
Autonomous Units to Model Games ∗

Hans-Jörg Kreowski, Sabine Kuske, Hauke Tönnies

University of Bremen, Department of Computer Science

P.O.Box 330440, D-28334 Bremen, Germany

{kreo, kuske, hatoe}@informatik.uni-bremen.de

Abstract: Communities of autonomous units are devices to model the interaction of
independent processes in a rule-based and graphical way. In this paper, the framework
is proposed to describe the interplay of players of a game following the intuition that a
player is an autonomous unit playing the game according to the rules of the game but
driven by its own possibilities and decisions independent of the other players.

1 Introduction

Communities of autonomous units are introduced and investigated as a formal graph-

centered and rule-based framework for the modeling and analysis of interacting processes

in logistics and computer science (cf. [HKHK+07], [KK07], [HKK06], [HKK09]). In

this paper, we propose tentatively to use communities of autonomous units as modeling

devices for games as they are studied in game theory and applied in economy and so-

cial sciences (cf. [vNM44], [Pet08], [FT91], [SLB09]). The idea is to provide a common

graph-transformational approach that allows one to describe and design games in an intu-

itive, flexible and precise way using the following features:

(1) A game takes place in some environment (e.g. a board or some kind of “playfield”)

that is often suitably represented by a graph. (2) The players are individual entities acting

independently of each other in an autonomous way. Usually, actions have local effects on

the environment so that they can be specified by rules and performed by rule applications

in a meaningful way. (3) Usually, a player can choose among several possible next actions

in a given situation (otherwise there would be not much game to play). The choice is

based on some kind of decision mechanism, strategy, or control condition. (4) Besides

the players, there may be other dynamic entities (like referees) that are independent of the

players acting according to their own rules and decisions. (5) Moreover, a game follows

some kind of overall discipline (like the order in which players can act) which may be seen

as a global control condition.

∗The authors would like to acknowledge that their research is partially supported by the Collaborative Re-

search Centre 637 (Autonomous Cooperating Logistic Processes: A Paradigm Shift and Its Limitations) funded

by the German Research Foundation (DFG).

Summarizing, a game may be considered as a community of autonomous units where the

players and other dynamic entities are modeled as units with rules and control conditions.

In Section 2, the basic concepts of autonomous units are recalled. In Section 3, the mod-

eling of games by communities of autonomous units is illustrated by the small example of

rock – paper – scissors while the more complex example of Ludo is sketched in Section 4.

The hope behind our proposal to use communities of autonomous units as a common

framework for the modeling of games is the following: (1) Graphs and graph transfor-

mation rules are intuitive and well-understood concepts to describe states, environments,

structures, etc. and their step-wise dynamic changes. (2) Control conditions are quite

generic means to provide autonomous units, like players, with decision mechanisms and

strategies. (3) Graph transformation rules may be applied sequentially or in parallel so

that players can act one after the other or simultaneously, whatever the game requires.

(4) Graph transformation tools like AGG, GrGen and others can be used to run the game

on a visual level and to observe the effects and results. (5) The formal semantics based

on rule application sequences provides the possibility to prove properties of games like

termination, chances to win, etc.

2 Communities of Autonomous Units

In this section, we recall the basic notions of communities of autonomous units as needed

in the following. Communities of autonomous units are rule-based graph-transformational

systems. Their units act and interact autonomously in a common environment, respre-

sented as a graph. Every autonomous unit consists of a set of auxiliary units, a set of

rules, a control condition, and a goal. The rules specify the potential actions and can be

applied to transform the common environment. The control condition allows the unit to

decide about its next action and, in this way, restrict the non-determinism of rule applica-

tion. The goal serves to specify graphs that should be reached. The auxiliary units are a

syntactic structuring means for deviding large rule sets and control conditions into smaller

manageable pieces.

The basic ingredients are provided by an underlying graph transformation approach con-

sisting of a class G of graphs, a class X of graph class expressions, a class R of rules, and

a class C of control conditions. Every graph class expression e specifies a class of graphs

SEM (e) ⊆ G. Every multiset of rules p ∈ R∗ specifies a binary relation =⇒
p

⊆ G × G.1

This means that many rules and each single rule at multiple matches can be applied in

parallel. Every control condition c ∈ C specifies a set SEM (c) of sequences of graphs

prescribing a certain order of rule applications in this way. The notions of control con-

ditions and graph class expressions are very generic and include logic and grammatical

descriptions of graph classes and rule applications sequences.

