
Communities of Autonomous Units for Pickup

and Delivery Vehicle Routing⋆

Hans-Jörg Kreowski, Sabine Kuske

University of Bremen, Department of Computer Science
P.O.Box 330440, D-28334 Bremen, Germany

(kreo,kuske)@informatik.uni-bremen.de

Abstract. Communities of autonomous units are being developed for
formal specification and semantic analysis of systems of interacting and
mobile components. The autonomous units of a community are rule-
based, self-controlled, goal-driven, and operate and move in a common
environment. We employ communities of autonomous units to model the
dynamic pickup and delivery problem with the general idea to demon-
strate their suitability for a range of logistic tasks.

1 Introduction

Many recent approaches in computer science like, communication networks,
multi-agent systems, swarm intelligence, ubiquitous, wearable, and mobile com-
puting involve widely spread autonomous components that interact and commu-
nicate with each other, move around or connect themselves to other components
to form networks. To cover such new programming and modeling paradigms
in a formally well-founded and visually well-describable way we proposed au-
tonomous units, as a rule-based, self-controlled, and goal-driven concept (see,
e.g., [1]).

A system of autonomous units forms a community provided with a com-
mon environment where the units interact and may have an overall goal. The
autonomous units of a community apply transformation rules to the common
environment in a self-controlled and goal-driven manner. A transformation rule
application may modify the environment, send messages to other autonomous
units, react to received messages or to environment modifications performed by
other units, connect and disconnect the unit to and from other units, or move
the unit around the environment.

For this purpose an autonomous unit is composed of a set of transformation
rules, a control component to regulate its rule application process and a goal
that the unit tries to achieve. Moreover, a unit has a private state in which the
unit can store private data and which can only be transformed by the unit itself.
A transformation rule r may simultaneously transform the common environment

⋆ Research partially supported by the Collaborative Research Centre 637 (Au-
tonomous Cooperating Logistic Processes: A Paradigm Shift and Its Limitations)
funded by the German Research Foundation (DFG).



and the private state of the unit. This means that r is a product rule consisting
of two transformation rules: one for the common environment and the other for
the private state (cf. [2]).

In order to keep the rule set of an autonomous unit readable and small, it
can be structured hierarchically into transformation units each of which consists
of a set of transformation rules and a control condition. These reusable transfor-
mation units perform actions that require the controlled application of several
rules (cf. for example [3] and [4]).

In general, autonomous units can work in parallel. The operational semantics
of a community consists of (perhaps never-ending) sequences of states such that
every state is composed of the current common environment plus all current
private states. A transformation from one state to the next happens if some
or all units of the community apply one or more rules in parallel. Hence, state
transformation consists of the parallel application of a set product rules.

Since environments can often be modeled and visualized as graphs, since
graphs can be modified in a straightforward way by graph transformation rules,
and since graph transformation has a precisely defined semantics [5] it seems to
be natural to specify the actions of autonomous units with graph transformation
rules. However, the concept of autonomous units is not restricted to the graph
transformational approach.

The aim of this paper is to illustrate and demonstrate the potential of au-
tonomous units to model logistic applications by presenting a case study that
models the basic operations of the dynamic pickup and delivery problem (see e.g.
[6–8]) by a community of autonomous units. To keep the paper technically sim-
ple, we introduce autonomous units in a rather informal way. Formal descriptions
can be found in [4, 9]. Nevertheless, it is worth noting that autonomous units as
presented in the following are more sophisticated than those of previous papers
because private states have not been considered before.

The development of autonomous units has its origin within the Collaborative
Research Centre Autonomous Cooperating Logistic Processes: A Paradigm Shift

and Its Limitations in which we investigate in an interdisciplinary way how self-
controlled units can be successfully employed for logistic applications with the
aim to get better results concerning time, costs and robustness (see also [10]).
The central idea of autonomous units is to introduce self-control explicitly into
the modeling of (logistic) processes in order to create a semantically well-founded
framework in which different self-control-based mechanisms become comparable
(cf. [1]).

