulated by extensions of the existing rules.
In a second attempt, the actualLudo community with its individual autonomous units have been imple-
mented in Java. In this attempt, the generic implementationcontrols the derivation process, but the actual
graph transformation is performed by AGG with graph transformation rules corresponding to the original
specification presented here. The second version is performing significantly faster, especially due to the
optimization not to test all the rules of all autonomous units but only those of the autonomous unit that
actually has to move. Fig. 5 shows a screenshot of the environment graph in the running system. Here
the blue player has just rolled a score of 1 and moved one of itstokens, kicking out a red token in the
process. In Fig. 6 a different visualization is shown, whichlooks more similar to the actual board game.
In the second version each player unit employs a different strategy. One autonomous unit kicks out other
players’ tokens whenever it has the chance to do so. One autonomous unit tries to play more defensively,
i.e., if different tokens can be moved then it prefers to movewithout kicking out other players’ tokens. A

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 15

Figure 5. A screenshot of the implemented system

third strategy is trying to always move the token that has covered the most distance in order to reach the
target as fast as possible. On the contrary, the fourth autonomous unit always tries to move the token that
has covered the least distance in order to move in a compact way. These different strategies are specified
in the corresponding player units using higher priorities for the rules according to the desired behavior.

6. Parallel-process semantics

In this section, we generalize the framework of autonomous units by permitting that autonomous units
act and interact in parallel.

The basic idea of parallelism in a rule-based framework is the application of many rules simultane-
ously and also the multiple application of a single rule. To achieve these possibilities, we assume that
multisets of rules can be applied to graphs rather than single rules.

Definition 6.1. (Multisets)
1. Given some basic domainD, the set of all multisetsD∗ overD with finite carriers consists of all

mappingsm : D → N such that the carriercar(m) = {d ∈ D | m(d) 6= 0} is finite.

2. Ford ∈ D,m(d) is called the multiplicity ofd in m.

Remarks.

1. The union or sum of multisets can be defined by adding corresponding multiplicities.

2. D∗ with this sum is the free commutative monoid overD where the multiset with empty carrier is
the null element, i.e.null : D → N with null(D) = 0.

16 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

Figure 6. A screenshot of the implemented system with a different visualization

3. Note that the elements ofD correspond to singleton multisets, i.e. ford ∈ D, d̂ : D → N with
d̂(d) = 1 andd̂(d′) = 0 for d′ 6= d.

4. If R is a set of rules,r ∈ R∗ comprises a selection of rules each with some multiplicity.Therefore,
an application ofr to a graph yielding a graph models the parallel and multiple application of
several rules.

The definitions of a graph transformation approach, an autonomous unit and a community of au-
tonomous units remain unchanged with two exceptions.

1. We assume now that not only each rule, but each multiset of rulesr ∈ R∗ specifies a binary relation
on graphsSEM (r) ⊆ G × G. The multisets of rules inR∗ are called parallel rules. A graph
transformation approach with paralled rules is called a parallel graph transformation approach.
The application of a parallel ruler to G with the resultG′. may be also called a direct parallel
derivation or a parallel derivation step.

2. We consider only autonomous units without transformation units to keep the technicalities simple.
Hence, an autonomous unitaut = (g, ∅, P, c) is denoted byaut = (g, P, c).

Example of a parallel graph transformation approach. The sample approach introduced in Section
2 with directed graphs and dpo-rules is particularly suitedto be extended into a parallel approach. Given
two rulesri = (Li,Ki, Ri) (i = 1, 2) their parallel composition yields the ruler1+r2 = (L1+L2,K1 +
K2, R1 +R2) where+ denotes the disjoint union of graphs. In the same way one can construct a parallel
rule from any multisetr ∈ R∗. For every pair(G,G′) ∈ SEM (r1 + r2) there exist graphsM1 and

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 17

M2 such that(G,M1) and(M2, G
′) are inSEM (r1) and(G,M2) and(M1, G

′) are inSEM (r2). This
means that the graphG′ can also be obtained fromG by applying the rulesr1 andr2 sequentially and
in any order. Moreover, letri (i = 1, 2) be two (parallel) rules and letgi : Li → G be two morphisms
that satisfy the gluing condition described in steps (1) and(2) of a rule application. Thenr1 andr2 are
independent w.r.t.gi if the the following independence condition is satisfied:

g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2).

