
Graph Multiset Transformation as a
Framework for Massively Parallel Computation�

Hans-Jörg Kreowski and Sabine Kuske

University of Bremen, Department of Computer Science
P.O.Box 33 04 40, 28334 Bremen, Germany
{kreo,kuske}@informatik.uni-bremen.de

Abstract. In this paper, graph multiset transformation is introduced
and studied as a novel type of parallel graph transformation. The basic
idea is that graph transformation rules may be applied to all or at least
some members of a multiset of graphs simultaneously providing a com-
putational step with the possibility of massive parallelism in this way.
As a consequence, graph problems in the class NP can be solved by a
single computation of polynomial length for each input graph.

1 Introduction

In this paper, a new type of graph transformation, called graph multiset transfor-
mation, is introduced that is inspired by the concepts of genetic algorithms and
DNA computing (see, e.g., [1,2,3,4,5]). Adleman’s seminal experiment demon-
strates how combinatorial problems may be solved using DNA. Roughly speak-
ing, a tube is filled with certain quantities of properly chosen DNA strands.
Then their reactions according to the Watson-Crick complementarity produces
DNA molecules, a suitable selection of which represents solutions. Similarly, a
genetic algorithm transforms a “population of individuals” step by step into one
of “fitter” individuals by means of “mutation,” “cross-over,” and “selection.”
If, for example, the individuals are solutions of an optimization problem that
differ from the optimum, then the genetic algorithm may yield solutions that
are closer to the optimum or even meet it. If one replaces tubes of molecules and
populations of individuals by multisets of graphs and chemical reactions and
genetic operations by rule applications, one gets the concept of graph multiset
transformation.

The basic idea is that graph transformation rules may be applied to all or at
least some members of a multiset of graphs simultaneously providing a compu-
tational step with the possibility of massive parallelism in this way. As a conse-
quence, graph problems in the class NP can be solved by a single computation
of polynomial length for each input graph.
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The paper is organized in the following way. The next section provides the pre-
limininaries concerning graphs and rule-based graph transformation. In
Section 3, simple graph transformation units are recalled as devices to model
and compute graph algorithms and processes. Section 4 introduces a way to
solve decision problems on graphs by means of terminating units. In particular,
a graph-transformational variant of the class NP is defined. Based on simple
and terminating units, graph multiset transformation is proposed as a computa-
tional framework with massive parallelism in Section 5 and 6. As a consequence,
NP-problems can be solved in a polynomial number of computational steps.
The Appendix recalls multisets together with some basic definitions used in this
paper. Throughout the paper, the well-known NP-complete Hamiltonian path
problem is discussed as a running example. The proofs are omitted because of
the limited space. It may be noted that the basic ideas of graph multiset trans-
formations have been sketched in [6] in a draft way.

2 Graphs and Rule-Based Graph Transformation

In this section, we recall the basic notions and notations of graphs and rule-based
graph transformation as far as they are needed in this paper. We use directed
and edge-labeled graphs with binary edges.

Let Σ be a set of labels. A graph over Σ is a system G = (V, E, s, t, l) where
V is a finite set of nodes, E is a finite set of edges, s, t : E → V are mappings
assigning a source s(e) and a target t(e) to every edge in E, and l : E → Σ is
a mapping assigning a label to every edge in E. An edge e with s(e) = t(e) is
called a loop. The components V , E, s, t, and l of G are also denoted by VG,
EG, sG, tG, and lG, respectively. The set of all graphs over Σ is denoted by GΣ .
We reserve a specific label ∗ which is omitted in drawings of graphs. In this way,
graphs where all edges are labeled with ∗ may be seen as unlabeled graphs. The
sum of the number of nodes and the number of edges is the size of G, denoted
by size(G).

For graphs G, H ∈ GΣ , a graph morphism g : G → H is a pair of map-
pings gV : VG → VH and gE : EG → EH that are structure-preserving, i.e.,
gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for all
e ∈ EG. If the mappings gV and gE are bijective, then g is an isomorphism,
and G and H are called isomorphic. If the mappings gV and gE are inclusions,
then G is called a subgraph of H, denoted by G ⊆ H. For a graph morphism
g : G → H , the image g(G) ⊆ H of G in H is called a match of G in H .