The paper is organized as follows. Section 2 briefly recalls basic concepts, like
graphs, graph transformation rules, graph class expressions and control condi-
tions. Section 3 is dedicated to the private states and common environments of
communities. In Sections 4 it is shown how the behavior of autonomous units
can be modeled with product rules. Section 5 illustrates how the actions and in-
teractions occuring in the dynamic pickup and delivery problem can be modeled
with a community. Section 6 presents the semantics of autonomous units based



on which some correctness results concerning the case study are formulated.
Section 7 discusses related work. The paper ends with the conclusion.

2 Basic Concepts

The basic components of autonomous units, namely graphs, graph transforma-
tion rules, graph class expressions, and control conditions are taken from an
underlying graph transformation approach. In this section we present an in-
stance of a graph transformation approach that will be used throughout this
paper. Further examples and formal definitions can be found in e.g. [5, 3].

Graphs. A graph consists of a set of labeled or unlabeled nodes and a set of
labeled or unlabeled edges such that every edge connects two nodes. An edge can
be directed or undirected. Nodes may be depicted in different shapes illustrating
in this way the entities they represent. Fig. 5 shows an example of a graph where
the houses, trucks, and rectangles are the nodes and the arrows are the directed
edges. The houses are labeled with letters, the rectangles and the edges between
houses with natural numbers whereas the trucks and the edges from rectangles
to houses are unlabeled.

20
A

B

E

F
7

2

10

3
8

4

D C

5

7

40

8

7

15

120

8

4

Fig. 1. Example of a graph

Graph transformation rules. A graph transformation rule consists of three graphs:
a left-hand side, a right-hand side and a common part. An example of a rule is
depicted in Fig. 2. The left-hand side is a house and the right-hand side consists
of the same house, a rectangle labeled with m and an edge pointing from the
rectangle to the house. The common part is the house, because it has the same
number in the left- and the right-hand side of the rule. Often, the numbers of
common nodes are not depicted. In this case the common items of a rule consist
of the nodes and edges that occur in the left- as well as in right-hand side in the
same relative positions. Please note that if the label m of the right-hand side is
a variable of type N the rule represents a set of rules: one for each value in N.
These so-called parameterized rules will be often used in the following.

The application of a rule to a graph comprises the following steps: (1) Choose
an image of the left-hand side in the graph. (2) Delete everything of this image
that does not belong to the common part. (3) Glue the right-hand side into



m

1 1

Fig. 2. Example of a rule

the graph such that the items of the common parts are identified with their
images. Fig. 3 shows the application of the above rule after having substituted
the variable m with the number 5. The rule is applied to a graph consisting of
two houses that are connected by a directed edge labelled with 20, and a truck
that is connected to the right house. The application of the rule adds a rectangle
labeled with 5 to the right house. Clearly, the rule could also be applied such
that the rectangle would be connected to the left house.

20 20 5

Fig. 3. A rule application

Graph class expressions. A graph class expression specifies a set of graphs. We
use as graph class expressions graphs with variables of type N as node labels
and a special form of graph grammars. More precisely, a graph with variables
of type N as node labels specifies the set of all graphs that can be obtained by
substituting each variable with a value of N. For example, the right-hand side
of the rule in Fig. 2 is a graph class expression of this kind. A graph grammar
is a pair GG = (S, P ) where S is a graph called the start graph and P is a set
of graph transformation rules. The set of graphs specified by GG consists of all
graphs that can be generated by applying rules of P in a successive way starting
from the start graph S.

Control conditions. A control condition is any expression that specifies a set of
sequences of graphs. In this paper we use priorities and the special condition
free. Given a set P of rules, a priority is a partial order ≤ on P and it specifies
all sequences s of graphs such that for i = 1, . . . , n if s = (G1, . . . , Gn) and for
i ∈ N if s is infinite, Gi is obtained from Gi−1 by applying a rule p ∈ P and
there is no rule p′ ∈ P with p′ > p that is applicable to Gi−1. In other words,
this control condition allows to apply a rule to the current graph whenever there
is no rule of a higher priority applicable. The condition free is the special case
where all rules have the same priority.

3 Common Environments and Private States

Autonomous units act and interact within a common environment. In many
cases an environment can be modeled as a graph in which certain nodes repre-



sent instances of autonomous units. In our case study of the pickup and deliv-
ery problem the environment contains nodes representing trucks, customers and
packages and the behavior of each of these nodes is specified by an instance of
an autonomous unit.