In this case both rules can be applied toG in parallel via the application ofr1 + r2 using the graph
morphism〈g1, g2〉 : L1 + L2 → G such that〈g1, g2〉(x) = gi(x) if x is an element ofLi (see, e.g., [2]
for more details).

As in the sequential case, an autonomous unit modifies an underlying environment in the parallel
setting too while striving for its goal. Its semantics consists of a set of transformation processes being
finite or infinite sequences of environment transformations. An environment transformation comprises
the parallel application of local rules or environment changes performed by other autonomous units that
are working in the same environment. Because the parallel-process semantics is meant to describe the
simultaneous activities of autonomous units, the environment changes must be possible while a single
autonomous unit applies its rules. To achieve this, we assume that there are some rules, called metarules,
the application of which defines environment changes. Consequently, environment changes and ordinary
rules can be applied in parallel. Hence, a parallel transformation process of an autonomous unit con-
sists of a sequence of parallel rule applications which combine local rule applications with environment
changes specified by other components so that the control condition is satisfied.

Definition 6.2. (Parallel semantics)
Let aut = (g, P, c) be an autonomous unit and letChange ⊆ G × G. Let MR ⊆ R∗ be a set
of parallel rules, called metarules, such thatSEM (MR) =

⋃

r∈MR
SEM (r) = Change. Let s =

(G0, G1, G2, · · ·) ∈ SEQ(G). Thens ∈ PARChange(aut) if

• for i = 1, · · · , |s| − 1 if s is finite and fori ∈ N
+ if s is infinite, (Gi−1, Gi) ∈ SEM (r + r′) for

somer ∈ P∗ andr′ ∈ MR, and

• s ∈ SEM Change(c).

Remarks.

1. Successful parallel transformation processes are defined as in the sequential case.

2. The elements ofPARChange(aut) are sequences of applications of parallel rules which may be
called the parallel processes ofaut . Every single step of these processes applies a parallel rule of
the formr + r′ wherer is a parallel rule of the unitaut andr′ is a metarule. Therefore, while the
autonomous unit acts on the environment graph, the environment may change in addition. But as
r andr′ may be the null rule andr + null = r as well asnull + r′ = r′, a step can also be an
exclusive activity ofaut or a change of the environment only.

18 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

The following definition generalizes the change relation ofan autonomous unit in a community to
the parallel case. In particular, it takes into account all parallel rule applications that can be performed
by the other units in the community.

Definition 6.3. (Change relation)
Let CAU = (Goal , Init ,Aut) be a community. Then for eachaut ∈ Aut the change relation
Change(aut) w.r.t. aut is given by the parallel rules composed of rules of the autonomous units in
CAU other thanaut as metarules, i.e.Change(aut) = SEM (

⋃

aut ′∈Aut−{aut}

(Paut ′)∗).

Every transformation process of a community starts with an initial environment and is contained in
the parallel semantics of every autonomous unit participating in the community.

Definition 6.4. (Parallel community semantics)
For CAU = (Goal , Init ,Aut), theparallel community semanticsof CAU , denoted byPAR(CAU),
consists of all finite or infinite sequencess = (G0, G1, . . .) ∈ SEQ(G) such that

G0 ∈ SEM (Init) ands ∈ PARChange(aut)(aut) for all aut ∈ Aut .

Remarks.

1. Again successful parallel transformation processes of communities are defined as in the sequential
case.

2. The properties given in the first two remarks after Definition 4.3 hold also for parallel semantics
of communities.

7. Petri nets

The area of Petri nets (see, e.g., [13, 1]) is established as one of the oldest, well-known, and best studied
frameworks in which parallelism is precisely introduced and investigated. Hence it is meaningful to relate
Petri nets with the parallel semantics of communities of autonomous units and to shed some light on the
significance of the latter in this way. It turns out for instance that place/transition nets, which are the
most frequently used variants of Petri nets, can be seen as a special case of communities of autonomous
units where the transitions play the role of the autonomous units.

A place/transition systemS = (P, T, F,m0) consists of a setP of places, a setT of transitions, a
flow relationF ⊆ (P × T) ∪ (T × P), and an initial markingm0 : P → N, i.e. m0 ∈ P∗. The sets
P andT are assumed to be disjoint so thatN = (P ∪ T, F) is a bipartite graph (with the projections as
source and target maps respectively).

The firing of enabled transitions transforms markings that are multisets of places. This is formally
defined as follows.

