
Graph Transformation Units – An Overview�

Hans-Jörg Kreowski1, Sabine Kuske1, and Grzegorz Rozenberg2

1 University of Bremen, Department of Computer Science
P.O. Box 33 04 40, 28334 Bremen, Germany
{kreo,kuske}@informatik.uni-bremen.de

2 Leiden University,
Leiden Institute for Advanced Computer Science (LIACS)

2333 CA Leiden, The Netherlands
rozenber@liacs.nl

Abstract. In this paper, we give an overview of the framework of graph
transformation units which provides syntactic and semantic means for
analyzing, modeling, and structuring all kinds of graph processing and
graph transformation.

1 Introduction

Graphs are used in computer science in many forms and contexts, and for
many purposes. Well-known examples are Petri nets, entity-relationship dia-
grams, UML diagrams, and state graphs of finite automata. In many applica-
tions, graphs are not of interest as singular entities, but as members of graph and
diagram languages, as states of processes and systems, as structures underlying
algorithms, as networks underlying communication, tour planning, production
planning, etc. Therefore, there is genuine need to generate, recognize, process,
and transform graphs. The development and investigation of means and meth-
ods to achieve this goal is the focus of the area of graph transformation. (See
the Handbook of Graph Grammars and Computing by Graph Transformation
[1–3].)

In this paper, we give an overview of the framework of graph transformation
units which provides syntactic and semantic means for analyzing, modeling, and
structuring all kinds of graph processing and graph transformation. In particular,
graph transformation units can be used to generate graph languages, to specify
graph algorithms, to transform models whenever they are represented by graphs,
and to define the operational semantics of data processing systems whenever the
data and system states are given as graphs.

Graph transformation units encapsulate rules and control conditions that reg-
ulate the application of rules to graphs including the specification of initial and

� The first two authors would like to acknowledge that their research is partially sup-
ported by the Collaborative Research Centre 637 (Autonomous Cooperating Logistic
Processes: A Paradigm Shift and Its Limitations) funded by the German Research
Foundation (DFG).

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 57–75, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

58 H.-J. Kreowski, S. Kuske, and G. Rozenberg

terminal graphs. To support the re-use and the stepwise development of graph
transformation units, also a structuring principle is introduced that allows the
import of units by units. The operational semantics of a unit transforms ini-
tial graphs into terminal graphs by interleaving rule applications and calls of
imported units so that the control condition is fulfilled.

An important aspect of this framework is its approach independence, meaning
that all introduced concepts work for all kinds of graphs, rules, rule applications,
and control conditions. In particular, one can build new approaches from given
ones through the product of approaches. In this way, graph transformation units
can be combined in such a way that tuples of graphs are transformed component-
wise. As a consequence, the interleaving semantics covers computable relations
on graphs with m input graphs and n output graphs for arbitrary numbers m, n
rather than binary relations between initial and terminal graphs.

This overview is organized in the following way. In Section 2, we recall the
basic notions of graphs and of rule-based graph transformation. In Section 3,
simple graph transformation units encompassing rules and control mechanisms
are introduced, while a structuring principle by means of import is added in
Section 4. Section 5 addresses the idea of approach independence and the product
type. In the last section we discuss some related work and point out some further
aspects such as the iterated interleaving semantics in case of cyclic import, the
interlinking semantics that supplements the sequential interleaving semantics
by parallel and concurrent elements, and autonomous units which interact in a
common graph environment.

2 Graphs and Rule-Based Graph Transformation

In this section, we recall the basic notion of graphs, matches, rules, and rule
application as they are needed to model the examples of this paper.

Graphs are quite generic structures which are encountered in the literature
in many variants: directed and undirected, labeled and unlabeled, simple and
multiple, with binary edges and hyperedges, etc. In this survey, we focus on
directed, edge-labeled, and multiple graphs with binary edges (see 2.1). As a
running example, we consider the generation of simple paths and related prob-
lems including the search for Hamiltonian paths. Please note that the search
for simple paths of certain lengths and in particular the search for Hamiltonian
paths are NP -complete problems.