Every community starts to work in an initial environment specified by a graph
class expression. If one takes houses as customers and rectangles as packages, the
graph in Fig. 1 is an initial environment of our case study. The set of all initial
environments of the case study can be visually specified in a rule-based form
by the graph grammar consisting of the rule set in Fig. 4 plus the empty graph
(containing neither nodes nor edges) as start graph. The first rule generates
customers. It contains a negative application condition [11] in its left-hand side
which means that an A-labeled customer can only be generated if there doesn’t
exist one with the same label. In this way we make sure that all generated
customers have different labels. The second rule connects different customers by
edges labeled with a distance d of type N. The application condition A 6= B below
the arrow requires that d-labeled edges be inserted between different customers,
i.e. it avoids the insertion of loops at customers. The label d represents the time
it lasts to move from the source customer to the target customer. If one wants to
generate environments without parallel edges between customers, a convenient
negative application condition could also be added to the second rule. The third
rule inserts trucks and the fourth packages so that every truck is in the location
of some customer and every package is offered by some customer. The label m

is some natural number representing the weight of a package.

m

d
A B A B

A A

BA

Fig. 4. Specification of the initial common environments

Obviously, trucks, customers and packages behave differently. Trucks, for
example, can move, transport packages, plan their tours, etc. Packages select
trucks for their transport, enter trucks and get out of them. Customers may offer
or demand packages. As mentioned before, the behavior of these components
is modeled with autonomous transformation units. Hence, after generating an
initial environment, every truck node, every package node and every customer
node is associated with (an instance of) the autonomous unit that specifies its



behavior. Technically, this can be achieved by adding a loop to every node v

that is associated with a unit type(v) and labeling this loop with type(v). In the
following every environment node v that is associated with an autonomous unit
type(v) is called the local node of type(v).

Additionally to the common environment which can be transformed by all
autonomous units of the community, every unit may have its own private state
that can only be modified and seen by the unit itself. In this first approach, this
private state contains the local node of the unit plus some additional information.
For example, the private state of the autonomous unit truck stores its capacity,
the weight of its current load and the weight of all packages which it has accepted
to pickup later. Initially the latter two values are set to zero. The specification
of the initial private states of the unit truck is depicted in Fig. 5 where the max -
edge points to the capacity of the truck, the w-edge to the weight of the current
load and the r- edge to the weight reserved for accepted packages. The reserved
weight means the following. When a package asks a truck for being picked up
the truck can accept this. In this case it reserves some weight (or place) in it for
the package until the package enters the truck or until the truck starts to move.

0

r

w

0

c
max

Fig. 5. Initial private state of truck

The common environment together with the private states form a set of
graphs where each local node occurs in two copies: one in the common environ-
ment and one in the private state of the corresponding autonomous unit.

4 Modeling the Behavior of Autonomous Units

The autonomous units of a community may interact by transforming the environ-
ment, i.e. a change of the environment may be noticed by other units (re-)acting
in the same community. Every autonomous unit aut that is associated with a
node v in the environment specifies the behavior of v by means of some graph
transformation rules, used transformation units, a control condition, a goal, and
a private initial state containing the local node v plus some further private data.
The rules of aut are split into common and private ones for transforming the
common environment and the private state, respectively. Every rule r of aut that
contains the node v in its left- and right-hand side should be applied in such a
way that v is matched to the local node in the environment if r is a common
rule and to the local node in the private state if r is private. In the following,
every occurrence of v in a rule of aut is drawn with thick lines. In the rest of
this section we show how autonomous units may communicate and change the
common environment and private states with the use of graph transformation
rules.



