Fundamenta Informaticae XX (2009) 1-25 1
10S Press

Autonomous Units to Model Interacting Sequential and Paralel
Processes

Karsten Holscher
Hans-Jorg Kreowski*

Sabine Kuske

Department of Computer Science

University of Bremen

P.O.Box 330440, D-28334 Bremen, Germany
{kreo,kuské@informatik.uni-bremen.de, khoelscher@uni-bremen.de

Abstract. In this paper, we introduce the notion of a community of aotapus units as a rule-
based and graph-transformational device to model prosésaerun interactively but independently
of each other in a common environment. The main componeras alitonomous unit are a set of
rules, a control condition, and a goal. Every autonomoutttarisforms graphs by applying its rules
so that the control condition is satisfied. If the goal is hetthe resulting transformation process
is successful. A community contains a set of autonomous anitinitial environment specification,
and an overall goal. In every transformation process of ancanity the autonomous units interact
via their common environment. As an example, the game Ludwmideled as a community of self-
controlled players who interact on a common board. The esiplafithe presented approach is laid
on the study of the formal semantics of a community as a whodedd each of its member units
separately. In particular, a sequential as well as a pasalieantics is introduced, and communities
with parallel semantics are compared with Petri nets, lm@lautomata, and multiagent systems.

Keywords: Autonomous units, graph transformation, formal semantics

*The authors would like to acknowledge that their researcpaigially supported by the Collaborative Research Centre
637 (Autonomous Cooperating Logistic Processes — A Paradbift and its Limitations) funded by the German Research
Foundation (DFG).

2 K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units

1. Introduction

Data processing of today (like communication networks,tiagient systems, swarm intelligence, ubig-
uitous, wearable and mobile computing) is often distridiad comprises various components that run
partially independent of each other, but may access andteipida same information structures, com-
municate with each other and interact in various ways. Thay oooperate to reach a common goal
or may compete with each other to achieve their individuaisai Typical examples of this kind are
logistic processes and systems like transport and pramucgtworks where many actors from differ-
ent companies come together and cooperate to a certainedegu they are usually still competitors
who are not willing to transfer their control to others or toemtral entity. On the more technical level,
transport networks, for example, comprise many transpaicles, lots of goods to be shipped, various
further components for storing, loading, reloading, etés hot meaningful to model such a network as
a centralized system with a single control. The same apfipsoduction networks with respect to the
involved machines, materials, storage areas, etc.

The main idea of this paper is to provide a formal transforomal and rule-based framework for the
modeling of such systems composed of a variety of highlyaatitrolled components that make their
decisions on their own depending on the information theyfrpet their environment.

The basic notion is that of a community of autonomous unitiekvlxist in a common environment.
There are initial environments to start computational psses, and there is an overall goal. Each au-
tonomous unit in a community has its own individual goal iditidn. To reach its goal, the autonomous
unit can apply its rules or use so-called transformatiotsuniorder to describe more complex transfor-
mations than rules can do. Moreover, each autonomous uhih lcantrol mechanism to decide which
rule or transformation unit is applied next. This estaldiskthe autonomy of a unit.

The autonomous units in a community are not directly awareaah other, but they may notice
the outcome of the activities of their co-units because sofrteeir rules may become applicable and
others may loose this possibility. In this way, autonomonisstcan communicate and interact. To cover
these phenomena in the process semantics of a single awtaramit, we assume a change relation on
environments that makes the environment dynamic.

In the first part of the paper, we introduce the sequentialasgics of communities of autonomous
units. It is given by all sequential processes - finite anahitdi- that start in an initial environment, are
composed of rule applications and applications transféomainits, and follow, in each step, the control
of the active autonomous unit. From the point of view of a Eregutonomous unit, this means that its
own actions (being rule applications or applications ofisfarmation units) take place interleaved with
other changes of the dynamic environment caused by thestogxautonomous units.

Clearly, the sequential semantics is only adequate if oaésdeith systems in which activities take
place one after the other. Examples of this kind are card aadltgames, sequential algorithms, single-
processor systems and such. Moreover, there are many mgaglproaches the semantics of which
assumes one action at a time. But even sequential systemsansigt of self-controlling components
that decide about their own activities independently ofdtieers like the examples of card and board
games with several players show.

To cover parallelism, we assume that not only single rulésrultisets of rules can be applied to
environments. This means that in each step many rules cappiechand single rules multiple times.
As the rules may belong to different autonomous units, theremmous units act in parallel. A parallel
process of a single autonomous unit can be described as erseqaf application of multisets of rules

K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units 3

of this autonomous unit in parallel with changes of the emvinent.

The concept of autonomous units is approach-independehtisense that the classes of environ-
ments, rules, control conditions, and goals are not detexthin advance but can be provided by a
transformation approach that is plugged in the communitgretthe autonomous units interact. Never-
theless, in this paper, environments are assumed to beggbgohuse graphs are very generic and allow
to model the states of a wide spectrum of rule-based systathsraparticular, of all processes that can
be modeled with any of the existing graph transformatiorregghes.

The benefit we expect of using autonomous units is to obtagmangl, easy-to-use, and visually well-
understandable formal framework with a precise semantiasallows to model systems of interacting
components so that on the one hand external control stescéue set aside and on the other hand string-
based representation is replaced by graph- and rule-bageesentation that allows to visualize and
specify the systems more like they are.

The introduction and investigation of autonomous units &y motivated by the Collaborative
Research Centre 63¥utonomous Cooperating Logistic ProcessEsis interdisciplinary project focuses
on the question whether logistic processes with autonontongrol may be more advantageous than
those with central control, especially regarding time,te@nd robustness. The guiding principle of
autonomous units is the integration of autonomous conttol fule-based models of processes. The
aims are

1. todescribe algorithmic and particularly logistic preses in a very general and uniform way, based
on a well-founded semantic framework,

2. to provide arange of applications that reaches fromicialgsrocess chain models like the ones by
Kuhn (see, e.g., [11]) or Scheer (see, e.g., [15]) and thekmelvn Petri nets (see, e.g., [13, 1]) to
agent systems see, e.g., [17]) and swarm intelligence €sge[8]),

3. to comprise the foundation of the dynamics of processendans of rules where rule applications
define process, transformation, and computation stepdipiglocal changes.

The paper is organized as follows. In Sect. 2 we recall thenaf a graph transformation approach.
In Sect. 3 autonomous units are introduced and a sequeeiirgics for them is given. Sect. 4 presents
communities of autonomous units and formalizes their seitplesemantics. In Sect. 5 we present a case
study modeling the players of the board gameloas autonomous units. Sect. 6 introcuces a formal se-
mantics for the parallel case. To shed some first light onifréfscance and usefulness of communities
of autonomous units with parallel-process semantics, wgpaoe our concepts with the parallelism pro-
vided by other well-known frameworks in Sections 7-9. Intjgatar, Sect. 7 translates place/transition
systems into communities of autonomous units and showdithrag sequences of multisets of transi-
tions correspond to parallel processes of the associatadhaaity. Similarly, cellular automata can be
considered as communities of autonomous units as showrcin &eCellular automata are particularly
interesting as all their cells change states simultangagsthat the mode of computation is massively
parallel. In Sect. 9, we discuss the relationship betweenntonities of autonomous units and mul-
tiagent systems. As the latter are defined in an axiomatic Wayformer can be seen as rule-based
models providing an operational semantics for multiaggstesns independently of the implementation
of agents. Sect. 10 concludes the paper.