Example 1. The graph G0 in Figure 1 has four Hamiltonian paths which are
represented by the graphs H1, H2, H3, and H4.1 A box � represents a node with
an unlabeled loop. Therefore, G0 has four nodes, four loops and five additional
unlabeled edges. The other graphs are variants of G0. We use to represent
a begin-node which is a node with a loop labeled with begin. Analogously,
represents an end -node. If one starts in the begin-node and follows the p-labeled
1 A path is called Hamiltonian if it visits every node exactly once.



Graph Multiset Transformation as a Framework 353

edges, one reaches the end -node in the graphs H1, H2, H3, and H4. In each case,
the sequence of p-edges defines a Hamiltonian path of G0, where the intermediate
nodes have no loops.

G0 = H1 =

p

p

p

H2 = p

p

p H3 =

p

p

p

H4 = p

p

p

Fig. 1. G0 with all its Hamiltonian paths

If one removes the right vertical edge and the loops at the source and the
target of this edge in the graph G12 in Figure 2, then one gets the subgraph Z0.
One may extend the graph Z0 by a p-edge and an end-loop to get G123.

G12 =

p

⊇ Z0 =

p

⊆ G123 = p

p

Fig. 2. Two graphs with a common subgraph

There are two graph morphisms from the graph Lrun = into G12 which
map to the subgraphs of the same form.

A rule r = (L ⊇ K ⊆ R) consists of three graphs L, K, R ∈ GΣ such that
K is a subgraph of L and R. The components L, K, and R of r are called
left-hand side, gluing graph, and right-hand side, respectively. The application of
r = (L ⊇ K ⊆ R) to a graph G = (V, E, s, t, l) consists of the following three
steps.

1. A match g(L) of L in G is chosen subject to the following conditions.
– contact condition: v ∈ gV (VL) with sG(e) = v or tG(e) = v for some

e ∈ EG − gE(EL) implies v ∈ gV (VK).
– identification condition: gV (v) = gV (v′) for v, v′ ∈ VL implies v = v′ or

v, v′ ∈ VK as well as gE(e) = gE(e′) for e, e′ ∈ EL implies e = e′ or
e, e′ ∈ EK .

2. Now the nodes of gV (VL − VK) and the edges of gE(EL − EK) are removed
yielding the intermediate graph Z ⊆ G.

3. Let d : K → Z be the restriction of g to K and Z, then the pushout of
d and the inclusion of K into R yields the resulting graph H and graph
morphisms h : R → H and i : Z → H. Without loss of generality, one can
assume that i is the inclusion of Z into H and that h is the identity on
R − K. This provides an explicit construction of H because Z ∪ h(R) = H
and Z ∩ h(R) = d(K) = h(K).

The application of a rule r to a graph G is denoted by G⇒
r

H , where H is
the graph resulting from the application of r to G. A rule application is called a
direct derivation. The subscript r may be omitted if it is clear from the context.
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The contact condition guarantees that the removal of L − K from G yields
a graph and that the restriction d of g to K and Z is a graph morphism. The
identification condition makes sure that G together with g and the inclusion of
Z into G is a pushout of d and the inclusion of K into L. Altogether, a direct
derivation is given by a double pushout (cf. Figure 3).

G

L

⊇

⊇

Z

K

⊆

⊆

H

R

g d h
� � �

Fig. 3. Diagram of a double pushout

The sequential composition of direct derivations d = G0 =⇒
r1

G1 =⇒
r2

· · · =⇒
rn

Gn

(n ∈ N) is called a derivation from G0 to Gn. As usual, the derivation from G0

to Gn can also be denoted by G0
n=⇒
P

Gn where {r1, . . . , rn} ⊆ P , or just by

G0
∗=⇒
P

Gn. The subscript P may be omitted if it is clear from the context. The

string r1 · · · rn is the application sequence of the derivation d.