Definition 1 (Units). A unit is a system u = (U,P,C, g) where U is a set of (imported)

units, P ⊆ R is a set of rules, C ∈ C is a control condition and g ∈ X is the goal. The

rule set of u will be also denoted by Pu. The unit u is autonomous if it is not imported by

1For a set A, A∗ denotes the set of multisets over A.

another unit. All other units are called auxiliary. Moreover, we assume that an auxiliary

unit does not have goals of its own meaning that all graphs are acceptable, i.e. SEM (g) =
G.

To avoid technical complications, we assume that the import structure of an autonomous

unit can be flattened so that the import component becomes empty. With respect to the

rules, this is easily done by collecting all rules involved in the import structure of an

autonomous unit. With respect to control conditions, it is more complicated, but is not

considered explicitly. In other words, the structuring is purely syntactical to assure small

components. In this way, the semantics of communities of autonomous units can be de-

fined for units without import.

In general, the rules of an autonomous unit aut are applied in parallel with rules of other

co-existing autonomous units. To reflect this without explicit reference to the other units,

the parallel semantics of aut is defined w.r.t. a set of metarules that specify actions not

performed by aut . In this way, aut specifies all sequences of graphs that on one hand can

be obtained via the parallel applications of the rules in the rule set of aut and the metarules,

and that on the other hand are allowed by the control condition. If such a sequence meets

the goal, it is called successful.

Definition 2 (Parallel semantics). Let aut = (∅, P, C, g) be an autonomous unit, let

MR ⊆ R∗. Then the parallel unit semantics of aut , denoted by PARMR(aut) con-

sists of all sequences s = (G0, G1, G2, · · ·) such that for i = 1, · · · , |s| − 1 if s is finite

and for i ∈ N
+ if s is infinite, Gi−1 =⇒

p+m
Gi for some p ∈ P∗ and m ∈ MR,2 3 and

s ∈ SEM (C). The sequence s is called successful if s is finite and G|s|−1 ∈ SEM (g), or

if there is an infinite monotone sequence i0 < i1 < · · · such that Gij
∈ SEM (g) for all

j ∈ N.

A community consists of a set of autonomous units, a specification of initial graphs, a

global control condition, and an overall goal.

Definition 3 (Community). A community is a system COM = (Init ,Aut ,Cond ,Goal)
where Init ∈ X is the initial environment specification, Aut is a set of autonomous units,

Cond ∈ C is the global control condition and Goal ∈ X is the global goal.

The parallel semantics of a community is composed of all graph sequences s so that s is

in the parallel semantics of every autonomous unit in the community, s is allowed by the

global control condition and s starts with an initial environment. The sequence s is called

successful if it reaches the overall goal.

Definition 4 (Parallel community semantics). Let COM = (Init ,Aut ,Cond ,Goal) be a

community. The parallel community semantics of COM , denoted by PAR(COM), con-

sists of all sequences s = (G0, G1, . . .) such that G0 ∈ SEM (Init), s ∈ SEM (Cond),

2|s| denotes the number of graphs in s.
3For two multisets a and b, the multiset a + b is obtained by summing up the multiplicity of all elements in

a and b.

and s ∈ PARMR(aut)(aut) for all aut ∈ Aut where

MR(aut) = (
⋃

aut′∈Aut\{aut}

Paut′)∗.

Successful graph sequences are defined as in Definition 2.

It may be noted that the semantics of the community and the semantics of one of its units

aut coincide if the latter is restricted to initial graphs and constructed with MR(aut)
as metarules. Moreover, the semantics of aut must be intersected with the sequences

allowed by the global control condition and by the control conditions of the other units in

the community.