A multiset m ∈ P∗ is called a marking. A transitiont ∈ T is enabled w.r.t.m if •t ≤ m where
•t : P → N describes the input places oft that flow intot, i.e. •t(p) = 1 if (p, t) ∈ F and•t(p) = 0
otherwise. Moreover,•t ≤ m is defined place-wise, i.e.•t(p) ≤ m(p) for all p ∈ P or, in other words,
m(p) 6= 0 if (p, t) ∈ F . If t is enabled w.r.t.m, it can fire resulting in a marking which is obtained by
subtracting•t from m and by addingt• given byt•(p) = 1 if (t, p) ∈ F andt•(p) = 0 otherwise. Such

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 19

a firing is denoted bym [t〉m − •t +t•. If one interpretsm(p) as the number of tokens on the placep,

then the firing oft removes one token from each input place oft and puts a new token on each of the
output places oft.

Analogously, a multiset of transitionsτ ∈ T∗ can be fired in parallel by summing up all input places
and all output places:

m [τ〉m − •τ +τ• provided that •τ ≤ m.

Here•τ andτ• are defined by•τ (p) =
∑

t∈T τ(t) ∗ •t(p) andτ•(p) =
∑

t∈T τ(t) ∗ t•(p) for all
p ∈ P, and•τ ≤ m is again place-wise defined, i.e.•τ(p) ≤ m(p) for all p ∈ P .

Now one may consider the underlying net, which is the bipartite graphN, together with a marking
as an environment. This is represented by the marking because the net is kept invariant. The tran-
sitions can be seen as rules and the firing of multisets of transitions as parallel rule application. As
environment class expressions, we need single markings describing themselves as initial markings and
the constantall accepting all environments. The only control condition needed is the constantfree al-
lowing a unit the free choice of rules. Then these componentsform a graph transformation approach,
and a place/transition systemS = (P, T, F,m0) can be translated into a community of autonomous units
CAU (S) = (all,m0, {aut(t) | t ∈ T}) with aut(t) = (all, {t}, free).

A parallel process ofCAU (S) is a sequence of markingsm0m1 . . . such that for each two successive
markingsmi andmi+1, there is a multisetτi+1 of transitions that is enabled bymi and yieldsmi+1 if
fired. Therefore one gets a firing sequencem0 [τ1〉m1 [τ2〉 Conversely, given such a firing sequence,
one may remove the firing symbols including the multisets of transitions and obtain a parallel process
of CAU (S) as parallel rule application coincides with firing of multisets of transitions. This proves that
the community of autonomous unitsCAU (S) mimics the place/transition systemS correctly. Figure 7
depicts the relation. The adapter transforms a firing sequence into a sequence of markings by removing
the firing symbol (including the fired multisets of transitions) between each two successive markings.

P/T-2-CAU

firing deriver

adapter

S CAU (S)

=

Figure 7. Correctness diagram for the translation of Petri nets into communities

8. Cellular automata

Cellular automata (see, e.g., [16]) are well-known computational devices that exhibit massive parallelism.
A cellular automaton consists of a network of cells each in a particular state. In a computational step, all
cells change their states in parallel depending on the states of their neighbors. To simplify technicalities,
one may assume that the neighborhoods of all cells are regular meaning that they have the same number

20 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

of neighbors and that the state transition of all cells is based on the same finite-state automaton. This
leads to the following formal definition.

A cellular automaton is a systemCA = (G,A, init) where

• G = (V,E, s, t, l) is a regular graph of typek subject to the condition: for eachv ∈ V, there is a
sequence of edgese(v)1 · · · e(v)k with s(e(v)i) = v andl(e(v)i) = i for all i = 1, . . . , k,

• A = (Q,Qk, d) is a finite-state automaton, i.e.Q is a finite set of states,Qk is the input set and
d ⊆ Q × Qk × Q is the state transition with k-tuples of states as inputs, and

• init : V → Q is the initial configuration.

If the graphG is infinite, one assumes a sleeping stateq0 ∈ Q in addition such thatd(q0, q
k
0) = {q0} and

active(init) = {v ∈ V | init(v) 6= q0} is finite.
The latter means that only a finite number of nodes is not sleeping initially and that the sleeping state

can only wake up if not all inputs are sleeping. The edge sequencee(v)1 · · · e(v)k yields the neighbors
of v as targets, i.e.t(e(v)1) · · · t(e(v)k).

A configuration is a mappingcon : V → Q that assigns each node (which represent cells) an ac-
tual state. Configurations can be updated by state transitions of all actual states using the states of the
neighbors as input.