Example 2. Consider the following two rules

start = ⊇ ⊆

run = ⊇ ⊆ p

The rule start describes the removal of an unlabeled loop and the addition of
a begin-loop and an end -loop at the same node, which is depicted by . The
rule run replaces an unlabeled edge by a p-edge removing the two loops of the
left-hand side and adding an end -loop at the target node of the right-hand side.

Figure 4 shows all derivations that start in the graph G0 and apply the rule
start only once in the beginning (while the rule run is applied repeatedly after-
wards). At first, the rule start can be applied to G0 in four ways deriving the
four graphs in the second column from the left of Figure 4. The graphs in the
right-most column of Figure 4 are H1, H2, H3, and H4 representing the Hamil-
tonian paths of G0. They are characterized by the property that they do not
contain any unlabeled loop.

It is not dificult to prove that the Hamiltonian paths of every unlabeled graph
(with a single loop at each node) can be generated in the same way: Apply the
rule start once and then the rule run repeatedly. A derived graph is Hamiltonian
if and only if it has no unlabeled loop left.

Given a finite set of rules and a graph G, the number of matches is bounded
by a polynomial in the size of G because the sizes of left-hand sides of rules are
bounded by a constant. Given a match, the check, whether the contact and the
identification condition hold, and the construction of the directly derived graph
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Fig. 4. The derivations starting in G0 with one application of start

is linear in the size of G. Therefore, it needs polynomial time to find a match and
to construct a direct derivation, and there is a polynomial number of choices at
most. Moreover, the size of the resulting graph differs from the size of the host
graph by a constant.

3 Simple Graph Transformation Units

A rule yields a binary relation on graphs and a set of rules a set of derivations.
The example of Hamiltonian paths shows (like many other examples would show)
that more features are needed to model algorithms and processes on graphs in a
proper way. In particular one needs initial graphs to start the derivation process,
terminal graphs to stop it, and some control conditions to regulate it. Initial and
terminal graphs may be specified by graph class expressions. The notion of simple
graph transformation units encompasses all these features to model and compute
relations between initial and terminal graphs by means of regulated derivations.

3.1 Graph Class Expressions

A graph class expression may be any syntactic entity X that specifies a class of
graphs SEM (X) ⊆ GΣ . A typical example is a subset Δ ⊆ Σ with SEM (Δ) =
GΔ ⊆ GΣ . Forbidden and reduced structures are also frequently used. Let F be
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a graph, then SEM (forbidden(F )) contains all graphs G such that there is no
graph morphism f : F → G. Another useful type of graph class expressions is
given by sets of rules P where SEM (reduced(P )) contains all P -reduced graphs,
i.e., graphs to which none of the rules in P can be applied. In the examples,
we use the constant expression unlabeled graphs denoting the set of unlabeled
graphs each node of which is equipped with a single unlabeled loop.

3.2 Control Conditions

A control condition is any syntactic entity that cuts down the non-determinism of
the derivation process. A typical example is a regular expression over a set of rules
(or any other string-language-defining device). Let C be a regular expression
specifying the language L(C). Then a derivation with application sequence s is
permitted by C if s ∈ L(C).

3.3 Simple Graph Transformation Units

A simple graph transformation unit is a system tu = (I, P, C, T ), where I and
T are graph class expressions to specify the initial and the terminal graphs
respectively, P is a set of rules, and C is a control condition.

Each such transformation unit tu specifies a binary relation SEM (tu) ⊆
SEM (I) × SEM (T ) that contains a pair (G, H) of graphs if and only if there is
a derivation G

∗=⇒
P

H permitted by C.

Example 3. The considerations in Examples 1 and 2 can be summarized by the
following simple graph transformation unit:

HP
initial: unlabeled graphs
rules: start, run
control: start ; run*
terminal: forbidden(�)

The initial graphs are unlabeled graphs with a single unlabeled loop at each
node. The rules start and run are given in Example 2, and the control condition
is a regular expression over the set of rules with the sequential composition ; and
the Kleene star * (specifying that a single application of start can be followed by
an arbitrary sequence of applications of run). Graphs derived in this way from
initial graphs are accepted as terminal if they do not contain any unlabeled loop.