For modeling sequential transformation processes, communities of autonomous units are

equipped with a sequential semantics which is a special case of the parallel semantics. In

this case the metarules are rules instead of multisets of rules, and the sequential semantics

of an autonomous unit aut consists of all graph sequences where in every step either

a rule or a metarule is applied. As in the parallel case, these sequences must obey the

control condition of aut . Moreover, the sequential community semantics is given by all

sequences s such that the first graph in s is an initial environment, s is allowed by the

control condition of the community and all its autonomous units, and in every step exactly

one autonomous unit of the community is active by applying exactly one of the rules in its

complete rule set.

Examples of the introduced concepts can be seen in the following.

3 Modeling rock – paper – scissors with Autonomous Units

The aim of this section is to model the well-known game rock – paper – scissors with

autonomous units. To diversify the example, an arbitrary number of players is allowed.

Every participant of the game gets a number and is associated with the autonomous unit

depicted in Fig. 1. Its actions, modeled by graph transformation rules, are the following.

To play against somebody, the player has to challenge another player in the environment,

who, in turn, can accept the challenge (or not). Technically, the agreement is realized by

inserting two edges between the two player in reverse direction. The rule play finally mod-

els the action to take either the rock, the paper or the scissors by drawing an edge between

the player node and the node representing the chosen token. The control condition assures

that an arbitrary number of challenges is offered in parallel (indicated by the exponent

||) before an arbitrary number of challenges is accepted and, finally, a single play rule is

applied.

The autonomous unit referee, depicted in Fig. 2, is responsible for determining the win-

ners. For every combination out of the nine possible ones, a rule exists establishing either

a winner, in case the two player chose different tokens, or a draw, if both players chose the

same token. Two rule patterns covering all the possibilities by using variables are shown

in Fig. 2. For every playing pair a corresponding rule is applied and the winner (if there is

playeri
rules:

challenge:

player i player j

−→

player i player j

challenge for i 6= j

accept:

player i player j

challenge −→

player i player j

for i 6= j

play:

player i piece

−→

player i piece

piece ∈ {rock, paper, scissors}

cond: challenge||; accept||; play

Figure 1: The autonomous unit playeri

referee

rules:

r1:

piece 1 piece 2 piece 3

player k player t

−→
point

piece 1 piece 2 piece 3

player k player t

piece 1, piece 2,
piece 3 ∈ {rock, paper, scissors}

it is presumed here that piece 2 beats

piece 1 according to the usual beating

rules.

r2:

piece 1 piece 2 piece 3

player k player t

−→

piece 1 piece 2 piece 3

player k player t

piece 1, piece 2,
piece 3 ∈ {rock, paper, scissors}

cond: max

Figure 2: The autonomous unit referee

rock paperscissors

player 1 player 2
. . .

player n

Figure 3: The initial graph

one) gets one point (modeled as a loop labeled with point). Due to the control condition

max, a maximum number of rules are applied in parallel. Then the autonomous unit clean,

which is not shown here for reasons of space limitations, deletes all unnecessary edges so

that the resulting graph resembles the initial graph in Fig. 3 (plus the point loops at the

player nodes). Now a new round can be played.

In total, the game can be modeled as the community RPS = (Init, Aut, Cond,Goal)
with the following components.

1. Init consists of the graph having three nodes with loops labeled with rock, paper and

scissors respectively and an arbitrary, but fixed number n of player nodes (see Fig.

3).

2. Aut consists of the autonomous units player1, . . . , playern, referee, clean.

3. Cond consists of the control condition (player1|| . . . ||playern; referee; clean)∗

meaning that first all the player units act in parallel, then the referee unit estab-

lishes the winners and afterwards the cleaning unit cleans up the environment. This

procedure in this specific order can be repeated an arbitrary number of times (and is

considered successful, if the goal is achieved).

4. The Goal is a natural number k that specifies all graphs that contain the initial graph

and additionally an arbitrary number of point loops so that at least one player has k

or more of them.

4 Modeling Ludo with Autonomous Units

The game Ludo is a more complex example, where the semantics is sequential. Due to

the complexity, a presentation of an autonomous community modeling Ludo needs a lot

more space than provided here, so just a few highlights are sketched. A more complete

modeling can be found in [HKK09].