Graphs are often considered as inputs of algorithms and processes so that
methods are needed to search and manipulate graphs. Graphs may also rep-
resent states of systems so that methods for updates and state transitions are
needed. Also, graphs may often be used to specify the structure of all the data
of interest, e.g., the set of all connected and planar graphs. Like in the case of
string languages, one needs then mechanisms to generate and recognize graph
languages. To meet all these needs, rule-based graph transformation is defined
in 2.4 to 2.6.

Graph Transformation Units – An Overview 59

2.1 Graphs

Let Σ be a set of labels. A graph over Σ is a system G = (V, E, s, t, l) where
V is a finite set of nodes, E is a finite set of edges, s, t : E → V are mappings
assigning a source s(e) and a target t(e) to every edge in E, and l : E → Σ is
a mapping assigning a label to every edge in E. An edge e with s(e) = t(e) is
also called a loop. The components V , E, s, t, and l of G are also denoted by
VG, EG, sG, tG, and lG, respectively. The set of all graphs over Σ is denoted by
GΣ . We reserve a specific label ∗ which is omitted in drawings of graphs. In this
way, graphs where all edges are labeled with ∗ may be seen as unlabeled graphs.

Example 1. Consider the graphs G0, G1, G12, G123, and G1234 in Figure 1.
A box � represents a node with an unlabeled loop. Therefore, G0 has four nodes,

four loops and five additional unlabeled edges. The other graphs are variants of G0.
We use to represent a begin-node which is a node with a loop labeled with begin.
Analogously, represents an end -node, and represents a node with a begin-loop
and an end -loop. If one starts in the begin-node and follows the p-labeled edges,
one reaches the end -node in the graphs G12, G123, and G1234. In each case, the
sequence of p-edges defines a simple path of G0, where the intermediate nodes
have no loops. In G1, the begin-node and the end -node are identical which means
that the corresponding simple path has length 0.

G0 = G1 = G12 =

p

G123 =

p

p G1234 =

p

p

p

Fig. 1. G0 with some of its simple paths

If one numbers the nodes of G0 clockwise by 1 to 4 starting in the upper left-
most corner, then the node sequences 1, 12, 123, and 1234 define simple paths
of G0 that correspond to the simple paths in G1, G12, G123, and G1234, resp. In
this way, every simple path s of G0 can be represented by a graph Gs. The set
of all those graphs is denoted by SP (G0). The next subsection describes paths
more formally.

2.2 Paths

One of the most important concepts concerning graphs is the notion of a path
that is the subject of many research problems and applications of graphs such
as connectivity, shortest paths, long simple paths, Eulerian paths, Hamiltonian
paths, traveling salesperson problem, etc.

Given a graph G = (V, E, s, t, l), a path from node v to node v′ is a sequence
of edges p = e1 . . . en with n ≥ 1, s(e1) = v, s(ei) = t(ei−1) for i = 2, . . . , n, and
t(en) = v′. The length of p is n. Moreover, the empty sequence λ is considered
to be a path from v to v of length 0 for each v ∈ V. A path p = e1 . . . en from v

60 H.-J. Kreowski, S. Kuske, and G. Rozenberg

to v′ visits the nodes V (p) = {v} ∪ {t(ei) | i = 1, . . . , n}. A path p is simple if it
visits no node twice, i.e., #V (p) = length(p)+1. 1 A simple path is Hamiltonian
if it visits all nodes, i.e., #V (p) = #V.

2.3 Graph Morphisms, Subgraphs, and Matches

For graphs G, H ∈ GΣ , a graph morphism g : G → H is a pair of mappings
gV : VG → VH and gE : EG → EH that are structure-preserving, i.e., gV (sG(e)) =
sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for all e ∈ EG.

If the mappings gV and gE are bijective, then g is an isomorphism, and G
and H are called isomorphic.

If the mappings gV and gE are inclusions, then G is called a subgraph of H,
denoted by G ⊆ H.