3.4 Computation and Complexity

Using the effective construction of direct derivations, the relation SEM (tu) of
a transformation unit tu = (I ,P ,C ,T ) is recursively enumerable if SEM (I ) is
recursively enumerable and SEM (T ) and the control condition are decidable.
SEM (tu) can be computed as follows:
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– Enumerate the graphs of SEM (I ).
– For each G ∈ SEM (I ), enumerate all derivations starting in G together with

their application sequences.
– For each derived graph G, check whether G ∈ SEM (T ).
– If yes, check whether the respective application sequence belongs to L(C ).
– If yes, put (G, G) into SEM (tu).

The assumptions apply to all graph class expressions and control conditions that
are explicitly introduced above.

The time to check whether a graph G belongs to SEM (unlabeled graphs),
SEM (forbidden(F )) or SEM (reduced(P )) is polynomial in the size of G. If
G

k⇒ H and k is bounded by a polynomial in the size of G, then the size of H
is also bounded by a polynomial in the size of G. Therefore, to check whether
H belongs to SEM (forbidden(F )) or SEM (reduced(P )) takes also time that is
polynomial in the size of G. Finally, the construction of the application sequence
can be done together with the derivation without extra effort and its length
coincides with the length of the derivation. The membership problem of regular
expressions is linear in this length so that it is polynomial in the size of G.

The notion of a transformation unit has been introduced in [7,8,9] as a mod-
eling and structuring concept for graph transformation systems. Here the struc-
turing component is omitted and the computational aspect is emphasized. In
addition to the cited papers, one can find more about graph class expressions
and control conditions in [10,11]. Habel and Plump [12] have recently shown that
a similar kind of graph transformation approach is computationally complete.

4 Solving Decision Problems

A simple graph transformation unit is terminating if, for every initial graph,
the number of derivations starting in this graph is finite. In this case, all these
derivations can be constructed effectively, and it can be checked whether any of
them is permitted by the control condition and derives a terminal graph. This
means that a terminating unit can be re-interpreted as a solution of a decision
problem on the initial graphs. If the lengths of derivations are bounded by a
polynom in addition, one gets a graph-transformational variant of the class NP
of decision problems with nondeterministic polynomial solutions.

Definition 1. Let tu = (I ,P ,C ,T ) be a transformation unit. tu is terminating
if, for each initial graph G ∈ SEM (I ), there is an upper bound b(G) ∈ N such
that n ≤ b(G) for each derivation G

n⇒
P

G′. The function b : SEM (I ) → N given

in this way is called termination bound.

A well-known sufficient condition for termination can be used in the framework
of graph transformation units.

Observation 2. Let tu = (I ,P ,C ,T ) be a transformation unit. Let val : GΣ →
N be a valuation function with val(G′) > val(G′′) for each direct derivation
G′ ⇒

P
G′′. Then tu is terminating.
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Definition 3. Let tu = (I ,P ,C ,T ) be a terminating transformation unit with
the termination bound b : SEM (I ) → N.

1. A function D : SEM (I ) → {true, false} is called a decision problem.
2. tu solves D if the following holds for all G ∈ SEM (I ):

D(G) = true if and only if (G, G) ∈ SEM (tu) for some G ∈ SEM (T ).

This is denoted by COMP(tu) = D.
3. tu is called polynomial if there is a polynom p such that, for all G ∈ SEM (I ),

b(G) ≤ p(size(G)).
4. The class of all decision problems that are solved by polynomial transforma-

tion units is denoted by NPGT .