Like before, every player of Ludo is modeled by one autonomous unit whose rules reflect

the possible actions of the player. Each autonomous unit is equipped with the goal to

have all of its tokens in its home base. One further autonomous unit models the die. The

g g g grrrr

b

b

b

b

y

y

y

y
gy

r b

g g

g

g

y y

y

y

r r

r

r

b b

b

b

Figure 4: The initial board

goko:

L M

c z

x

→ → . . . → −→
c, z ∈ {r, b, g, y}
x ∈ {1, . . . , 5}1 x

ready

L+{c} (M+{z})-{c}

z c

x

→ → . . . →

1 x

turn

kicked-
out

Figure 5: The rule move and kick out

environment consists of the graph representing the actual state of the game board. The

initial graph is shown in Fig. 4 leaving out the details.

As a representative example, one rule of the unit player is shown in Fig. 5. It models the

moving of one token and kicking out of a token from a different player. The rectangle node

with the x represents the die and the x the thrown number. The round nodes represent the

fields and the triangle node the token of a player. Note that the two triangle nodes are

labeled differently, so they belong to different players. Since it is not allowed to have two

tokens of the same color at one field or to enter the home base of a different player, every

field token is labeled with a set of labels specifying the tokens allowed to reside. It should

be noted here, that this rule is applied only if one has not thrown a six, since a six implies

to play again and thus requires a different rule.

The control conditions of the player units are a good way to establish different game strate-

gies, like keeping every token as far as possible from the opponent tokens or kicking out

enemies whenever possible although putting oneself in danger. We have designed a variety

of strategies mostly by means of priorities among the rules. Having no control conditions,

one of the tokens that are available for moving are non-deterministically chosen, which

means that the winner is completely determined by luck.

5 Conclusion

In this paper, we have proposed to apply the framework of communities of autonomous

units for the modeling of games. The original intention of autonomous units has been

the modeling of interacting processes in logistics and computer science. We believe that

players in a game play roles quite similar to interacting processes so that it is meaningful

to make the attempt and to model games as communities. To shed more light on the

significance of this proposal, further research is needed: (1) More examples of games

must be designed as communities of autonomous units to illustrate that the approach is

intuitive and adequate. (2) In particular, more and much more sophisticated examples are

needed to show that the control conditions of each unit allows to model the tactics and

strategies of players in an appropiate way. (3) Moreover, it would be interesting to prove

properties of games based on the description as communities and their semantics. We

hope that communities of autonomous units will turn out to provide a suitable common

framework for the modeling and analysis of games with the perspective of tool support for

the visualization, animation, simulation and verification of games.

References

[FT91] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.

[HKHK+07] K. Hölscher, R. Klempien-Hinrichs, P. Knirsch, H.-J. Kreowski, and S. Kuske. Au-
tonomous Units: Basic Concepts and Semantic Foundation. In M. Hülsmann and
K. Windt, editors, Understanding Autonomous Cooperation and Control in Logistics
– The Impact on Management, Information and Communication and Material Flow,
pages 103–120, Berlin Heidelberg New York, USA, 2007. Springer.

[HKK06] Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous Units and
Their Semantics — the Sequential Case. In Andrea Corradini, Hartmut Ehrig, Ugo
Montanari, Leila Ribeiro, and Grzegorz Rosenberg, editors, Proc. International Con-
ference of Graph Transformation, volume 4178 of Lecture Notes in Computer Science,
pages 245–259, 2006.

[HKK09] Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous Units to
Model Interacting Sequential and Parallel Processes. Fundamenta Informaticae,
93(3):233–257, 2009.

[KK07] Hans-Jörg Kreowski and Sabine Kuske. Autonomous Units and Their Semantics - The
Parallel Case. In J.L. Fiadeiro and P.Y. Schobbens, editors, Recent Trends in Algebraic
Development Techniques, 18th International Workshop, WADT 2006, volume 4408 of
Lecture Notes in Computer Science, pages 56–73, 2007.

[Pet08] Hans Peters. Game Theory - A multi-level approach. Springer Verlag, 2008.

[SLB09] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, 2009.

[vNM44] John von Neumann and Oscar Morgenstern. Theory of games and economic be-
haviour. Princeton University Press, 1944.