For a graph morphism g : G → H , the image of G in H is called a match of
G in H , i.e., the match of G with respect to the morphism g is the subgraph
g(G) ⊆ H . If the mappings gV and gE are injective, the match g(G) is also called
injective. In this case, G and g(G) are isomorphic.

Example 2. There is a graph morphism from the graph Lrun = into
some Gs ∈ SP (G0) whenever Gs has a subgraph isomorphic to Lrun. Hence,
there are two graph morphisms into G12, there is one graph morphism into G1
and one into G123, but no graph morphism into G1234.

Consider the injective match of Lrun in G12 given by the right-most vertical
edge. The removal of the edges of this match yields the subgraph

Z0 =

2.4 Graph Transformation Rule

The idea of a graph transformation rule is to express which part of a graph
is to be replaced by another graph. Unlike strings, a subgraph to be replaced
can be linked in many ways (i.e., by many edges) with the rest of the graph.
Consequently, a rule also has to specify which kind of links are allowed. This
is done with the help of a third graph that is common to the replaced and the
replacing graph.

Formally, a rule r = (L ⊇ K ⊆ R) consists of three graphs L, K, R ∈ GΣ such
that K is a subgraph of L and R. The components L, K, and R of r are called
left-hand side, gluing graph, and right-hand side, respectively.

Example 3. Consider the following two rules.

1 #X denotes the number of elements of a finite set X.

Graph Transformation Units – An Overview 61

start = ⊇ ⊆

run = ⊇ ⊆ p

The rule start describes the removal of an unlabeled loop and the addition of a
begin-loop and an end -loop at the same node. The rule run replaces an unlabeled
edge by a p-edge removing the two loops of the left-hand side and adding an
end -loop at the target node of the right-hand side. The identity of the nodes is
chosen in such a way that the direction of the edge is preserved, i.e., the two
sources are equal and the two targets are equal.

2.5 Application of a Graph Transformation Rule

The application of a graph transformation rule to a graph G consists of replacing
an injective match of the left-hand side in G by the right-hand side in such
a way that the match of the gluing graph is kept. Hence, the application of
r = (L ⊇ K ⊆ R) to a graph G = (V, E, s, t, l) consists of the following three
steps.

1. An injective match g(L) of L in G is chosen.
2. Now the nodes of gV (VL − VK) are removed, and the edges of gE(EL − EK)

as well as the edges incident to removed nodes are removed yielding the
intermediate graph Z ⊆ G.

3. Afterwards the right-hand side R is added to Z by gluing Z with R in
g(K) yielding the graph H = Z + (R − K) with VH = VZ + (VR − VK)
2 and EH = EZ + (ER − EK). The edges of Z keep their labels, sources,
and targets so that Z ⊆ H. The edges of R keep their labels. They keep
their sources and targets provided that those belong to VR −VK . Otherwise,
sH(e) = g(sR(e)) for e ∈ ER − EK with sR(e) ∈ VK , and tH(e) = g(tR(e))
for e ∈ ER − EK with tR(e) ∈ VK .

The application of a rule r to a graph G is denoted by G=⇒
r

H , where H is
the graph resulting from the application of r to G. A rule application is called a
direct derivation. The subscript r may be omitted if it is clear from the context.

Given a finite set of rules and a finite graph G, the number of injective matches
is bounded by a polynomial in the size of G because the sizes of left-hand sides of
rules are bounded by a constant. Given an injective match, the construction of
the directly derived graph is linear in the size of G. Therefore, it needs polynomial
time to find a match and to construct a direct derivation.

Example 4. The rule run of Example 3 can be applied to the graph G12 in two
ways. One injective match of Lrun is given by the right vertical edge of G12. The
intermediate graph is Z0 as constructed in Example 2. And the derived graph is
G123. Consequently, one gets a direct derivation G12 =⇒

run
G123.