Remarks. 1. If tu is terminating, there is only a finite number of derivations
G

∗⇒
P

G′ for each G ∈ SEM (I ). Hence, it can be checked effectively whether

a terminal graph is derived by a permitted derivation or not.
2. The computational framework given by terminating and polynomial trans-

formation units in particular is still nondeterministic because there may be a
derivation G

∗⇒
P

G′ with G′ ∈ SEM (reduced(P )), but G′ /∈ SEM (T ), and also

a permitted derivation G
∗⇒
P

G with G ∈ SEM (T ). In the polynomial case, it

takes polynomial time to build up a single derivation and to check whether
its derived graph is terminal or not (cf. 3.4). Both points together justify
the denotation NPGT . The same reasoning shows that a decision problem
D : SEM (I ) → {true, false} which is solved by a polynomial transforma-
tion unit belongs to the class of NP-problems if one chooses a proper string
representation of graphs. Also the converse inclusion holds because one can
simulate the computational steps of a Turing machine by the application of
graph transformation rules. This consideration yields the following result.

Observation 4. NPGT = NP .

Example 4. The rules start and run (cf. Example 2) decrease the number of
unlabeled loops by 1 whenever one of them is applied. Therefore, the unit HP
(cf. Example 3) is terminating due to Observation 2. Because HP finds all exist-
ing Hamiltonian paths of every initial graph as terminal graphs, HP solves the
Hamiltonian path problem. Moreover the termination bound is linear so that
the problem is explicitly shown to be a member of NPGT .

Termination has been studied in the context of graph transformation for example
by Plump [13], Godard, Métivier, Mosbah, and Sellami [14], and by Ehrig, Ehrig,
de Lara, Taentzer, Varró, and Varró-Gyapay [15].

5 Graph Multiset Transformation

In this section, graph multiset transformation is introduced employing ordinary
graph transformation as basis. The underlying data structures are finite multisets
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of graphs. In each derivation step, some of the graphs of a given actual multiset
are directly derived into graphs by applying ordinary rules, yielding a new actual
multiset where the deriving graphs are replaced by the derived ones. This idea is
formalized in Definition 5. A derivation of multisets of graphs corresponds to a
set of simultaneous derivations of graphs (cf. Observation 6). In this sense, graph
multiset transformation is a framework for massively parallel computation. In
particular, one can show that NP -problems can be solved by graph multiset
transformation in a polynomial number of steps.2

Definition 5. Let P be a set of rules. Let M : GΣ → N be a finite multiset of
graphs and M ′ ≤ M a sub-multiset of M . Let G1 · · · Gn ∈ Perm(M ′) be one of
the sequential representations of M ′ and G′

1 · · · G′
n ∈ G∗

Σ be another sequence of
graphs with Gi ⇒

P
G′

i for all i = 1, . . . , n. Let M ′′ = [G′
1 · · · G′

n] be the multiset

of G′
1 · · ·G′

n.
Then M directly derives the graph multiset M = M − M ′ + M ′′, denoted by

M ⇒
P

M .

A sequence M0 ⇒
P

M1 ⇒
P

· · · ⇒
P

Mn of direct derivations of multisets of graphs

defines a (graph multiset) derivation from M = M0 to M = Mn of length n in
the usual way. Such derivations are shortly denoted by M

n⇒
P

M or M
∗⇒
P

M . The

subscript P may be omitted if it is clear from the context.

Remark. It should be noted that the derived multiset does not depend on the
choice of the sequential representation of M ′ because each permutation of the
sequence G1 · · · Gn corresponds to the respective permutation of G′

1 · · · G′
n and

the multisets of sequences are invariant with respect to permutation.

It is easy to see that graph multiset derivations correspond to derivations of the
graphs in the multisets and that the lengths of graph multiset derivations are
bounded if and only if the lengths of graph derivations are bounded.

Observation 6. 1. Let M
k⇒
P

M be a graph multiset derivation of length k and

G1 · · · Gn ∈ Perm(M) a sequential representation of M . Then there is a
sequential representation G1 · · · Gn ∈ Perm(M) such that Gi

ki⇒
P

Gi for all

i = 1, . . . , n with ki ≤ k.
2. Let G1 · · · Gn, G1 · · · Gn ∈ G∗

Σ be sequences of graphs with Gi
ki⇒
P

Gi for all i =

1, . . . , n. Then there is a graph multiset derivation [G1 · · · Gn] k⇒
P

[G1 · · ·Gn]

with k = max{ki | i = 1, . . . , n}.