Let con : V → Q be a configuration. Thencon′ : V → Q is a directly derived configuration, denoted
by con con′, if the following holds for everyv ∈ V :

con′(v) ∈ d(con(v), con(t(e(v)1)) · · · con(t(e(v)k))).

The semantics of a cellular automatonCA is given by all configurations that can be derived from the
initial configuration:

L(CA) = {con | init
∗

con}

It is worth noting and easy to prove that all configurations derivable from the initial configuration have a
finite number of nodes with non-sleeping states. Typical examples of regular graphs underlying cellular
automata are the following: The set of nodes is the set of all points in the plane with integer coordinates,
i.e. Z × Z. Then there are various choices for the neighborhood of a node(x, y) ∈ Z × Z. that establish
the set of edges with sources and targets. Typical ones are:

1. the four nearest nodes (to the north, east, south and west): (x, y+1), (x+1, y), (x, y−1), (x−1, y),

2. the eight nearest nodes:(x, y +1), (, x+1, y +1), (x+1, y), (x+1, y−1), (x, y−1), (x−1, y−
1), (x − 1, y), (x − 1, x + 1),

3. only the neighbors to the south and the west:(x, y − 1), (x − 1, y).

The edges connecting a node with a neighbor may be numbered inthe given order.
Cellular automata can be translated into communities of autonomous units where each cell is trans-

formed into an autonomous unit.
The environments are given by the configurations. To get a graph representation of a configuration

con, the underlying regular graphG is extended by a loop at each nodev which is labeled withcon(v),

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 21

i.e. (G, con) = (V,E + V, s, t, l), such thatG is a subgraph ands(v) = t(v) = v andl(v) = con(v) for
all v ∈ V ⊆ E + V.

The communityCAU (CA) associated with a cellular automatonCA = (G,A, init) gets(G, init)
as initial environment and an autonomous unitaut(v) for eachv ∈ V.

Each of these units has the same rules with positive context which reflect the state transitions. They
are represented by the rule in Fig. 8 and can be applied ifq′ ∈ d(q, q1, · · · , qk) and not all the states
q, q1, . . . , qk are sleeping.

q

q1

q2

qk

1
2

k

⊇ q ⊇ ⊆ q′

Figure 8. Graph transformation rule with positive context modeling the transitions of a cellular automaton

Moreover each unitaut(v) has got a control condition requiring that the central node must be mapped
to v. This means that the matching of the left-hand side of each rule is fixed and no search for it is
needed. Moreover, the matchings of rules of different unitsare not overlapping so that the rules can
be applied in parallel. If a node is sleeping and all its neighbors are sleeping too, then no rule can be
applied. A parallel rule is maximal if all other nodes are matched. According to this construction, the
application of such a maximal parallel rule to the environment (G, con) yields an environment(G, con′)
such thatcon con′. This means that the application of a maximal parallel rule corresponds exactly
to a derivation step on the respective configurations.

To put it in another way, the semantics of a cellular automaton CA and the parallel semantics
PAR(CAU (CA)) of the community of autonomous unitsCAU (CA) are nicely related to each other if
one applies maximal parallel rules only. LetL(PAR(CAU (CA))) be the set of configurationscon such
that a parallel process(G, init) · · · (G, con) ∈ PAR(CAU (CA)) exists. ThenL(PAR(CAU (CA)))
equalsL(CA). This correctness result is depicted in Fig. 9.

celaut-2-CAU

generator deriver

squeezer
L(CA) =
L(PAR(CAU (CA)))

CA CAU (CA)

PAR(CAU (CA))

Figure 9. Correctness diagram for the translation of cellular automata into communities

A finite-state automaton fitting the third neighborhood isSIER = ({b, w}, {b, w}2 , d) where the
state transition is defined asd(b, x, y) = b for all x, y ∈ {b, w}, d(w, b,w) = d(w,w, b) = b, and
d(w, b, b) = d(w,w,w) = w. The statew is sleeping.

22 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

The initial configuration may map the node(0, 0) to b and all others tow.

There is a very nice pictorial interpretation of this cellular automaton. Each node(x, y) is represented
by the square spanned by the points(x, y), (x, y + 1), (x + 1, y + 1), (x + 1, y). If a configurationcon
assignsb to (x, y), the square gets the color black and white otherwise. The initial configuration consists
of a single black square. Because the automaton is deterministic, there is exactly one derivation for
each length, where the shorter derivations are initial sections of the longer ones. The first five steps are
depicted in Fig. 10.