2 Given sets X and Y, X + Y denotes the disjoint union of X and Y.

62 H.-J. Kreowski, S. Kuske, and G. Rozenberg

Accordingly, the rule run can be applied to other graphs in SP (G0) yielding
a graph in SP (G0) in each case. Here is the complete list of direct derivations
by applying run:

G1 =⇒ G12, G2 =⇒ G23, G2 =⇒ G24, G3 =⇒ G34, G4 =⇒ G41,
G12 =⇒ G123, G12 =⇒ G124, G23 =⇒ G234, G24 =⇒ G241, G34 =⇒ G341,
G41 =⇒ G412, G123 =⇒ G1234, G234 =⇒ G2341, G341 =⇒ G3412, G412 =⇒ G4123.

Moreover, the rule start can be applied to G0 in four ways deriving G1, G2, G3
and G4.

2.6 Derivation and Application Sequence

The sequential composition of direct derivations d = G0 =⇒
r1

G1 =⇒
r2

· · · =⇒
rn

Gn

(n ∈ N) is called a derivation from G0 to Gn. As usual, the derivation from
G0 to Gn can also be denoted by G0

n=⇒
P

Gn where {r1, . . . , rn} ⊆ P , or just by

G0
∗=⇒
P

Gn. The string r1 · · · rn is the application sequence of the derivation d.

Example 5. The direct derivations in Example 3 can be composed into the fol-
lowing derivations:

G0 =⇒ G1 =⇒ G12 =⇒ G123 =⇒ G1234,
G0 =⇒ G1 =⇒ G12 =⇒ G124,
G0 =⇒ G2 =⇒ G23 =⇒ G234 =⇒ G2341,
G0 =⇒ G2 =⇒ G24 =⇒ G241,
G0 =⇒ G3 =⇒ G34 =⇒ G341 =⇒ G3412,
G0 =⇒ G4 =⇒ G41 =⇒ G412 =⇒ G4123.

Altogether, these derivations show that exactly the graphs in SP (G0) can be
derived from G0 by applying the rule start once and then the rule run k-times
for k ∈ {0, 1, 2, 3}.

It is not difficult to see that one can generate the set of all simple paths of
every unlabeled graph if each of its node has a simple unlabeled loop and if start
is only applied in the first derivation step. Moreover, the length of each such
derivation equals the number of nodes visited by the derived path. In particular,
the length is bounded by the size of the initial graph. The proof can be done by
induction on the lengths of derivations on one hand and on the lengths of simple
paths on the other hand.

The six derived graphs above correspond to the dead-ended simple paths of
G0 being those that cannot be prolonged by a further edge. The four graphs
G1234, G2341, G3421, and G4123 represent the Hamiltonian paths of G0.

3 Simple Graph Transformation Units

A rule yields a binary relation on graphs and a set of rules a set of derivations.
The example of simple paths shows (like many other examples would show)

Graph Transformation Units – An Overview 63

that more features are needed to model processes on graphs in a proper way,
in particular one needs initial graphs to start the derivation process, terminal
graphs to stop it, and some control conditions to regulate it. This leads to the
concept of a simple graph transformation unit. The well-known notion of a graph
grammar is an important special case.

Analogously to Chomsky grammars in formal language theory, graph trans-
formation can be used to generate graph languages. A graph grammar consists of
a set of rules, a start graph, and a terminal expression fixing the set of terminal
graphs. This terminal expression is a set Δ ⊆ Σ of terminal labels admitting all
graphs that are labeled over Δ.

3.1 Graph Grammar

A graph grammar is a system GG = (S, P, Δ), where S ∈ GΣ is the initial
graph of GG, P is a finite set of graph transformation rules, and Δ ⊆ Σ is a
set of terminal symbols. The generated language of GG consists of all graphs
G ∈ GΣ that are labeled over Δ and that are derivable from the initial graph S
via successive application of the rules in P , i.e., L(GG) = {G ∈ GΔ | S

∗=⇒
P

G}.