4.1 Interaction of Autonomous Units

A special form of interaction frequently used is message sending. This is modeled
by the insertion of an edge labeled with the message content and going from the
sender to the receiver. For example, if a package wants to enter into a truck it
sends the message enter? to the truck. This can be modeled with the rule in
Fig. 6 which belongs to the package-unit. It inserts an edge labeled with enter?

from the local package to some truck that is at the same location and that will
pass through the destination of the package. (Further details of the rule will be
explained below.)

u u m

enter?

m
dem dem

B B

B in u

Fig. 6. Message sending

After receiving the enter? -message the truck can accept or reject to pickup
the package. In case of acceptance the truck sends an ok -message to the package.
This reaction is modeled with the left rule in Fig. 7. As one will see in Section 5,
the truck changes its private state, simultaneously.

m m
 ok

enter? k

n

r

w n

r

w

k+mn+m+k <=c

c c
max max

Fig. 7. Accepting a package

4.2 Modeling Behavior by Product Rules

Every autonomous unit can modify the environment by applying a graph trans-
formation rule to it. Simultaneously, it can transform its private state to modify
private data. This is achieved with the concept of product rules [2, 12]. For our
purpose we use a special form of product rules consisting of a pair (com, priv) of
rules which are applied simultaneously so that com modifies the common envi-
ronment and priv the private state. In more detail, the application of (com, priv)
of a unit aut to a pair (env, prist) consisting of a common environment env and
a private state prist yields a pair (env′, prist′) if env′ can be obtained from
env by applying com, and if the application of priv to prist yields prist′. As
explained above, the rules must be applied in such a way that the local nodes be
matched to the nodes associated with aut . This can be achieved with particular
loops at the local nodes in rules, private states, and the common environment.

For example, if a truck accepts a package p, it reserves some of its capacity
for this package. Hence, it applies the rule in Fig. 7 to the common environment
and simultaneously, it adds the weight of the package to its reserved weight by



applying the right rule in Fig. 7. This rule (and hence the whole product rule) can
only be applied if the transport of the package can be realized without exceeding
the maximal capacity i.e. if n + m + k ≤ c where n is the current load of the
truck, k is the reserved load, m is the weight of the package that is going to be
accepted, and c is the maximal capacity of the truck. This application condition
is denoted below the arrow of the private rule. Please note that c, n and k are
variables that should be substituted with values when applying the rule.

It is worth noting that every product rule (com, priv) of this special kind can
be regarded as a triple graph transformation rule (com, cp, priv) [13] where the
left- as well as the right-hand side of the correspondence rule cp consists of the
local node. One main difference between product rules and triple rules is that
the former are approach independent while that latter are defined over a specific
graph transformation approach. Moreover, product rules may have an arbitrary
number of components rather than three ones as triple rules.

5 Pickup and Delivery with Autonomous Units

In this section, we describe how the basic operations of the dynamic pickup and
delivery problem can be modeled with a community of autonomous units. The
pickup and delivery problem consists of a set of customers, a set of vehicles (here
trucks) and a set of packages. Basically, trucks move around in an environment
to pickup and deliver packages thereby satisfying transport requests. Packages
select trucks which they ask for being picked up and in case of acceptance they
may enter into a truck and get out at their destination. Customers may offer
or demand packages. In order to model the pickup and delivery problem conve-
niently, certain contraints must be satisfied such as time contraints or simply the
requirement that the capacity of trucks should never be exceeded. The goal of
every component (i.e. of every truck, customer, and package) is some objective
function, like minimization of route length, costs, time, etc (cf. [6]).

The aim of this first approach towards modeling the pickup and delivery prob-
lem with autonomous units is to show how the basic operations of the dynamic
pickup and delivery problem can be modeled based on graph transformation, so
that trucks, packages and customers behave as autonomous entities in a com-
mon transport network where central control is dropped. A case study where the
pickup and delivery problem is modeled with a single hierarchically structured
transformation unit is presented in [14].

We assume in this stage of the case study that the goal of every autonomous
unit is some objective function but we do not yet consider how it can be formu-
lated in a graph transformational way and how control conditions can become
goal driven. This will be studied in future work.

The basic behavior of the autonomous unit truck is specified in Fig. 8 where
the parts com and priv of every product rule (com, priv) are drawn side by side
and with a dashed vertical line between them. As mentioned before the bold
nodes in the rules represent the local nodes of the unit. When applying a rule,



r

w 0

0

enter?
m m ok

m m

m m
enter?

(accept, reject, pickup, deliver,annul) > moveconds:

w n

w n w n

c
max

c
max

c
max

uses: timetable(), move()

initial:

truck()

accept:

pickup:

reject:

m m

deliver:

out

w n w n−m

annul:

m m
ok r k r k−m

n+m+k <=c r k+m

rules:

r k

entered
r k r

w

k−m

n+m

Fig. 8. The unit truck

these nodes must always be matched to the node associated with the unit which
contains the rule.