Preliminary short versions of parts of this paper are phbtisin [7, 10]. The basic ideas are sketched
in [6].

4 K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units

2. Graph transformation approaches

Whenever one has to do with dynamic graph-like structureaplgtransformation (see also [14]) con-
stitutes an adequate formal specification technique bedassipports the visual and rule-based trans-
formation of such structures in an intuitive and direct wakie ingredients of graph transformation are
provided by a so-called graph transformation approachhitgection, we recall the notion of a graph
transformation approach as introduced in [9] but modifietthwespect to the class of control conditions.

Two basic components of every graph transformation appraae a class of graphs, and a class of
rules that can be applied to these graphs. In many casegspplieation is highly nondeterministic — a
property that is not always desirable. Hence, graph tramsfbon approaches can also provide a class
of control conditions so that the degree of nondetermininale application can be reduced. Moreover,
graph class expressions can be used in order to specify don@e sets of initial and terminal graphs of
graph transformation processes.

Definition 2.1. (Graph transformation approach)
A graph transformation approach is a systdm= (G, R, X', C) the components of which are defined as
follows.

e Gis aclass ofyraphs

e R is a class ofgraph transformation rulesuch that every- € R specifies a binary relation on
graphsSEM (r) C G x G.

e X is aclass ofjraph class expressiorssich that eachr € X" specifies a set of grapt/M (x) C
g.

e Cisaclass otontrol conditionssuch that each € C specifies a set of sequenc&8M cpqn e (¢)
SEQ(G) whereChange C G x G. 1

N

Remark. The relation Change describes the changes that can occur in the environment afian
tonomous unit. Hence, control conditions have a loose seosanhich depends on the changes of the
environment given byChange.

2.1. Examples.

In the following we present some instances of the compor@mgsaph transformation approaches. They
are used in the following sections. Further examples offgtegnsformation approaches can be found
in, e.g., [14].

Graphs. A well-known instance for the classis the class of all directed edge-labeled graphs. Such a
graph is a systerty = (V, E, s, t,1) whereV is a set of nodesZ is a set of edges;, ¢: E — V assign

to every edge its sourc€e) and its target(e), and the mapping assigns a label to every edge fih

The components af are also denoted by, Fqg, sg, ta, andlg, respectively. As usual, a graplf is

a subgraph of7, denoted byM C G if Vyy C Vq, Epm C Eg, andsyy, tas, andl,, are the restrictions

1SEQ(G) denotes the set of finite and infinite sequences Gver

K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units 5

of sg, tg, andlg to Ej;. A graph morphisny: L — G from a graphL to a graphG consists of two
mappingsgy : Vi — Vo, gg: Fr, — Eg such that sources, targets and labels are preservedopi.all f
e€ Er, gv(sr(e)) = salgr(e)), gv(trle)) = ta(gr(e)), andlg(ge(e)) = lL(e). In the following we
omit the subscripl” or E of g if it can be derived from the context.

Other classes of graphs are trees, forests, Petri netseatedl graphs, hypergraphs, etc.

Rules. As aconcrete example of rules we consider the so-calledidguushout rules [3] each of which
consists of a triple = (L, K, R) of graphs such that © K C R. Graph transformation rules can be
depicted in several forms. In the following they are eith®emgn in the formZ O K C R or by drawing
only its left-hand sidel. and its right-hand sidé? together with an arrow pointing from to R, i.e.,

L — R. The different nodes oK are distinguished by different forms and fill-styles.

The application of a rule to a graggh yields a graph=’, if one proceeds according to the following
steps: (1) Choose a graph morphigmLZ — G so that for all itemse, y (nodes or edges) df g(z) =
g(y) implies thatx andy are in K. (2) Delete all items ofj(L) — g(K) provided that this does not
produce dangling edges. (In the case of dangling edges thghism g cannot be used.) (3) Ad& to
the resulting graptD, and (4) glueD and R by identifying the nodes and edges &fin R with their
images undeg. The conditions of (1) and (2) concerniggare called gluing condition.

A graph transformation ruléL, K, R) with positive context is a quadrup(é’C, L, K, R) such that
L C PC. It can be applied t@ by applying (L, K, R) to G as described provided that there is a
morphismg’: PC' — G such that the restriction @f to L equalsg. In the following, a rule with positive
context is depicted aBC O L O K C R where different fill-styles determine the nodes and edgéds of
in PC.

Graph class expressions. Every subseflM C G is a graph class expression that specifies itself, i.e.,
SEM (M) = M. Moreover, every sef of labels specifies the class of all graphgjithe labels of which

are elements of. Every setP C R of graph transformation rules can also be used as a graph clas
expression specifying the set of all graphs that are reduced P where a graph is said to be reduced
w.r.t. P if no rules of P can be applied to the graph. Another example of a graph clgse®sion is

a subgraph conditioni.e., a graphGG that admits all graphs that have (an isomorphic copy(®fs
subgraph. The least restrictive graph class expressitwe ietmall specifying the clas§.

Control conditions. The least restrictive control condition is the tefree that allows all parallel graph
transformations, i.eSEM cpange(free) = SEQ(G) for all Change € G x G. Another useful con-
trol condition isalap(P) where P C R. It appliesP as long as possible. More precisely, for every
Change C G x G, SEM change(alap(P)) consists of all finite sequencé§, ..., Gy) € SEQ(G) for
which there is an € {0,...,n} such that no rule irP can be applied to the graphs (&;,...,G,).
The conditionalap(P) can also be used to specify infinite sequences, a more catggicase that is
not needed here.

For technical simplicity we assume in the following thét= (G, R, X, C) is an arbitrary but fixed
graph transformation approach.

The notion of a graph transformation approach is very gérwh requires just what is needed to
introduce autonomous units and their sequential and pasdmantics in Sections 3, 4 and 6. Graphs
are assumed to be items to which rules can be applied, arslandeassumed to provide a binary relation

6 K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units

on graphs. From this point of view, graphs could be calledfigarations, environments, objects or
something like this, and rules could be called operationsnts or actions. That we speak about graphs
and rules, has the following reasons.

1. In the graph transformation literature one encounteite guariety of different notions of graphs,
rules, rule applications, and regulations of rule applicet which have some basic properties in
common. Our notion of a graph transformation approach énihtd to cover most of these features
in a unifying framework.

2. The notion of a graph is very generic. There are many viriagkil kinds of diagrams can be seen
as graphs. And many other structures can be nicely repessastgraphs so that the requirement
of a class of graphs is not very exclusive and reflects thergetyeof the concept.

3. In all the examples we have considered so far, the envieoitsrof units are or can be considered
as graphs. The examples of this paper, the Ludo game, Pttriamel cellular automata, are quite
typical in this respect.

4. The study of autonomous units is still at the beginningthar investigations may demand further
properties of graphs and rules which will be added to theonaif a graph transformation approach
whenever needed. Properties to be expected later on are distimetions between nodes and
edges or some locality of rule application, for example.