Example 6. The following graph grammar

unlabeled graphs
initial: empty
rules: new-node = empty ⊇ empty ⊆

new-edge = ⊇ ⊆
terminal: {∗}

generates the unlabeled graphs with a single unlabeled loop at each node. The
start graph is the empty graph. The rule new-node adds a node with an unlabeled
loop in each application. The rule new-edge adds an edge between two nodes. Due
to the fact that we consider only injective matches, no two nodes can be identified
in a match of the left-hand side of the rule new-edge. This guarantees that no new
loops are generated. The terminal expression {∗} specifies all unlabeled graphs.
Since the given rules transform unlabeled graphs into unlabeled ones, all derived
graphs belong to the generated language. It should be noted that the grammar
unlabeled graphs generates exactly the graphs that are used as initial graphs to
obtain their simple paths in Example 5.

As for formal string languages, one does not only want to generate languages, but
also to recognize them or to verify certain properties. Moreover, for modeling and
specification aspects one wants to have additional features like the possibility to
cut down the non-determinism inherent in rule-based graph transformation. This
can be achieved through the concept of transformation units (see, e.g., [4–6]),
which generalize standard graph grammars in the following ways:

64 H.-J. Kreowski, S. Kuske, and G. Rozenberg

– Transformation units allow a set of initial graphs instead of a single one.
– The class of terminal graphs can be specified in a more general way.
– The derivation process can be controlled.

The first two points are achieved by replacing the initial graph and the terminal
alphabet of a graph grammar by a graph class expression specifying sets of initial
and terminal graphs. The regulation of rule application is obtained by means of
so-called control conditions.

3.2 Graph Class Expressions

A graph class expression may be any syntactic entity X that specifies a class of
graphs SEM (X) ⊆ GΣ . A typical example is the above-mentioned subset Δ ⊆ Σ
with SEM (Δ) = GΔ ⊆ GΣ . Forbidden structures are also frequently used. Let
F be a graph, then SEM (forbidden(F)) contains all graphs G such that there is
no graph morphism f : F → G. Another useful type of graph class expressions
is given by sets of rules. More precisely, for a set P of rules, SEM (reduced(P))
contains all P -reduced graphs, i.e., graphs to which none of the rules in P can be
applied. Finally, it is worth noting that a graph grammar GG itself may serve
as a graph class expression with SEM (GG) = L(GG).

3.3 Control Conditions

A control condition is any syntactic entity that cuts down the non-determinism
of the derivation process. A typical example is a regular expression over a set of
rules (or any other string-language-defining device). Let C be a regular expres-
sion specifying the language L(C). Then a derivation with application sequence
s is permitted by C if s ∈ L(C). As a special case of this type of control con-
dition, the condition true allows every application sequence, i.e., L(C) = P ∗,
where P is the set of underlying graph transformation rules. Another useful
control condition is as long as possible, which requires that all rules be applied
as long as possible. More precisely, let P be the set of underlying rules. Then
SEM (as long as possible) allows all derivations G=⇒

P
G′ such that no rule of P

is applicable to G′. Hence, this control condition is similar to the graph class
expression reduced(P) introduced above. Also similar to as long as possible are
priorities on rules, which are partial orders on rules such that if p1 > p2, then
p1 must be applied as long as possible before any application of p2. More details
on control conditions for transformation units can be found in [7].

By now, we have collected all components for defining simple graph transfor-
mation units.

3.4 Simple Graph Transformation Units

A simple graph transformation unit is a system tu = (I, P, C, T), where I and
T are graph class expressions to specify the initial and the terminal graphs
respectively, P is a set of rules, and C is a control condition.

Graph Transformation Units – An Overview 65

Each such transformation unit tu specifies a binary relation SEM (tu) ⊆
SEM (I)×SEM (T) that contains a pair (G, H) of graphs if and only if there is a
derivation G

∗=⇒
P

H permitted by C. The semantic relation SEM (tu) may also be

denoted by RA(tu) if the aspect is stressed that it is based on rule application.