The rules of the unit truck model interaction between trucks and packages
from the point of view of the truck. As already explained in the previous section,
the product rule accept can be applied if the truck has got a message enter?

from some package. The application of the rule accept sends a message ok to
the package and adds the weight of the package to the reserved load of the truck
represented in the private state. Alternatively, the truck may reject the package
by applying the second rule that deletes the enter? -edge. This rule does not
modify the private state of the truck, i.e. the private part of the product rule is
the empty rule and hence not depicted. The third product rule pickup can be
applied when the truck receives an entered -message from a package. The edge
from the truck to the package in the right-hand side models the fact that the
package is in the truck. In the private rule of pickup the current weight of the
truck is updated. The forth rule deliver can be applied if the truck has got an
out -message from some package. When applying this rule, the truck deletes the



out -egde and updates its current load. With the rule annul the truck can cancel
reservations. The imported unit timetable is not presented in detail. It links a
node to the truck that is lableled with a string of customer names and which
represents the tour the truck is going to move along. More precisely, a tour is a
word x0 · · ·xn of customer names such that for i = 1, . . . , n the customer xi−1

is connected to xi through an edge.
The autonomous unit truck uses the transformation unit move depicted in

Fig. 9. It models the movement of a truck from one customer to the next in the
tour of the truck. The movement lasts exactly d steps (i.e. rule applications) if
the edge has distance d.

1
B 1

B

u

Bu

d>1
B

d

u

B
d

d−1

d>1

u

B
d

d2−1

B
d

u

d2

MOVE()

rules:
Bu

d>1

u

B
d

B
d

u

1

one−step:

start:

drive:

arrive:

Fig. 9. The transformation unit move

The unit package is shown in Fig. 10. It contains three rules that modify
the common environments. In the first rule the package wants to enter into a
truck which is at the same location as the package’s owner A, provided that the
package is demanded (denoted by the label dem at the edge from the package to
A), and that the customer B who demands the package occurs in the route u of
the truck. If the package gets an ok -message from a truck the former can decide
with the second rule to enter the truck provided that the latter has not yet moved
away. The application of the rule deletes the dem-edge from the package’s owner.
Hence, this rule can only be applied if the package is not on another truck. With
the last rule a package can send an out -message to the truck provided that the
package is in the truck and arrived at the customer who demanded it.

Please note that in this simplified case study the unit package has no private
state. But in a further step we plan to include also a private state for packages



m B

A
dementer?

u

m
arrivedout

entered
m

package()

rules:

enter:

enter?:

m Bu
dem

out:

A

m

m
demok

B in u

Fig. 10. The unit package

that stores relevant information to choose a good truck (a cheap and fast one
that transports the package safely within certain prescribed time windows) and
not an arbitrary one.

m

mm

offer:

mm

hide:

mm
arrived

initial:
start: rule:

customer()

rules:

demand:

m m
dem

offer−arrived:

Fig. 11. The unit customer

The autonomous unit customer is depicted in Fig 11. It may offer and demand
packages and in its private state it stores private packages that are not offered
to the community. If a customer wants to offer a private package, it applies the
product rule offer that inserts it into the common environment. On the other
hand, it can hide offered packages with the rule hide. With the rule demand

the customer demands a package p that is offered by another customer A. This
is modeled by inserting a new edge from the customer to p and labeling the



edge from A to p with dem representing in this way the fact that p cannot
be demanded anymore. Finally, with the rule offer-arrived , the customer can
convert a recently obtained package into an offered one.

The community for the basic operations of the pickup and delivery problem
can now be defined as pdp = (ini, {truck, package , customer}, goal) where ini is
the grammar of Fig. 4, and the goal could be specified in this first approach such
that all environments are accepted.

6 Semantics

In this section we describe the semantics of communities. In [4] a sequential se-
mantics is given, but it is not fully adequate for the pickup and delivery problem
because several trucks may move simultaneously and several packages may be
loaded and reloaded at the same time. Hence, we adopt the parallel semantics
introduced in [9]. But since private states and used transformation units were
not considered in [9], we have to generalize the parallel semantics.