3. Autonomous units with sequential semantics

Autonomous units act and interact in a common environmerittwis modeled as a graph. An au-
tonomous unit consists basically of a set of graph transdtion rules, a control condition, and a goal.
The graph transformation rules of an autonomous amitspecify the transformations the umitit can
perform. Such a transformation can be for example a movenfehe autonomous unit within the cur-
rent environment, the exchange of information with othéoaomous units via the environment, or local
changes of the environment. The control condition regsltite application process. For example, it may
require that a sequence of rules be applied as long as possitvifinitely often. In this first approach the
goal of an autonomous unit is a graph class expression deiagrhow the transformed graphs should
look like, eventually.

In practice, autonomous units may also want to execute atemiironment transformations that
cannot be specified with a mere graph transformation rulevithta set of rules that should be applied in
a specific order. For this purpose we use the concept of tianation units introduced in e.g. [9].In more
detall, transformation units encapsulate sets of rulesanttol components that specify binary relations
on graphs. Moreover, they allow to structure large rule batgarchically into smaller pieces because
they provide an import component. As rules, transformatioits specify binary relations on graphs.
The application of a transformation unit via an autonomanis eannot be interrupted by environment
changes executed by other autonomous units or by local efikee autonomous unit.

Transformation units are inductively defined over theirtephere a transformation unit has depth
zero if it does not use any other transformation unit. Otheanits depth is the maximum of the depths
of all imported units plus one.

K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units 7

Definition 3.1. (Transformation unit)
1. An transformation unitof depth0 is a systemiu = (0, P,C) where P C R is a set of graph
transformation rules, an@'is a control component witfEM (C) C G x G. The depth oftu is
denoted bydepth(tu).

2. LetU # () be a set of transformation units and tet= max{depth(u) | u € U} wheredepth(u)
denotes the depth of the unit Then atransformation unitof depthn + 1 is a systemtu =
(U, P,C) whereP andC are defined as in point one of this definition.

3. The components af: are also denoted by, Py, andC,, respectively.

Remarks.

1. In [9], the component of Definition 3.1 is calleccontrol conditionbut it is different from the
control conditions in the graph transformation approadateffned in Section 2 because it speci-
fies a binary relation and not a set of sequences. A typicahpkaof a control component for
transformation units is a finite automaton the edges of whrehlabeled with rules and imported
transformation units. It specifies all pairs of graglis G’) that can be obtained by applying the
rules and transformation units on a path from the initiatestaf the automaton to a final state
(in the same order as the edges in the path are visited)ngtawith G and ending withG’. In
general, the control components of the above definition earefarded as a specific case of the
control conditions of Section 2 because every fjéirG') allowed by a control component of a
transformation unit can be regarded as the set of all fingeeseces fronts to G'.

2. The transformation units in [9] contain also graph clagzressions in order to specify start and
end graphs of graph transformations. This specific featfiteansformation units is not needed
in the following. However, it is worth noting that graph cdasxpressions can be represented as
control components in a straightforward way, so that evemysformation unit of [9] can be easily
translated into a transformation unit the graph class egmas of which specify the class of all
graphs. Hence, the above definition does not really restréctoncept of transformation units.

As in [9] we concentrate here on a sequemtial semantics p$ftemation units that contains all
pairs of graphgG, G') so thatG’ can be obtained from¥ via the successive application of local rules
and imported transformation units af@, G’) is specified byC'.

Definition 3.2. (Semantics of transformation units)
Lettu = (U, P, C) be atransformation unit. LéGo, ..., G,) € SEQ(G). Then(Gy, Gy,) € SEM (tu)
if

e there is a sequende,...,z,) € SEQ(U U P) suchthatfori =1,...,n
(Gi—la GZ) € SEM(SL’Z),
and

o (Go,Gn) € SEM(C).

8 K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units

It is worth noting that the semantics of autonomous unit@uctively defined meaning that it
covers the case where no transformation unit is importedimrlde case where the set of imported
transformation units is not empty the semantics of everyomga transformation unit is recursively
computed.

Now autonomous units can be defined.

Definition 3.3. (Autonomous unit)

An autonomous unis a systenuut = (g, U, P, c¢) whereg € X is thegoal, U is a set of transformation
units, P C R is a set of graph transformation rules, and C is a control condition. The components of
aut are also denoted by,ut, Uguty Paut, @Ndcgyt, respectively.

Every autonomous unit induces a set of atomic (i.e. notrinptible) environment transformations
that consist of the semantic relation of all local rules phesrelations given by its transformation units.

Definition 3.4. (Atomic transformations)
The set ofatomic transformationsf an autonomous transformation unitt = (g, U, P, ¢) is defined as
AT (aut) = U epup SEM (z) .

An autonomous unit modifies an underlying environment whitéving for its goal. Its semantics
consists of a set of transformation processes being finitdiaite sequences of environment transforma
tions. An environment transformation is the applicatiomtdcal rule, the invocation of a transformation
unit, or an environment change performed by some other aatoas unit that is working in the same
environment. These environment changes are given as gvelation on environments. Hence, in this
sequential approach a transformation process of an autmumomit interleaves local rule applications
and applications of used transformation units with envitent changes specified by other components.

Autonomous units regulate their transformation procebgashoosing in every step only those rules
and transformation units that are allowed by its controldition. A finite transformation process is
called successful if its last environment satisfies the gbttle autonomous unit. Every infinite transfor-
mation process is successful if it contains infinitely manyimnments that satisfy the goal.

Definition 3.5. (Sequential semantics of autonomous units)
1. Letaut = (g,U, P, c) be an autonomous unit and l€hange C G x G. Lets = (G, Gq,...) €
SEQ(G). Thens € SEM change (aut) if

o fori=1,...,|s| — 1if sis finite? and fori € N* if s is infinite
(Gi-1,G;) € AT (aut) U Change
LGS SEMChange(C)-
2. The sequenceis called asuccessful transformation process is finite andG|,_; € SEM (g) or

if sisinfinite and there is an infinite monotone sequeice i; < iy < --- with Gij € SEM(g)
forall j € N.

2Fors = (G, .. ., Gx) the lengthn + 1 of s is denoted bys|.

K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units 9

4. Communities of autonomous units

Autonomous units are meant to work within a community of aotaous units that modify the common
environment together. In the sequential case these mddifisatake place in an interleaving manner.
Every community is composed of an overall goal that shoulcgdigeved, an environment specifica-
tion that specifies the set of initial environments the comityumay start working with, and a set of
autonomous units. The overall goal may be closely relatdtidagoals of the autonomous units in the
community. Typical examples are the goals admitting onlyceasful semantic sequences w.r.t. one or
all autonomous units in the community.

Definition 4.1. (Community)

A communityis a triple CAU = (Goal, Init, Aut), where Goal, Init € X are graph class expres-
sions called theverall goaland theinitial environment specificatigrrespectively, andlut is a set of
autonomous units.

In a community all autonomous units work in a self-contmligay by applying their rules or their
transformation units to the common environment. The chaefgion integrated in the semantics of
autonomous units makes it possible to define an interleas@ngantics of a community in which every
autonomous unit may perform its transformation procedsessthis purpose it is necessary to define for
every autonomous unit the set of atomic transformationdl offaer autonomous units in the community.

Definition 4.2. (Change relation)
Let CAU = (Goal, Init, Aut) be a community. Then for eachit € Aut thechange relatiorw.r.t. aut
is defined asChange (aut) = U e aut— {aury AT (aut’).