Example 7. The constructions from Examples 1 through 6 can be summarized
by the following simple graph transformation unit:

simple paths
initial: unlabeled graphs
rules: start, run
control: start ; run*
terminal: all

The initial graphs are unlabeled graphs with a single loop at each node as
generated by the graph grammar unlabeled graphs in Example 6. The rules start
and run are given in Example 3, and the control condition is a regular expression
over the set of rules with the sequential composition ; and the Kleene star *
(specifying that a single application of start can be followed by an arbitrary
sequence of applications of run). All graphs derived in this way from initial
graphs are accepted as terminal. This is expressed by the graph class expression
all. As discussed in Example 5, this unit generates all simple paths of each initial
graph.

Analoguously, one can model dead-ended simple paths and Hamiltonian paths
by replacing the terminal graph expression all by the expressions reduced({run})
and forbidden(�), resp.

4 Graph Transformation Units with Structuring

Simple graph transformation units allow one to model computational processes
on graphs in the small. For modeling in the large, structuring concepts are needed
for several reasons:

(1) To describe and solve a practical problem, one may need hundreds, thou-
sands, or even millions of rules. Whereas a single set of rules of such a size
would be hard to understand, the division into small components could help.

(2) Many problems can be solved by using the solutions of other problems.
For example, most kinds of tour planning require a shortest path algorithm.
Therefore, it would be unreasonable to model everything from scratch rather
than to re-use available and working components.

(3) The modeling of a large system requires the subdivision into smaller pieces
and the distribution of subtasks. But then it is necessary to know how com-
ponents interact with each other.

Graph transformation units can be provided with a structuring principle by the
import and use concept. The basic observation behind this concept is that the

66 H.-J. Kreowski, S. Kuske, and G. Rozenberg

semantics of a simple graph transformation unit is a binary relation on graphs,
like the rule application relation. Therefore, a unit (maybe with many rules) can
play the role of a single rule. Units may use or import entities that describe
binary relations on graphs. In particular, units may be used. This allows re-use
as well as the distribution of tasks. See, e.g., [6, 8] for more details.

4.1 Units with Import and Interleaving Semantics

A graph transformation unit with import is a system tu = (I, U, P, C, T), where
(I, P, C, T) is a simple graph transformation unit, and the use component U is
a set of identifiers (which is disjoint of P).

If each u ∈ U defines a relation SEM (u) ∈ G × G, then tu specifies a binary
relation on graphs INTERSEM (tu) defined as follows:

(G, G′) ∈ INTERSEM (tu) if G ∈ SEM (I), G′ ∈ SEM (T),

and there is a sequence G0, . . . , Gn with G = G0, Gn = G′, and, for i =
1, . . . , n, Gi−1 =⇒

r
Gi for some r ∈ P or (Gi−1, Gi) ∈ SEM (u) for some u ∈ U.

Moreover, (G, G′) must be accepted by the control condition C.
This relation is called interleaving semantics because the computation inter-

leaves rule applications and calls of the imported relations. It should be noted
that each choice of used relations defines an interleaving relation.

4.2 Networks of Units

The definition of structuring by import allows the use of any relation whenever
it has an identifier. There may be some library that offers standard relations.
Or one may use another framework that supports the modeling of relations of
graphs. But the most obvious choice is the import of units as use component.
This leads to sets of units that are closed under import:

Let V be a set of identifiers and tu(v) = (I(v), U(v), P (v), C(v), T (v)) a graph
transformation unit with import for each v ∈ V. Then the set {tu(v) | v ∈ V } is
closed under import if U(v) ⊆ V for all v ∈ V.

If one considers V as a set of nodes, the pairs (v, v′) for v′ ∈ U(v) as edges
with the projections as source and target, and the mapping tu as labeling, then
one gets a network (V, {(v, v′) | v′ ∈ U(v), v ∈ V }, tu).

If this network is finite and acyclic, then each of its units can be assigned with
an import level that is used to define the interleaving semantics of networks in
the next subsection:

level(v) =
{

0 if U(v) = ∅,
n + 1 if n = max{level(v′) | v′ ∈ U(v)}.