Observation 6 means, in particular, that graph multiset transformation is a kind
of parallel graph transformation that has the same termination properties as
ordinary graph transformation discussed above. Therefore, graph multiset trans-
formation can be used as a computational framework similarly to graph trans-
formation. In particular, a terminating transformation unit can solve a decision
2 The definitions concerning multisets are given in the Appendix.
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problem on its initial graphs by means of graph multiset transformation. The
computation starts with multiple copies of an initial graph and yields true if
some terminal graph occurs in one of the derived multisets. Using polynomial
transformation units, the lengths of graph multiset derivations are polynomially
bounded and true is computed in a single derivation with high probability if
the multiplicity of the initial graph is chosen large enough.

Definition 7. Let tu = (I ,P ,C ,T ) be a terminating transformation unit. Let
D : SEM (I ) → {true, false} be a decision problem. Then tu computes D by
graph multiset transformation (GMST) if the following holds.

For each G ∈ SEM (I ), there is a graph multiset derivation n · [G] ∗⇒
P

M for

some n ∈ N so that some underlying derivation G
∗⇒
P

G is permitted by C with

G ∈ car(M) ∩ SEM (T ) if and only if D(G) = true.

Remarks. 1. If tu computes D by graph multiset transformation, then this may
be denoted by D = COMPGMST (tu).

2. PGMST denotes the set of all decision problems that are computed via graph
multiset transformation by polynomial transformation units.

3. If tu is polynomial and G an initial graph, then the number of deriva-
tions starting in G is bounded by a number exponential in the size of G.
If the multiplicity n of G is chosen larger than this bound and the derivation
n · [G] ∗⇒

P
M is long, then the probability is high that most permitted deriva-

tions starting in G are underlying n · [G] ∗⇒
P

M . Therefore the probability is

high to find the proper value of D(G) in a single graph multiset derivation
with a polynomial number of steps. This justifies the denotation PGMST .

As a first result on polynomial graph multiset transformation and as the main
result of this section, one can show that the classes NPGT and PGMST coincide.
Unfortunately, this is not a solution of the P=NP-problem because the class
PGMST relies on massive parallelism.

Theorem 8. NPGT = PGMST .

Example 5. Based on the unit HP in Example 3, Figure 5 shows a graph multiset
derivation that starts with two copies of G0. In the first step, the rule start
is applied to the left upper node of both copies. There is only one possible
match in each case exept for the third step where run is applied to the right
vertical edge in the upper graph and to the diagonal edge in the lower graph.
In the following steps, run is applied as long as possible. The horizontal rows
of graphs represent the underlying derivations which are both permitted. The
derived (multi-)set contains two graphs of which one graph is terminal proving
that COMPGMST (HP)(G0) = true.

The section is closed by a more explicit construction of the computations that solve
decision problems by graph multiset transformation. To keep track of underlying
derivations that are permitted by the control condition, a finite automaton is used.
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Fig. 5. A graph multiset derivation

Moreover, we assume that terminal graphs are reduced. Therefore, the check for
terminality can be postponed until a derivation cannot be prolonged.

Construction 9. Let tu = (I, P, C, T ) be a terminating transformation unit
with SEM (T ) ⊆ reduced(P ). Let A = (S, P, d, s0, F ) be a finite automaton with
L(A) = L(C) where P is the input alphabet.

As underlying data structures, configurations of the form (M ∗⇒M, W, w) with
W ∈ Perm(M) and w ∈ S∗ are used. In addition, one may assume length(W ) =
length(w) so that each copy of each graph in M is associated with a state of A.
Given an initial graph G, a computation can be constructed inductively in the
following way.

Induction base: Choose n, and consider (n · [G] 0⇒ n · [G], Gn, sn
0 ) as start con-

figuration.
Induction hypothesis: Assume that a configuration

(n · [G] k⇒ M̂, Ĝ1 . . . Ĝn, s1 . . . sn)

is already constructed so that the following holds for i = 1, . . . , n:

si ∈ d∗(s0, ui)

where ui is the application sequence of the underlying derivation G
ki⇒ Ĝi.