Figure 10. Visualization of a transformation process

After 15 steps the picture looks as shown in Fig. 11. All derived configurations can be seen as
approximations of the Sierpinski triangle, a famous fractal. (see, e.g., [12]).

Figure 11. Visualized environment after 15 environment changes

9. Multiagent systems

Multiagent systems are modeling and programming devices well-known in artificial intelligence (see,
e.g., Wooldridge et al. [17]). A multiagent system providesa set of agents and an initial environment
state. Starting at this state, the agents change environment states step by step where they act together in
parallel in each step. Each agent can perceive the current environment state at least partly. Based on this
perception and its own intention, the agent chooses an action to be performed next. Therefore, a process
in a multiagent systemMAS is a sequence

es0 es1 es2 · · ·

of environment statesesi for all i wherees0 is initial. Each environment stateesi+1 is given by the
state transitionτ of MAS depending on the previous stateesi and the actionact(ag)i chosen by every
agentag of MAS . The choice of such an action is made according to the function doag each agentag

is provided with. Thedo-function yields an action depending on the agent’s perception perceiveag(esi)
of the current state and the agent’s intentionintendag. The global state transitionτ and the functions
doag, perceiveag andintendag which are individually assigned to each agentag of MAS are assumed to
satisfy some consistency properties (cf. [17] for details). Altogether, multiagent systems form a logical

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 23

and axiomatic approach to model distributed information processes that interact on common environment
states. It should be noted that all functions ofMAS are allowed to be nondeterministic so that chosen
actions as well as the next state may not be uniquely determined.

Communities of autonomous units are nicely related to multiagent systems as may be not too surpris-
ing from the description above. Actually, a community of autonomous unitsCAU = (Goal , Init ,Aut)
turns out to be a particular rule-based model of multiagent systems. The environment states are the envi-
ronment graphs. The agents are the autonomous units. The initial graphs are explicitly given. The rules
– or the parallel rules likewise – of a unit are the actions of the agent embodied by the unit. The control
condition plays the role of thedo-function because it identifies the rules that are allowed tobe applied
next. As the control condition can take into account the current environment graph, the perception of the
agent is also reflected. The most important aspect of the correspondence between agents and autonomous
units is the transition function that is made operational bymeans of parallel rule application. The par-
allel rule to be applied in each step is just the sum of all rules chosen by the various autonomous units
according to their control. If one considers the parallel rules of a unit as actions, the parallel processes
of the community and the processes of the corresponding multiagent system coincide. If only the rules
are actions, the multiagent system is not parallel with respect to single agents. That all agents must act
in parallel in each step is a minor difference to community processes because a multiagent system may
provide void actions without effect to the environment.

The relation between communities of autonomous units and multiagent systems is only sketched be-
cause a full formal treatment is beyond the scope of the paper. But even on this informal level, it should be
clear that both concepts fit nicely together and may profit from each other. Communities of autonomous
units represent explicit models of multiagent systems on one abstract, implementation-independent level
with a precise, rule-based operational semantics. Theperceive-domechanism of multiagent systems to
choose next actions provides a wealthy supply of control conditions that can be employed in modeling
by means of autonomous units.

10. Conclusion

In this paper, we have introduced communities of autonomousunits as a means for modeling systems
in which different components interact in a rule-based, self-controlled, and goal-driven manner within a
common environment. Communities of autonomous units have been provided with a formal operational
semantics based on interacting sequential and parallel processes. We have illustrated the notion of com-
munities with a case study modeling the board gameLudoin which every player as well as the die can act
as an autonomous unit. Moreover, we have studied the relationship of autonomous units to three other
modeling frameworks that provide notions of parallelism: Petri nets, cellular automata, and multiagent
systems. While the first two have been correctly transformedinto autonomous units, autonomous units
have turned out to be models of multiagent systems in that theenvironments are instantiated as graphs,
the actions of agents as rules, and the environment transformation as parallel rule application.

The underlying formal framework for communities of autonomous units has been graph transforma-
tion which is highly adequate if the common environment can be represented in a natural way as a graph
as for example in the case of board games and logistic applications. Nevertheless, it is worth noting
that the graphs and the graph transformation rules the autonomous units are working with are not further
specified in the underlying graph transformation approach so that in general, one can take as formal ba-

24 K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units

sis any rule-based mechanism that provides a set of configurations and a set of rules specifying a binary
relation on such configurations.