4.3 Interleaving Semantics of Acyclic Networks

The interleaving semantics of a unit with import requires that the used relations
are predefined. This can be guaranteed in finite and acyclic networks of units

Graph Transformation Units – An Overview 67

level-wise so that the semantics can be defined inductively. The units of level
0 are simple graph transformation units such that the rule application seman-
tics is defined. If the semantic relations up to level n are defined by induction
hypothesis, then the interleaving semantics of units on level n + 1 is defined.

Let (V, E, tu) be a finite and acyclic network of units. Then the interleaving
semantics INTER(tu(v)) for each v ∈ V is inductively defined by:

– INTER(tu(v)) = RA(tu(v)) for v ∈ V with level(v) = 0;
– assume that INTER(tu(v)) ⊆ G×G is defined for all v ∈ V with level(v) ≤ n

for some n ∈ N; then INTER(tu(v)) is equal to INTERSEM (tu(v)) with
SEM (v′) = INTER(tu(v′)) for v′ ∈ Utu(v) for v ∈ V with level(v) = n + 1.

Example 8. As shown in Example 7, the generation of dead-ended paths and
Hamiltonian paths coincides with the generation of simple paths except for
stronger terminal graph expressions. Hence, they can be modeled by the im-
port and re-use of simple paths.

dead-ended simple paths Hamiltonian paths
uses : simple paths uses : simple paths
control : simple paths control : simple paths
terminal reduced(run) terminal forbidden(�)

5 Approach Independence and Product Type

Graph class expressions and control conditions are introduced as generic concepts
that can be chosen out of a spectrum of possibilities. On the other hand, the
graphs, the rules and their application are fixed in a specific way in the preceding
sections. This is done to be able to illustrate the concepts by explicit examples.
The notions of graph transformation units and the interleaving semantics are
independent of the particular kind of graphs and rules one assumes. This is
made precise by the generic notion of a graph transformation approach.

5.1 Graph Transformation Approach

A graph transformation approach A = (G, R =⇒, X , C) consists of a class of
graphs G, a class of rules R, a rule application operator =⇒ that provides a
binary relation on graphs =⇒

r
⊆ G ×G for every r ∈ R, a class of graph class ex-

pressions X with SEM (x) ⊆ G for every x ∈ X , and a class of control conditions
C with SEM (c) ⊆ G × G for every c ∈ C.

All the notions of Sections 3 and 4 remain valid over such an approach A if
one replaces the class of graphs GΣ by G, the class of rules by R, and each rule
application by its abstract counterpart. In this sense, the modeling by graph
transformation units is approach-independent because it works independently of
a particular approach.

68 H.-J. Kreowski, S. Kuske, and G. Rozenberg

The approach independence is meaningful in at least two ways. On the one
hand, it means that everybody can use and choose his or her favorite kinds of
graphs, rules, rule applications, graph class expressions, and control conditions.
On the other hand, it allows one to adapt given approaches to particular appli-
cations or to build new approaches out of given ones without the need to change
the modeling concepts.

5.2 Restriction

Given a graph transformation approach A = (G, R, =⇒, X , C), each subclass
G′ ⊆ G induces a restricted approach restrict(A, G′) = (G′, R, =⇒, X , C), where
the semantics of =⇒, X , and C are taken from A, but restricted to the graphs
of G′.

Similarly, all other components of A may be restricted – while this can be done
for X and C without side effects, the restriction of rules and rule application may
influence the semantics of X and C, because graph class expressions and control
conditions may refer to rules.

With respect to the class of graphs GΣ as considered in the preceding sec-
tions, various restrictions are possible: unlabeled graphs, connected graphs, pla-
nar graphs, etc. A rule application to such a sort of graph would only be accepted
if the derived graph is of the same type. An undirected graph can be represented
by a directed graph if each undirected edge is replaced by two directed edges in
opposite direction. In this way, undirected graphs can be handled in the given
framework as a restriction of the introduced approach.