The operational semantics of communities consists of a set of transformation
processes which are sequences of states where a state is a tuple (ce, ps1, . . . , psk)
of graphs such that ce is the current common environment and ps1 . . . , psk are
the current private states occuring in the community. A state transformation
transforms one state into another by applying product rules of autonomous units
in parallel. More precisely, let COM be a community consisting of a set AUT

of autonomous units, a graph class expression ini specifying all possible initial
environments and a common goal goal. Let ce be a graph specified by ini. Let
v1, . . . , vk be the nodes of ce the behavior of which is modeled by the autonomous
units type(v1), . . . , type(vk), respectively. Moreover, let ps1, . . . , psk be graphs
such that for j = 1, . . . , k, psj is a private initial state of type(vj). Then the
tuple (ce, ps1, . . . , psk) is an initial state of COM . A sequence s = (M0, M1, . . .)
of states with Mi = (cei, psi,1, . . . , psi,k) is a transformation process of COM if

1. M0 is an initial state of COM ,
2. for i = 1, . . . , n if s = (M0, . . . , Mn) and for i ∈ N if s is infinite, Mi+1 is

obtained from Mi as follows: There are r1, . . . , rk such that for j = 1, . . . , k,
rj is a (parallel) product rule of type(vj), or a product rule of some used
transformation unit of type(vj), or the empty product rule the application
of which has no effect, such that
– cei+1 is obtained from cei by applying the common parts of r1, . . . , rk in

parallel so that the local nodes are matched as required (see Section 4);1

– for j = 1, . . . , k the graph psi+1,j is obtained from psi,j by applying the
private part of rj so that the local nodes are matched as required;

3. for j = 1, . . . , k the sequence ((ce0, ps0,j), (ce1, ps1,j), . . .) is allowed by the
flattened2 control condition of type(vj).

1 In general, for applying rules in parallel, certain independence criteria must be sat-
isfied (see e.g. [9]).

2 We require that every autonomous unit can be flattened without changing its se-
mantics (see also [3]).



Please note that the semantics of control conditions introduced in Section 2
must be generalized here to product rules, i.e. every control condition specifies
sequences of pairs of graphs. This generalization can be done for the consid-
ered control conditions in a straightforward way. Moreover, the priority con-
trol conditions as used in this paper can be flattened as follows. Let aut be
a unit with (N,≤aut ) as control condition, i.e. N is composed of rules and
used units of aut . Clearly, if N consists of rules only, its flattened condition
(flat(aut),flat(≤aut)) is equal to (N,≤aut ). Otherwise, for every used unit t ∈ N

with control condition (Nt,≤t) let its flattened condition (flat(t),flat(≤t)) be al-
ready defined; and for every rule r in N , let flat(r) = {r} and flat(≤r) = ∅. Then
the flattened control condition of aut is equal to (flat(aut), f lat(≤aut)) where
flat(aut) = ⊎n∈Nflat(n) 3 and flat(≤aut) is the reflexive and transitive closure
of

⋃

n∈N

flat(≤n) ∪ {r1 ≤ r2 | r1 ∈ flat(i), r2 ∈ flat(j), i ≤aut j, i, j ∈ N}.

This means that the rule set flat(aut) of the flattened condition of aut consists
of all rules occurring in N and in the flattened conditions of the used units in
N . The priority relation consists of the priority relation between the rules in
the flattened conditions of the used units. Additionally, for two rules r1 and r2

in flat(aut) we have that r1 is of a higher priority than r2, if t1 >aut t2 in the
control condition of aut where for i ∈ {1, 2}, ti is either equal to the rule ri or
ti is a used unit and ri is a rule of the flattened condition of ti.

Every finite transformation process is successful if its last state is specified
by the goal of the community. Every infinite transformation process is successful

if it contains infinitely many states that satisfy the goal (see [9] for more details).
The formal framework of communities of autonomous units based on graph

transformation does not only allow one to model interacting logistic processes,
but provides also means for their analysis.