Every transformation process of a community must start withraph specified as an initial en-
vironment of the community. Moreover, it must be in the seria¢ semantics of every autonomous
unit participating in the community. Analogously to sucfestransformation processes of autonomous
units, a finite transformation process of a community is essful if its last environment satisfies the
overall goal. Every infinite transformation process of a ommity is successful if it meets infinitely
many environments that satisfy the overall goal.

Definition 4.3. (Sequential community semantics)
1. Let CAU = (Goal, Init, Aut). Then thesequential community semantios CA U, denoted by
SEM(CAU), consists of all finite or infinite sequences= (G, G1,...) € SEQ(G) such that
Go € SEM (Init) ands € SEM cpange (aut) (aut) for all aut € Aut.

2. The sequenceis asuccessful transformation procei$ss is finite andG | —; € SEM (Goal) or
or there is an infinite monotone sequerige< i; < iz < --- with Gi;; € SEM(g) forall j € N.

Remarks.

1. As the definition of the community semantics shows, thera strong connection between the
semantics of a communit¢AU = (Goal, Init, Aut) and the semantics of an autonomous unit
aut € Aut. More precisely, the semantics 6f4 U is a subset of the semantics @it w.r.t. the
change relatiorChange(aut). Formally, this means thalEM (CAU) C SEM change(aut) (aut)
for all aut € Aut.

10 K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units

2. One may take the intersection of the sequential semaoftal autonomous units with respect to
their own change relation and restrict it to the sequenceetirgg in an initial environment. Then
one gets the sequential semantics of the community. Thisctefthe autonomy because no unit
can be forced to do anything that is not admitted by its owrrobnTo put it in another way, every
transformation process of a community is a subset of thestpamation processes obtained by
the intersection of the semantics of all autonomous unitséncommunity, i.e.SEM (CAU) C
NauteAut SEM change(aut)(aut). In the case where the initial environment expression §peci
the class of all graphs, we get the equality, iSEM (CAU) = (e e SEM Change(aut) (aut)

3. Obviously, only atomic transformations of the parti¢ipg autonomous units are applied in every
transformation process, i.e. for evety= (Go,G1,...) € SEM(CAU) we have(G;_1,G;) €
Usutcaw AT (aut) wherei = 1,...,|s| — 1if s is finite andi € N7 if s is infinite. The proof
is straightforward: By Def. 4.3 we have thatc SEM cpange(aur)(aut) for all aut € Aut. Let
aut € Aut. Then by Def. 3.5 we get foi = 1,...|s| — 1 if s is finite and fori € N7 if s
is infinite that(G;_1,G;) € AT (aut) U Change(aut). By Def. 4.2(G;_1,G;) € AT (aut) U
Uautre Aut—{auty AT (aut’). This implies tha(G;—1, Gi) € U e aur AT (aut).

5. Modeling Ludo players as autonomous units

Board games are a typical example of communities of automsranits with sequential semantics where
the board provides the common environment and the playertharautonomous units. As a concrete
example we consider in this section the gdmda 3

The graph transformation approach used in this exampleistensf labeled directed graphs and
double-pushout rules (cf. [3]). The control conditionsdisee regular expressions and priorities. As
graph class expressions we use subgraph conditions andédple glass expressiat! specifying the
class of all graphs.

A possible environment graph afudois the initial game situation where four players of diffearen
colors have all their tokens at the start place and thereesd@showing an arbitrary number between
one and six. This graph is depicted in Fig. 1. Every playerasw as a kind of actor labeled with a color
out of b(lue), y(ellow), r(ed), andg(reen) so that every player has a different color. Techlyicalplayer
is a labeled node. The players are connected via some diredgges indicating the playing succession.
The game board consists of a start node and four home nodegdiyr player and a set of round nodes.
The start node of alabeled player is depicted ag-dabeled hexagon. The home nodes which are drawn
as rhombuses are labeled with the one-elemenfgetEvery c-labeled player has fourlabeled tokens
that all sit at her/his start node at the beginning of a ganie fact that a token of colaris sitting at
a nodev is visualized with ac-labeled token that is connecteduwia an undirected edge. Technically,
this can be modeled by means of-tabeled loop connected to the nodeThe directed edges between
the nodes of the game board indicate where and in which direttie tokens can move around the game
board.

Every round node and every directed edge between round and hodes are labeled with a set
M C {b,y,g,7}. The label of every round node contains all colors that cait this node. Since at the
beginning of a game all round nodes are vacant, i.e. they eastied by all colors, they are all labeled

3There exist several distinct versions of the gdrado. In this paper we consider one of the standard German vession

xin [1.,...,6], label(O) = {b,y,g,r} label(‘)— r), label(@) iv)

label(—=) = {b,y,g,r}
label()= , label()= {b}
N_z = {b,y,g,r}-{z} for all z in {b,y,g,r} @ <l>

Figure 1. An environment dfudo

with {b,y, g,r}. The labels of the edges connecting home and round nodeairc@ito all colors the
tokens of which can move via these edges. For example, ofitywtokens can move to a home node of
a yellow player. Moreover, no yellow token may go over theeelddpeled withV_y = {b, g, 7}, because

it has to enter its home. Please note that the labels of makseafodes and edges of Fig. 1 are depicted
below the graph in order to keep the graph easy to read.

The goal of every player is to have all four tokens at home,iomach home node. To reach a home
place, a token must go from the start place over the roundsfialthe indicated direction. To move a
token, a die must be thrown. If a six is thrown the current efapust move one of her/his tokens from
the start node to the first round node, i.e. to the round nodeemed to the start node. If there is no
token left at the start node, the player can take any otheewhis tokens. A six allows for throwing
again. We assume here that the blue player starts to play.ighihy theb-labeled player is holding the
die (represented by the edge from the player to the die) n&étads it is the turn of the yellow player.

Every player ofLudocan be realized as the autonomous unit depicted in Fig. 2gdakof a player
c is the subgraph condition consisting of the home of which every node is connected ta-dabeled
token. The rules and the transformation units model alliptssactions of a player. The possible values
of the variables occurring in the left- or right-hand side put under the arrow. If the label of a node
or an edge is not significant it is omitted in the rule, i.e. mi without a label can be matched to an
item with any label. The rulgo-to-startpointof the autonomous unglayer moves a token that has been
kicked out to its home node. As the control condition prdmsithis rule has the highest priority, i.e. it

12 K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units

player(c:[b,g.y.r])

oal: 4& 4&
9 C {c} /EO\{C} {c}

units: move-6(c), move(c)

rules:

A kicked—out
go—to-startpoint: @

ready again
cnm-6: i E—— %
c

conds: go—to-startpoint > (move-6(c),move(c)) > (cnm-6,cnm)

Figure 2. A Ludo player

should be always applied if possible. The rafen-6and the rules represented bymare applied if no
token can be moved by the player, i.e. they have the lowestifyri The rulecnm-6asks the die to throw
again anccnmasks the die to turn to the next player if a number between nddize was thrown.