Induction step: If possible, then choose for i = 1, . . . , n, Ĝi ⇒
r

Gi with some

si ∈ d(si, r). Otherwise, let Gi = Ĝi and si = si. Then [Ĝ1 . . . Ĝn] ⇒[Gi . . .Gn]
is a direct derivation giving rise to the follow-up configuration

(n · [G] k⇒ M̂ ⇒[G1 . . . Gn], G1 . . . Gn, s1 . . . sn).

The construction can be terminated if a configuration

(n · [G] l⇒ M, Gi . . . Gn, s1 . . . sn)

is reached such that there is no Gi ⇒
r

Gi. Consequently, all follow-up configura-
tions remain unchanged. Such a configuration is reached eventually because the
transformation unit tu is terminating.

Observation 10. Let tu = (I, P, C, T ) be a terminating transformation unit
with SEM (T ) ⊆ reduced(P ). Let A = (S, P, d, s0, F ) be a finite automaton with
L(A) = L(C). Let D = COMPGMST (tu). Then the following statements hold.
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1. Let (n · [G] k⇒ M, G1 . . .Gn, si . . . sn) be a configuration constructed above.
Let, for i = 1, . . . , n, ui be the application sequence of the underlying deriva-
tion G

ki⇒ Gi. Then si ∈ d∗(s0, ui).
2. Let n · [G] ∗⇒ M, G1 . . . Gn, si . . . sn) be a terminated configuration for some

G ∈ SEM (I) with Gi ∈ SEM (T ) and si ∈ F for some i = 1, . . . , n. Then
D(G) = true.

3. If D(G) = true, then there is a terminated configuration of the form
(1 · [G] ∗⇒(1 · [G], G, s) for some G ∈ GΣ and s ∈ F.

6 Exhaustive Computations

A polynomial graph transformation unit tu = (I, P, C, T ) solves a decision prob-
lem by means of graph multiset transformation in a polynomial number of steps
with a high probability if the multiplicity of the initial graph is large. It does
not provide an exact solution because there is no guarantee that a permitted
derivation G

∗⇒ G with G ∈ SEM (I) and G ∈ SEM (T ) belongs to the deriva-
tions underlying a computation MG

∗⇒ M. This may be seen as a drawback. But
the problem can be resolved by means of exhaustive computations that cover all
derivations and all their prefixes up to a given length.

Definition 11. A computation n · [G] k⇒ M for some n ∈ N is exhaustive if each
derivation G

l⇒ Ĝ with l ≤ k is an initial section of an underlying derivation,
meaning that there is a derivation Ĝ

∗⇒ G with G
l⇒ Ĝ

∗⇒ G ∈ der(n · [G] ∗⇒ M).

Theorem 12. Let tu = (I, P, C, T ) be a transformation unit with SEM (T ) ⊆
reduced(P ). Let n · [G] ∗⇒ M for some n ∈ N be exhaustive with car(M)
⊆ reduced(P ). Let G

∗⇒ G with G ∈ SEM (T ) be permitted by C. Then G
∗⇒ G ∈

der(n · [G] ∗⇒ M).

Remark. Exhaustive computations can be constructed inductively.
Induction base: [G] 0⇒[G] is an exhaustive computation of length 0.
Induction step: Let n · [G] k⇒ M be an exhaustive computation of length k

which exists by induction hypothesis. Let max be the maximum number of
direct derivations starting in some G ∈ car(M ). Let max · n · [G] k⇒ max · M

be obtained from n · [G] k⇒M by copying every rule application max times.
Then there are max copies of G in max · M for each G ∈ car(M) so that all
direct derivations starting in G can be constructed. This defines an exhaustive
computation max · n · [G] k⇒ max · M ⇒ M̂ of length k + 1.