One important aspect is the possibility of correctness proofs which are usu-
ally done by induction on the lengths of derivation sequences. With respect to
our case study, many properties which one would expect of a solution of the
pickup and delivery problem can be verified. The following observation lists a
few explicit examples of such properties.

Observation 1 For every state in the operational semantics of the community
pdp the following holds.

– The current load of every truck is equal to the sum of the weights of all
packages in the truck.

– The maximal capacity of every truck is not smaller than its current load.
– A truck only moves (i.e. the move unit is only applicable) if there are no

incoming messages left.
– A package can only enter into a truck if both are at the same location.

3
⊎ denotes the disjoint union.



– A package is never in two trucks.
– A package can only get out of a truck if the truck has reached the customer

who demanded the package.
– Every package cannot be demanded by more than one customer at the same

time.

The proof is omitted because it is beyond the scope of this paper.
Another matter is the parallelism analysis. There is some machinery available

in the area of graph transformation (see e.g. [5, 15]) to find out which rules can
be applied in parallel. This is very helpful with respect to any case study, because
our semantics embodies parallelism explicitly. Unfortunately, there is not enough
space for a more detailed consideration.

7 Related Work

In the literature there are some approaches that focus on modeling multi-agent
or agent-oriented systems based on graph transformation. These approaches are
closely related to our approach because of the special features inherent to agents
such as autonomy or reactivity (cf. [16] where autonomous units are related to
the VSK model of multi-agent systems, see e.g., [17]).

In [18] an approach for modeling agent-oriented systems is proposed that is
based on UML and typed graph transformation. It concerns mainly the modeling
process which consists of three stages (requirement specification, analysis, and
design) where the second and the last stages are refinements of their predeces-
sors. The relations between the distinct stages are formalized using typed graph
transformation systems and graph processes. In the last stage, every agent corre-
sponds to an active class where operations are modeled as graph transformation
rules and the control component as a state chart.

In [19] an approach to model and verify multi-agent systems is given that
is also based on typed graph transformation and UML. A complete system is
composed of communities that can be entered or left by agents. A community is
obtained by associating a culture specification with an environment specification
where the former specifies social components such as roles and intentions and
the latter specifies (physical) entities, agents as well as sensors and effectors. The
whole system can be formalized as a graph transformation system.

Communities of autonomous units are also closely related to [20] where dis-
tributed systems are modeled by graph grammars that modify distributed graphs
via distributed graph productions. Distributed graphs are network graphs with
local graphs as node labels and graph morphisms as edge labels.

All three approaches are based on particular graph transformation approaches
(single- and double-pushout) while our framework is independent of a particular
graph transformation approach. Similarly, we employ a quite generic concept
of control conditions while the other three approaches use particular control
concepts or none at all. Moreover, in [18] and [19] certain types of multi-agent
systems are formalized by graph transformation while autonomous units can



be considered as an operational model of an axiomatic notion of multi-agent
systems.

8 Conclusion

In this paper we have demonstrated that the basic operations of the pickup and
delivery problem can be visually modeled in a rule-based way by means of a com-
munity so that central control is omitted, but spread over a set of autonomous
units each of which specifies the behavior of a component occurring in the pickup
and delivery problem, such as trucks, customers, and packages. The autonomous
units communicate and interact in a common environment consisting of roads,
customers, trucks, and packages and the actions of a unit comprise the controlled
application of parallel product rules which modify the common environment of
the community and the private state of the unit simultaneously and in a con-
trolled way. Moreover, in order to keep large rule sets manageable, they can be
divided into smaller transformation units. Semantically, a community specifies
possibly infinite sequences of states consisting of the current common environ-
ment and the current private states of the units.

The presented case study points out that the private states and the use of
product rules constitute an adequate and useful generalization of the hitherto
defined autonomous units with parallel semantics [9]. Moreover, the case-study
stresses that operations of logistic processes can be visually and easily modeled
by graph transformation-based autonomous units, i.e. these operations which
include message sending, moving around the environment, entering or leaving
other units can be visually represented by means of small graph transformation
rules.

In order to be able to present this case study within the scope of this paper we
have simplified it w.r.t. various aspects. In an extended study we will investigate
how the following aspects can be solved in a graph-transformational way. (1) A
more detailed communication concerning prices, tours, etc. between the different
units; (2) routing algorithms for the truck units; (3) capability of packages to
change trucks; and (4) different behaviors of units of the same type.