Every player contains the two transformation umitsve-6andmove The transformation unihove
is depicted in Fig. 3. It models all moves of a token if no sithigown. (The moves corresponding to
a six are contained in the transformation unibve-6 It is similar tomoveand therefore not depicted.)
The transformation uniinovecontains four rules. The firstf moves a token from the first round node
(the one connected to its start nodehodes ahead wheree {1,...,5} is the number thrown by the
die. This move can only be performed if the target node is notipied and if there is still a token at the
start node. Moreover, the token can only be moved if it is tine of its player. This is indicated by the
arrow pointing from playet: to the die. On the left-hand side the die hasadyloop which means that
the die has already thrown itself. On the right-hand sidedibés asked to turn. The ruhafkois similar
to mf. The difference is that another token is kicked out. The gadenoves a token from a round or a
home node to another round or home node. Thegual®moves a token from a round node to another
node where it kicks out a token. The rulgsandgokocan only be applied if the first two rules are not
applicable, because the first round node must be left if it@pied by a token of colarand if there is
still a token at the start node. If this move is not possiblg @her token can be taken.

It is worth noting that players select their tokens nondeieistically. More sophisticated rules
would allow to decide whether it is appropriate to choosekaridhat can kick out another one, etc. The
rules for making such decisions possible are more complicdiecause they have to consider a wider
context of the environment (e.g. such a rule could check drghe kicking out of another token brings

K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units

move(c:[b,y,q,)

rules

mf:

PN

x M= {bygr}

% ready % tum
c C

=
0

miko: kicked—out

A A A

B OO

X xin{1,...,5}

1
Q ready wm
o i

bS

i
'R

A /o
(Ot) e ()

or M= {c},

cinN_1,...,N_x,
ready in{1,....5 um
% xin{1,.., } i
c

[

kicked-out

goko: A A @ A

LR - =
N_1 N_2 N_x cinM, _ N X

cin N_1,...,N_x,

1 6
ready xin{1,...,.5} turn
i i

c c

conds:

(mf,mfko) > (go,goko)

Figure 3. The transformation unitove

13

14 K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units
die

rules et ready
start: -
x,y in{1,..,6}

turn

turn&throw: e ready
@ Tﬁé

, ready

_ [lagain —_—
throw-again: @ vin{l,..6}

conds: start ; (throw—again | turn&throw)*

<

Figure 4. The autonomous uriie

the own token into a "dangerous” position). For reasons atspimitations they are kept simple in this
paper.

The other autonomous unit &udo models the die and is depicted in Fig. 4. The autonomous unit
die has no special goal, i.e. it admits every graph as a goal. Thefonctionality ofdie is to throw
itself and to move to the next player. The first rule throwsdie The second rule turns and throws
the die in the case where the die gets a corresportdimgmessage from the player. With the third rule
the die throws itself again without moving to the next playHnis can be only done if a six was thrown
before. The control condition requires that gtart rule be applied once at first. Afterwards any of the
two remaining rules can be applied arbitrarily often.

The game_udo(including the board, up to four players, one die and the ganes) can be modeled
as the communitiudo= (ongplayer), Iniconf, {player(b), playery), playerg), playerr), die}) where
the overall goabne(player) specifies all graphs in which at least one player unit hasheghits goal
andIniconf specifies all possible initial environmentslafda

The Ludo case study has been implemented and tested in Java. Theriemibdion is based on
the graph transformation engine of the AGG system (cf. [SJhce this system neither provides all of
the necessary control conditions nor supports transféomainits, two attempts have been made. In
the first attempt, thédudo community has been translated into a single flat AGG grapistoamation
grammar. Here the missing control conditions have beenlatediby extensions of the existing rules.
In a second attempt, the actualdo community with its individual autonomous units have beeplan
mented in Java. In this attempt, the generic implementatimorrols the derivation process, but the actual
graph transformation is performed by AGG with graph tramsfation rules corresponding to the original
specification presented here. The second version is pdarfgreignificantly faster, especially due to the
optimization not to test all the rules of all autonomous sibiiit only those of the autonomous unit that
actually has to move. Fig. 5 shows a screenshot of the emagohgraph in the running system. Here
the blue player has just rolled a score of 1 and moved one tbkiEns, kicking out a red token in the
process. In Fig. 6 a different visualization is shown, wHmbks more similar to the actual board game.
In the second version each player unit employs a differeateggy. One autonomous unit kicks out other
players’ tokens whenever it has the chance to do so. One@utmrs unit tries to play more defensively,
i.e., if different tokens can be moved then it prefers to mwitbout kicking out other players’ tokens. A

15

Figure 5. A screenshot of the implemented system

third strategy is trying to always move the token that hasoed the most distance in order to reach the
target as fast as possible. On the contrary, the fourth aatons unit always tries to move the token that
has covered the least distance in order to move in a compgcflwase different strategies are specified
in the corresponding player units using higher prioritiesthe rules according to the desired behavior.

6. Parallel-process semantics

In this section, we generalize the framework of autonomouts Uy permitting that autonomous units
act and interact in parallel.

The basic idea of parallelism in a rule-based frameworkésagplication of many rules simultane-
ously and also the multiple application of a single rule. Thiave these possibilities, we assume that
multisets of rules can be applied to graphs rather thanesindgs.

Definition 6.1. (Multisets)
1. Given some basic domaii, the set of all multiset®, over D with finite carriers consists of all
mappingsn: D — N such that the carrietar(m) = {d € D | m(d) # 0} is finite.

2. Ford € D, m(d) is called the multiplicity ofd in m.

Remarks.
1. The union or sum of multisets can be defined by adding quoreing multiplicities.

2. D, with this sum is the free commutative monoid ovemwhere the multiset with empty carrier is
the null element, i.enull: D — N with null(D) = 0.

16

3 000 8
o oo o B
i ® 0 &
O 0O O
O0—-0—-0—0O O O—-O0—O0—0-0
. VVVVVV . ;
O—-O0—O0—8-0 @ O—-O0—-0—6-0
O ® O
@i O O
& o0 &

Figure 6. A screenshot of the implemented system with ardiffevisualization

3. Note that theAeIements @ correspond to singleton multisets, i.e. fbre D,d: D — N with
d(d) =1andd(d') = 0ford # d.

4. If Risasetofrulesy € R, comprises a selection of rules each with some multiplidityerefore,
an application ofr to a graph yielding a graph models the parallel and multiplelieation of
several rules.

The definitions of a graph transformation approach, an am@us unit and a community of au-
tonomous units remain unchanged with two exceptions.

1. We assume now that not only each rule, but each multisetesir ¢ R.. specifies a binary relation
on graphsSEM (r) € G x G. The multisets of rules ifR, are called parallel rules. A graph
transformation approach with paralled rules is called alpgrgraph transformation approach.
The application of a parallel rule to G with the resultG’. may be also called a direct parallel
derivation or a parallel derivation step.

2. We consider only autonomous units without transfornmatinits to keep the technicalities simple.
Hence, an autonomous unitt = (g, (), P, ¢) is denoted bywut = (g, P, c).

Example of a parallel graph transformation approach. The sample approach introduced in Section
2 with directed graphs and dpo-rules is particularly suitede extended into a parallel approach. Given
two rulesr; = (L;, K;, R;) (1 = 1, 2) their parallel composition yields the rute+ry = (L1 + Lo, K1 +
Ky, R1 + Ry) where+ denotes the disjoint union of graphs. In the same way oneaastruct a parallel
rule from any multiset- € R.. For every paifG,G’) € SEM(r; + r9) there exist graphd/; and

K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units 17

M, such that G, M;) and(M,, G’) are inSEM (r1) and(G, M) and (M, G') are inSEM (r2). This

means that the grapfi’ can also be obtained froid@ by applying the rules; andr, sequentially and
in any order. Moreover, let; (i = 1, 2) be two (parallel) rules and let: L; — G be two morphisms
that satisfy the gluing condition described in steps (1) @)df a rule application. Thern, andr, are

independent w.r.iy; if the the following independence condition is satisfied:

g1(L1) Nga(L2) € g1 (K1) N go(K2).