There are at least the following interesting points for future work.

• The basic idea of autonomous units is that each of them decides for itself which rule is to be
applied next. They are independent of each other and the parts of the environment graphs where
their rules apply may be far away from each other. Hence, a sequential behavior of the community
(like in many card and board games) will be rarely adequate. But also the parallel behavior does
not always reflect the actual situations to be modeled because a parallel step has an explicit begin
and end whereas there may be activities of units that cannot be related to each other with respect
to time. A proper concurrent semantics of autonomous units may fix this problem.

• Besides Petri nets, the theory of concurrency offers a wide spectrum of notions of processes like
communicating sequential processes, calculus of communicating systems, traces, and bigraphs. A
detailed comparison of them with autonomous units can lead to interesting insights.

• Communities of autonomous units should be implemented in order to be able to elaborate and to
verify case-studies of realistic size. Currently there is being done some work in this direction at
the University of Bremen which has as one aim to allow to plug in other already existing graph
transformation tools as described in [4].

• Up to now, the goal of an autonomous unit is defined as a graph class expression. Since for some
applications this may not be sufficient, other adequate classes of goals should be studied.

Acknowledgement

We are grateful to the anonymous referees for their valuablecomments.

References

[1] Bause, F., Kritzinger, P.:Stochastic Petri Nets - An Introduction to the Theory (Second Edition), Vieweg &
Sohn, 2002.

[2] Corradini, A., Ehrig, H., Heckel, R., Löwe, M., Montanari, U., Rossi, F.: Algebraic Approaches to Graph
Transformation Part I: Basic Concepts and Double Pushout Approach, in: Rozenberg [14], 163–245.

[3] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G., Eds.:Fundamentals of Algebraic Graph Transformation,
Springer, 2006.

[4] Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G., Eds.:Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 2: Applications, Languages and Tools, World Scientific, 1999.

[5] Ermel, C., Rudolf, M., Taentzer, G.: The AGG-Approach: Language and Environment, in: Ehrig et al. [4],
551–603.

[6] Hölscher, K., Klempien-Hinrichs, R., Knirsch, P., Kreowski, H.-J., Kuske, S.: Autonomous Units: Basic
Concepts and Semantic Foundation,Understanding Autonomous Cooperation and Control in Logistics The
Impact on Management, Information and Communication and Material Flow (M. Hülsmann, K. Windt,
Eds.), Springer, 2007.

K. Hölscher, H.-J. Kreowski, S. Kuske / Autonomous Units 25

[7] Hölscher, K., Kreowski, H.-J., Kuske, S.: Autonomous Units and their Semantics — the Sequential Case,
Proc. 3rd Intl. Conference on Graph Transformations (ICGT 2006) (A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, G. Rozenberg, Eds.), 4178, Springer, 2006.

[8] Kennedy, J., Eberhart, R. C.:Swarm Intelligence, Morgan Kaufmann, 2001.

[9] Kreowski, H.-J., Kuske, S.: Graph Transformation Unitswith Interleaving Semantics,Formal Aspects of
Computing, 11(6), 1999, 690–723.

[10] Kreowski, H.-J., Kuske, S.: Autonomous Units and TheirSemantics - The Parallel Case,Recent Trends in
Algebraic Development Techniques, 18th International Workshop, WADT 2006(J. Fiadeiro, P. Schobbens,
Eds.), 4408, 2007.

[11] Kuhn, A.: Prozessketten – Ein Modell für die Logistik,in: Erfolgsfaktor Logistikqualiẗat (H. Wiesendahl,
Ed.), Springer, 2002, 58–72.

[12] Peitgen, H., Jürgens, H., Saupe, D.:Chaos and Fractals, Springer, 2004.

[13] Reisig, W.: Elements of Distributed Algorithms: Modeling and AnalysisWith Petri Nets, Springer Verlag,
1998.

[14] Rozenberg, G., Ed.:Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1: Foun-
dations, World Scientific, 1997.

[15] Scheer, A.:Vom Gescḧaftsprozeß zum Anwendungssystem, Springer, 2002.

[16] Wolfram, S.:A New Kind of Science, Wolfram Media, Inc., 2002.

[17] Wooldridge, M., Jennings, N. R.: Intelligent Agents: Theory and Practice,The Knowledge Engineering
Review, 10(2), 1995.