Example 6. Figure 4 in Example 2 represents the full derivation process starting
in G0 that obeys the control condition start; run∗. It can be considered as an
exhaustive graph multiset derivation where the columns are the multisets and
each column from right to left is filled with enough copies of the present graphs
that all alternative rule applications can be applied simultaneously. Altogether,
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six copies of G0 are needed to derive all reduced graphs. The derivation length
is bounded by the number of nodes of the initial graph, and the reduced graphs
contain a terminal graph if and only if the initial graph contains a Hamiltonian
path. In other words, the exhaustive derivations of maximum lengths solve the
Hamiltonian path problem in a linear number of steps.

7 Conclusion

In this paper, we have proposed graph multiset transformation as a novel frame-
work for the modeling and computation of graph algorithms and decision prob-
lems on graphs in particular. The basic idea is to apply rules to various graphs
in a multiset simultaneously in a single computational step. In particular, NP-
problems can be solved polynomially by graph multiset transformation employ-
ing exhaustive derivations. A result like this is typical for and should be expected
of a computational model with massive parallelism.

We are convinced that future investigations will prove the significance of this
approach.

1. Graph multiset transformation may be compared with other types of paral-
lelism within and beyond graph transformation.

2. Graph multiset transformation may be used like genetic algorithms as a
heuristic approach. This would mean to start with a comparatively small
multiplicity of initial graphs and to employ more sophisticated control con-
ditions to improve the chances of successful computations.

3. The example of the Hamiltonian path problem indicates that simple graph
transformation units and their evaluation by graph multiset transformation
provides a quite natural way to model graph problems and their solutions.
Further case studies can strengthen this view.

4. As pointed out in the Introduction, graph multiset transformation is inspired
by Adleman’s experiment, in which he solved the Hamiltonian path problem
by means of DNA computing in the proper sense using DNA molecules and
their reaction with each other. Similarly, it may be possible to translate
graph multiset transformation into DNA computing and implement it by a
massively parallel machinery in this way.

5. Because of the close relation to genetic algorithms and DNA computing,
graph multiset transformation is potentially applicable wherever these both
are useful.

Acknowledgement. We are grateful to the anonymous referees for their valuable
comments.
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Appendix

This appendix recalls the notions and notations of multisets used in the paper.

1. Let X be a set. Then a multiset (over X) is a mapping M : X → N, where
M(x) is the multiplicity of x in M .

2. The carrier of M contains all elements of X with positive multiplicity, i.e.

car(M) = {x ∈ X | M(x) > 0}.

3. A multiset is finite if its carrier is a finite set.
4. Let M and M ′ be multisets. Then M ′ is a sub-multiset of M , denoted by

M ′ ≤ M , if M ′(x) ≤ M(x) for all x ∈ X .
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5. Let M and M ′ be multisets. Then the sum (difference) of M and M ′ is the
multiset defined by

(M ± M ′)(x) = M(x) ± M ′(x) for all x ∈ X.

Here + and − are the usual sum and difference of non-negative integers with
m − n = 0 if m ≤ n in particular.

6. Using the sum of multisets, the multiplication of multisets with non-negative
numbers can be defined inductively for all multisets M by
(i) 0 · M = 0 and
(ii) (k + 1) · M = k · M + M for all k ∈ N

where the multiset 0 is the multiset with the constant multiplicity 0, i.e.
0(x) = 0 for all x ∈ X.

7. Each sequence w ∈ X∗ induces a multiset [w] by counting the number of
occurrences of each x in w, i.e., for all x, y ∈ X and w ∈ X∗,
– [λ](x) = 0
– [yw](x) = if x = y then [w](x) + 1 else [w](x).

8. Let M be a multiset. Then the set of all sequences w with [w] = M is denoted
by Perm(M). An element of Perm(M) is called a sequential representation
of M . Note that Perm(M) contains all permutations of w if [w] = M .

9. The set of multisets over X as well as the set of finite multisets over X give
rise to a commutative monoid with the multiset 0 as null and the sum as
inner composition. Moreover, the set of finite sultisets over X is generated
by the sigletons [x] for all x ∈ X so that the finite multisets are characterized
as the free commutative monoid over X .
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