In this case both rules can be appliedGon parallel via the application of; + o using the graph
morphism{gy,g2): L1 + Ls — G such that(¢gy, g2)(z) = g;(z) if = is an element of; (see, e.g., [2]
for more details).

As in the sequential case, an autonomous unit modifies arrlyimdeenvironment in the parallel
setting too while striving for its goal. Its semantics catsiof a set of transformation processes being
finite or infinite sequences of environment transformatioAs environment transformation comprises
the parallel application of local rules or environment desiperformed by other autonomous units that
are working in the same environment. Because the paralieless semantics is meant to describe the
simultaneous activities of autonomous units, the enviremnthanges must be possible while a single
autonomous unit applies its rules. To achieve this, we asshat there are some rules, called metarules,
the application of which defines environment changes. Gpresgtly, environment changes and ordinary
rules can be applied in parallel. Hence, a parallel transhtion process of an autonomous unit con-
sists of a sequence of parallel rule applications which éoelmcal rule applications with environment
changes specified by other components so that the contrditimomis satisfied.

Definition 6.2. (Parallel semantics)
Let aut = (g, P,c) be an autonomous unit and léthange C G x G. Let MR C R, be a set
of parallel rules, called metarules, such t#M (MR) = |J SEM(r) = Change. Let s =

re MR
(Go,G1,Ga, -+) € SEQ(G). Thens € PAR change (aut) if

e fori=1,--- |s| — 1if sisfinite and fori € N* if s is infinite, (G;_1,G;) € SEM (r + ') for
somer € P, andr’ € MR, and

o 5 € SEM change(c).

Remarks.
1. Successful parallel transformation processes are dediman the sequential case.

2. The elements 0PAR cpange (aut) are sequences of applications of parallel rules which may be
called the parallel processes aft. Every single step of these processes applies a parakebful
the formr + r’ wherer is a parallel rule of the unitut andr’ is a metarule. Therefore, while the
autonomous unit acts on the environment graph, the envieaohmay change in addition. But as
r andr’ may be the null rule and + null = r as well ashull + ' = r/, a step can also be an
exclusive activity ofaut or a change of the environment only.

18 K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units

The following definition generalizes the change relatioraofautonomous unit in a community to
the parallel case. In particular, it takes into account afbfiel rule applications that can be performed
by the other units in the community.

Definition 6.3. (Change relation)
Let CAU = (Goal, Init, Aut) be a community. Then for eactut € Awut the change relation
Change(aut) W.r.t. aut is given by the parallel rules composed of rules of the autome units in

CAU other thanuut as metarules, i.eChange(aut) = SEM (U (Paut’)«)-
aut’ € Aut—{aut}

Every transformation process of a community starts withnétral environment and is contained in
the parallel semantics of every autonomous unit partizigah the community.

Definition 6.4. (Parallel community semantics)
For CAU = (Goal, Init, Aut), the parallel community semantiaf CAU, denoted byPAR(CAU),
consists of all finite or infinite sequences= (Gy, G1,...) € SEQ(G) such that

Go € SEM (Init) ands € PAR change(aut)(aut) for all aut € Aut.

Remarks.

1. Again successful parallel transformation processeswincunities are defined as in the sequential
case.

2. The properties given in the first two remarks after Defanité.3 hold also for parallel semantics
of communities.

7. Petri nets

The area of Petri nets (see, e.g., [13, 1]) is established@asfihe oldest, well-known, and best studied
frameworks in which parallelism is precisely introduced @vestigated. Hence it is meaningful to relate
Petri nets with the parallel semantics of communities obaoimous units and to shed some light on the
significance of the latter in this way. It turns out for instarthat place/transition nets, which are the
most frequently used variants of Petri nets, can be seenpecebcase of communities of autonomous
units where the transitions play the role of the autonomanits.u

A place/transition syster§ = (P, T, F, mq) consists of a seP of places, a sel’ of transitions, a
flow relation FF C (P x T) U (T x P), and an initial markingng : P — N, i.e. mg € P,. The sets
P andT are assumed to be disjoint so ttht= (P U T, F') is a bipartite graph (with the projections as
source and target maps respectively).

The firing of enabled transitions transforms markings tmatraultisets of places. This is formally
defined as follows.

A multisetm € P, is called a marking. A transitioh € T is enabled w.r.t.m if *¢ < m where
*t : P — N describes the input places ofhat flow intot, i.e. *t(p) = 1if (p,t) € F and®t(p) = 0
otherwise. Moreovefit < m is defined place-wise, i.€%(p) < m(p) for all p € P or, in other words,
m(p) # 0if (p,t) € F. If tis enabled w.r.tm, it can fire resulting in a marking which is obtained by
subtracting®t from m and by adding® given byt®*(p) = 1if (t,p) € F andt®*(p) = 0 otherwise. Such

K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units 19

a firing is denoted byn [t) m — *t +t°. If one interpretsn(p) as the number of tokens on the place
then the firing oft removes one token from each input place a@ind puts a new token on each of the
output places of.

Analogously, a multiset of transitionse T, can be fired in parallel by summing up all input places
and all output places:

m [T) m — *7 +7° provided that *7 < m.

Here®r and7* are defined bY7(p) = >, 7(t) * *t(p) and7®(p) = >, 7(t) * t*(p) for all
p € P, and®*T < m is again place-wise defined, i.tz(p) < m(p) forallp € P.

Now one may consider the underlying net, which is the bifmgraph, together with a marking
as an environment. This is represented by the marking bedfesnet is kept invariant. The tran-
sitions can be seen as rules and the firing of multisets ofittans as parallel rule application. As
environment class expressions, we need single markingsilieg themselves as initial markings and
the constantil accepting all environments. The only control conditiondeskis the constantree al-
lowing a unit the free choice of rules. Then these componfamta a graph transformation approach,
and a place/transition systesh= (P, T, F', mg) can be translated into a community of autonomous units
CAU(S) = (all, mg, {aut(t) | t € T}) with aut(t) = (all, {t}, free).

A parallel process oAU (S) is a sequence of markingsym; . .. such that for each two successive
markingsm,; andm,1, there is a multiset; . ; of transitions that is enabled by; and yieldsm, 4 if
fired. Therefore one gets a firing sequencg|r;) m1 [2) Conversely, given such a firing sequence,
one may remove the firing symbols including the multisetsrafgitions and obtain a parallel process
of CAU(S) as parallel rule application coincides with firing of mudtis of transitions. This proves that
the community of autonomous unit&A U (S) mimics the place/transition systeshcorrectly. Figure 7
depicts the relation. The adapter transforms a firing segpigrio a sequence of markings by removing
the firing symbol (including the fired multisets of transit&) between each two successive markings.

‘A
— 5 o[pracan}— AL
firing = @@

adapter Yy .