Acknowledgement. We are very grateful to the anomymous reviewers of this
paper for their helpful comments.

References

1. Hölscher, K., Klempien-Hinrichs, R., Knirsch, P., Kreowski, H.J., Kuske, S.: Au-
tonomous units: Basic concepts and semantic foundation. [10] 103–120

2. Klempien-Hinrichs, R., Kreowski, H.J., Kuske, S.: Typing of graph transformation
units. In Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G., eds.: (Proc.
ICGT 2004 Second International Conference on Graph Transformation). Volume
3256 of Lecture Notes in Computer Science. (2004) 112–127

3. Kreowski, H.J., Kuske, S.: Graph transformation units with interleaving semantics.
Formal Aspects of Computing 11(6) (1999) 690–723



4. Hölscher, K., Kreowski, H.J., Kuske, S.: Autonomous units and their semantics —
the sequential case. In: Proc. International Conference of Graph Transformation.
Volume 4178 of Lecture Notes in Computer Science. (2006) 245–259

5. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations. World Scientific, Singapore (1997)

6. Savelsbergh, M., Sol, M.: The general pickup and delivery problem. Transportation
Science 29(1) (1995) 17–29

7. Nagy, G., Salhi, S.: Heuristic algorithms for single and multiple depot vehicle
routing problems with pickup and deliveries. European Journal of Operational
Research 162(1) (2005) 126–141

8. Fabri, A., Recht, P.: On dynamic pickup and delivery vehicle routing with several
time windows and waiting times. Transportation Research Part B: Methodological
40(4) (2006) 335–350

9. Kreowski, H.J., Kuske, S.: Autonomous units and their semantics - the parallel
case. In Fiadeiro, J., Schobbens, P., eds.: Recent Trends in Algebraic Development
Techniques, 18th International Workshop, WADT 2006. Volume 4408 of Lecture
Notes in Computer Science. (2007) 56–73

10. Hülsmann, M., Windt, K., eds.: Understanding Autonomous Cooperation & Con-
trol in Logistics The Impact on Management, Information and Communication
and Material Flow. Springer, Berlin Heidelberg New York, USA (2007)

11. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3,4) (1996) 287–313

12. Klempien-Hinrichs, R., Kreowski, H.J., Kuske, S.: Rule-based transformation of
graphs and the product type. In van Bommel, P., ed.: Transformation of Knowl-
edge, Information, and Data: Theory and Applications. Idea Group Publishing,
Hershey, Pennsylvania, USA (2005) 29–51

13. Schürr, A.: Specification of graph translators with triple graph grammars. In
Tinnhofer, G., ed.: Proc. 20th Int. Worhshop on Graph-Theoretic Concepts in
Computer Science. Volume 903 of Lecture Notes in Computer Science. (1994) 151–
163

14. Klempien-Hinrichs, R., Knirsch, P., Kuske, S.: Modeling the pickup-and-delivery
problem with structured graph transformation. In: Proc. APPLIGRAPH Work-
shop on Applied Graph Transformation. (2002) 119–130

15. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G., eds.: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 3: Concurrency, Paral-
lelism, and Distribution. World Scientific, Singapore (1999)

16. Timm, I.J., Knirsch, P., Kreowski, H.J., Timm-Giel, A.: Autonomy in software
systems. [10] 255–273

17. Wooldridge, M., Lomuscio, A.: A logic of visibility, perception, and knowledge:
Completeness and correspondence results. In: Proc. Third International Conference
on Pure and Applied Practical Reasoning, London, UK (2000)

18. Depke, R., Heckel, R., Küster, J.M.: Formal agent-oriented modeling with UML
and graph transformation. Science of Computer Programming 44 (2002) 229–252

19. Giese, H., Klein, F.: Systematic verification of multi-agent systems based on rig-
orous executable specifications. International Journal on Agent-Oriented Software
Engineering (IJAOSE) 1(1) (2007) 28–62

20. Taentzer, G.: Parallel and Distributed Graph Transformation: Formal Description
and Application to Communication-Based Systems. PhD thesis, TU Berlin, Shaker
Verlag (1996)