Figure 7. Correctness diagram for the translation of Petis mto communities

8. Cellular automata

Cellular automata (see, e.g., [16]) are well-known comijimnial devices that exhibit massive parallelism.
A cellular automaton consists of a network of cells each iaigular state. In a computational step, all
cells change their states in parallel depending on thesstditdeir neighbors. To simplify technicalities,
one may assume that the neighborhoods of all cells are reglaning that they have the same number

20 K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units

of neighbors and that the state transition of all cells issdasn the same finite-state automaton. This
leads to the following formal definition.
A cellular automaton is a systeid = (G, A, init) where

e G = (V,E,s,t,l)is aregular graph of typk subject to the condition: for eache V, there is a
sequence of edgesv); - - - e(v)r with s(e(v);) =vandl(e(v);) =i forall i =1,...,k,

e A= (Q,Q" d)is afinite-state automaton, i.€) is a finite set of stateQ” is the input set and
d C Q x Q* x Q is the state transition with k-tuples of states as inputd, an

e init: V — (@ is the initial configuration.

If the graphdG is infinite, one assumes a sleeping state in addition such thad(qo, qg) = {qo} and
active(init) = {v € V | init(v) # qo} is finite.

The latter means that only a finite number of nodes is not sigepitially and that the sleeping state
can only wake up if not all inputs are sleeping. The edge sempigv); - - - e(v);, yields the neighbors
of v as targets, i.e.(e(v)1) - - - t(e(v)).

A configuration is a mappingon: V. — (@ that assigns each node (which represent cells) an ac-
tual state. Configurations can be updated by state transitb all actual states using the states of the
neighbors as input.

Letcon: V — @ be a configuration. Thetwn’: V' — (Q is a directly derived configuration, denoted
by con —— con/, if the following holds for every € V:

con’(v) € d(con(v), con(t(e(v)y)) - con(t(e(v)r)))-

The semantics of a cellular automat6f is given by all configurations that can be derived from the
initial configuration:
L(CA) = {con | init - con}

It is worth noting and easy to prove that all configurationsvédle from the initial configuration have a
finite number of nodes with non-sleeping states. Typicahgtas of regular graphs underlying cellular
automata are the following: The set of nodes is the set ofoditp in the plane with integer coordinates,
i.e.Z x Z. Then there are various choices for the neighborhood of a fiadg € Z x Z. that establish
the set of edges with sources and targets. Typical ones are:

1. the four nearest nodes (to the north, east, south andwesiH-1), (z+1,y), (z,y—1), (z—1,y),

2. the eight nearest nodes:, y+ 1), ,z+1,y+1), (z+1,y), (x+ 1,y —1),(x,y—1),(z -1,y —
1)7(‘%. - 1,y),($ - 1,(L’+ 1)7

3. only the neighbors to the south and the wésty — 1), (x — 1,v).

The edges connecting a node with a neighbor may be numbetkd given order.

Cellular automata can be translated into communities afrearhous units where each cell is trans-
formed into an autonomous unit.

The environments are given by the configurations. To get phgrapresentation of a configuration
con, the underlying regular grapi is extended by a loop at each nadevhich is labeled withcon(v),

K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units 21

i.e. (G,con) = (V,E+V,3,%,1), such that is a subgraph ang(v) = (v) = v andi(v) = con(v) for
alveVCE+4+VW

The communityCA U (CA) associated with a cellular automatéd = (G, A, init) gets(G, init)
as initial environment and an autonomous unit(v) for eachv € V.

Each of these units has the same rules with positive contexthweflect the state transitions. They
are represented by the rule in Fig. 8 and can be applietl éf d(q, ¢, - ,¢x) and not all the states
4,41, ---,qr are sleeping.

Figure 8. Graph transformation rule with positive contexidaling the transitions of a cellular automaton

Moreover each unitut(v) has got a control condition requiring that the central nodstrhe mapped
to v. This means that the matching of the left-hand side of eadh isufixed and no search for it is
needed. Moreover, the matchings of rules of different uaits not overlapping so that the rules can
be applied in parallel. If a node is sleeping and all its nle@h are sleeping too, then no rule can be
applied. A parallel rule is maximal if all other nodes are ohad. According to this construction, the
application of such a maximal parallel rule to the environt{€&, con) yields an environmen(tG, con’)
such thatcon — con’. This means that the application of a maximal parallel raeesponds exactly
to a derivation step on the respective configurations.

To put it in another way, the semantics of a cellular automat and the parallel semantics
PAR(CAU(CA)) of the community of autonomous unisA U (CA) are nicely related to each other if
one applies maximal parallel rules only. LetPAR(CAU(CA))) be the set of configuration®n such
that a parallel procesg7, init) - - - (G,con) € PAR(CAU(CA)) exists. ThenL(PAR(CAU(CA)))
equalsL(C'A). This correctness result is depicted in Fig. 9.

CAU(CA
A . celaut-2-CAU ()=
generatoﬂ deriver

N | squeezet Y
L(CA) = —— par(cav(ca))
L(PAR(CAU(CA)))

Figure 9. Correctness diagram for the translation of callaltomata into communities

A finite-state automaton fitting the third neighborhoodSEER = ({b,w}, {b, w}?,d) where the
state transition is defined akb, z,y) = b for all z,y € {b,w},d(w,b,w) = d(w,w,b) = b, and
d(w,b,b) = d(w,w,w) = w. The statew is sleeping.

22 K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units

The initial configuration may map the nod& 0) to b and all others tav.

There is a very nice pictorial interpretation of this caluhutomaton. Each node, y) is represented
by the square spanned by the poititsy), (x,y + 1), (x + 1,y + 1), (x + 1,y). If a configurationcon
assigna to (x, y), the square gets the color black and white otherwise. Thalisitnfiguration consists
of a single black square. Because the automaton is detstiojnthere is exactly one derivation for
each length, where the shorter derivations are initiaicestof the longer ones. The first five steps are
depicted in Fig. 10.

-%L%L%h%h—%tﬁh

Figure 10. Visualization of a transformation process

After 15 steps the picture looks as shown in Fig. 11. All dedivconfigurations can be seen as
approximations of the Sierpinski triangle, a famous fracsee, e.g., [12]).

Figure 11. Visualized environment after 15 environmentgfes

9. Multiagent systems

Multiagent systems are modeling and programming devicdskwewn in artificial intelligence (see,
e.g., Wooldridge et al. [17]). A multiagent system provideset of agents and an initial environment
state. Starting at this state, the agents change envirdrstetas step by step where they act together in
parallel in each step. Each agent can perceive the curreimbement state at least partly. Based on this
perception and its own intention, the agent chooses amreittibe performed next. Therefore, a process
in a multiagent system/A.S is a sequence

€Sp €51 €S9 - -

of environment statess; for all ¢ wherees is initial. Each environment states;,; is given by the
state transitionr of MAS depending on the previous statg and the actioruct(ag); chosen by every
agentag of MAS. The choice of such an action is made according to the fumdlig, each agentg

is provided with. Thelo-function yields an action depending on the agent’s peiweperceive,q(es;)

of the current state and the agent’s intentianend,,. The global state transition and the functions
dogg, perceiveqy andintend,, Which are individually assigned to each agegabf M AS are assumed to
satisfy some consistency properties (cf. [17] for detaifdjogether, multiagent systems form a logical

K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units 23

and axiomatic approach to model distributed informatiarcpsses that interact on common environment
states. It should be noted that all functionsiéfi.S are allowed to be nondeterministic so that chosen
actions as well as the next state may not be uniquely detednin

Communities of autonomous units are nicely related to mgdint systems as may be not too surpris-
ing from the description above. Actually, a community ofadmous unitsCAU = (Goal, Init, Aut)
turns out to be a particular rule-based model of multiaggstiesns. The environment states are the envi-
ronment graphs. The agents are the autonomous units. Tia gmaphs are explicitly given. The rules
— or the parallel rules likewise — of a unit are the actionshefagent embodied by the unit. The control
condition plays the role of théo-function because it identifies the rules that are alloweldet@pplied
next. As the control condition can take into account theanirenvironment graph, the perception of the
agentis also reflected. The most important aspect of thegmondence between agents and autonomous
units is the transition function that is made operationahigans of parallel rule application. The par-
allel rule to be applied in each step is just the sum of allsuleosen by the various autonomous units
according to their control. If one considers the parallésiwof a unit as actions, the parallel processes
of the community and the processes of the correspondingagatit system coincide. If only the rules
are actions, the multiagent system is not parallel witheesp single agents. That all agents must act
in parallel in each step is a minor difference to communitycpsses because a multiagent system may
provide void actions without effect to the environment.

The relation between communities of autonomous units arltiagent systems is only sketched be-
cause a full formal treatment is beyond the scope of the p&ugieven on this informal level, it should be
clear that both concepts fit nicely together and may profinfemch other. Communities of autonomous
units represent explicit models of multiagent systems anabstract, implementation-independent level
with a precise, rule-based operational semantics. pEneeive-danechanism of multiagent systems to
choose next actions provides a wealthy supply of controtlitimms that can be employed in modeling
by means of autonomous units.

10. Conclusion

In this paper, we have introduced communities of autonommits as a means for modeling systems
in which different components interact in a rule-based;cahtrolled, and goal-driven manner within a
common environment. Communities of autonomous units heee provided with a formal operational
semantics based on interacting sequential and paralleépses. We have illustrated the notion of com-
munities with a case study modeling the board ganmoin which every player as well as the die can act
as an autonomous unit. Moreover, we have studied the nefdip of autonomous units to three other
modeling frameworks that provide notions of parallelisnetrPnets, cellular automata, and multiagent
systems. While the first two have been correctly transformerlautonomous units, autonomous units
have turned out to be models of multiagent systems in thattkizgonments are instantiated as graphs,
the actions of agents as rules, and the environment tramafimm as parallel rule application.

The underlying formal framework for communities of autorears units has been graph transforma-
tion which is highly adequate if the common environment camdpresented in a natural way as a graph
as for example in the case of board games and logistic afiplisa Nevertheless, it is worth noting
that the graphs and the graph transformation rules the anions units are working with are not further
specified in the underlying graph transformation approactinat in general, one can take as formal ba-

24

K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units

sis any rule-based mechanism that provides a set of configigaand a set of rules specifying a binary
relation on such configurations.

There are at least the following interesting points for fatwork.

e The basic idea of autonomous units is that each of them dedaeitself which rule is to be
applied next. They are independent of each other and the phtihe environment graphs where
their rules apply may be far away from each other. Hence, aesdigl behavior of the community
(like in many card and board games) will be rarely adequaté.al®o the parallel behavior does
not always reflect the actual situations to be modeled becapsrallel step has an explicit begin
and end whereas there may be activities of units that careotlated to each other with respect
to time. A proper concurrent semantics of autonomous urétg it this problem.

e Besides Petri nets, the theory of concurrency offers a wpgetsum of notions of processes like
communicating sequential processes, calculus of commatimicsystems, traces, and bigraphs. A
detailed comparison of them with autonomous units can leaat¢resting insights.

e Communities of autonomous units should be implementedderaio be able to elaborate and to
verify case-studies of realistic size. Currently thereaés done some work in this direction at
the University of Bremen which has as one aim to allow to plugther already existing graph
transformation tools as described in [4].

¢ Up to now, the goal of an autonomous unit is defined as a grads expression. Since for some
applications this may not be sufficient, other adequatesekasf goals should be studied.

Acknowledgement

We

are grateful to the anonymous referees for their valuadrements.

References

[1]

(2]

(3]

[4]

[5]

[6]

Bause, F., Kritzinger, P.Stochastic Petri Nets - An Introduction to the Theory (Sddedition), Vieweg &
Sohn, 2002.

Corradini, A., Ehrig, H., Heckel, R., Ldowe, M., Montanal., Rossi, F.: Algebraic Approaches to Graph
Transformation Part I: Basic Concepts and Double Pushopt@gxh, in: Rozenberg [14], 163-245.

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G., EdBundamentals of Algebraic Graph Transformatjon
Springer, 2006.

Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, GisEHandbook of Graph Grammars and Computing
by Graph Transformation, Vol. 2: Applications, Languaged dools World Scientific, 1999.

Ermel, C., Rudolf, M., Taentzer, G.: The AGG-Approachariguage and Environment, in: Ehrig et al. [4],
551-603.

Holscher, K., Klempien-Hinrichs, R., Knirsch, P., Kneski, H.-J., Kuske, S.: Autonomous Units: Basic
Concepts and Semantic Foundatibtmderstanding Autonomous Cooperation and Control in Liiggs The
Impact on Management, Information and Communication andeki Flow (M. Hilsmann, K. Windt,
Eds.), Springer, 2007.

[7]

(8]

9]

[10]

[11]

[12]
[13]

[14]

[15]
[16]
[17]

K. Holscher, H.-J. Kreowski, S. Kuske / Autonomous Units 25

Holscher, K., Kreowski, H.-J., Kuske, S.: Autonomousitd and their Semantics — the Sequential Case,
Proc. 3rd Intl. Conference on Graph Transformations (ICAJI08) (A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, G. Rozenberg, Eds.), 4178, Springer, 2006.

Kennedy, J., Eberhart, R. CSwarm IntelligenceMorgan Kaufmann, 2001.

Kreowski, H.-J., Kuske, S.: Graph Transformation Unitsh Interleaving SemanticsFormal Aspects of
Computing 11(6), 1999, 690-723.

Kreowski, H.-J., Kuske, S.: Autonomous Units and THe@mantics - The Parallel CasBecent Trends in
Algebraic Development Techniques, 18th Internationalk&lop, WADT 2006J. Fiadeiro, P. Schobbens,
Eds.), 4408, 2007.

Kuhn, A.: Prozessketten — Ein Modell fir die Logistiky: Erfolgsfaktor Logistikqualét (H. Wiesendabhl,
Ed.), Springer, 2002, 58-72.

Peitgen, H., Jurgens, H., Saupe, Bhaos and FractalsSpringer, 2004.

Reisig, W.: Elements of Distributed Algorithms: Modeling and Analysiigh Petri Nets Springer Verlag,
1998.

Rozenberg, G., EdHandbook of Graph Grammars and Computing by Graph Transdtion, Vol. 1: Foun-
dations World Scientific, 1997.

Scheer, A.Mom Geschftsprozeld zum Anwendungssyst&pringer, 2002.
Wolfram, S.:A New Kind of Scien¢eéNolfram Media, Inc., 2002.

Wooldridge, M., Jennings, N. R.: Intelligent Agentshéory and Practice,The Knowledge Engineering
Review10(2), 1995.