An example of a restricted kind of rules is a rule the left-hand side of which
coincides with the gluing graph so that no removal takes place if the rule is
applied.

A typical restriction concerning the rule application is the requirement of
injective matching as used in our sample approach. This is requested in many
graph transformation approaches in the literature.

5.3 Product Type

Another approach-building operator is the product of approaches. The idea is
to consider tuples of graphs and rules where a tuple of rules is applied to a
tuple of graphs by applying the component rules to the component graphs si-
multaneously. It is not always convenient to apply a rule to each component
graph. Therefore, we add the symbol − to each class of rules. Whenever − is
a component of a tuple of rules, the corresponding component graph remains
unchanged.

Let Ai = (Gi, Ri, =⇒i, Xi, Ci) for i = 1, . . . , n for some n ∈ N be a graph
transformation approach. Then the product approach is defined by

n∏
i=1

Ai = (
n∏

i=1
Gi,

n∏
i=1

(Ri ∪ {−}), =⇒,
n∏

i=1
Xi,

n∏
i=1

Ci)

Graph Transformation Units – An Overview 69

where

– (G1, . . . , Gn) =⇒ (G′
1, . . . , G

′
n) for (r1, . . . , rn) ∈

n∏
i=1

(Ri ∪ {−}) if, for i =

1, . . . , n, Gi =⇒
ri

G′
i for ri ∈ Ri and Gi = G′

i for ri = −,

– (G1, . . . , Gn) ∈ SEM (x1, . . . , xn) for (x1, . . . , xn) ∈
n∏

i=1
Xi if Gi ∈ SEM (xi)

for i = 1, . . . , n,

– ((G1, . . . , Gn), (G′
1, . . . , G

′
n)) ∈ SEM (c1, . . . , cn) for (c1, . . . , cn) ∈

n∏
i=1

Ci if

(Gi, G
′
i) ∈ SEM (ci) for i = 1, . . . , n.

5.4 Tuples of Graph Transformation Units

Analoguously to the tupling of graphs, rules, rule applications, graph class ex-
pressions and control conditions in the product of graph transformation ap-
proaches, graph transformation units over the approaches can be tupled.

Let tui = (Ii, Ui, Pi, Ci, Ti), for each i = 1, . . . , n for some n ∈ N, be
a graph transformation unit over the graph transformation approach Ai =
(Gi, Ri, =⇒i, Xi, Ci). Then the tuple

(tu1, . . . , tun) = ((I1, . . . , In),
n∏

i=1
Ui,

n∏
i=1

Pi, (C1, . . . , Cn), (T1, . . . , Tn))

is a graph transformation unit over the product approach
n∏

i=1
Ai.

The important aspect of the tupling of units is that the choice of the compo-
nents of the single units induces automatically all the components of the tuple
of units by tupling the graph class expressions for initial and terminal graphs
resp. and the control conditions as well as by the products of the import and
rule sets.

As the tuple of units is defined component-wise, its semantics is the prod-
uct of the semantic relations of the components up to a reordering of com-
ponents. Let SEM i(u) ⊆ Gi × Gi be a binary relation on graphs for each

u ∈ Ui, i = 1, . . . , n. Let SEM i(u1, . . . , un) ⊆
n∏

i=1
Gi ×

n∏
i=1

Gi be defined for

(u1, . . . un) ∈
n∏

i=1
Ui by ((G1, . . . , Gn), (G′

1, . . . , G
′
n)) ∈ SEM ((u1, . . . , un)) if and

only if (Gi, G
′
i) ∈ SEM i(ui) for i = 1, . . . , n. Then the following holds:

((G1, . . . , Gn), (G′
1, . . . , G

′
n)) ∈ INTERSEM (tu) if and only if (Gi, G

′
i) ∈

INTERSEM i
(tui) for i = 1, . . . , n.

As the interleaving semantics of a tuple of units is given by the product of the
interleaving semantics, the tuple of units tu may also be denoted by tu1×· · ·×tun

to stress the meaning already on the syntactic level.

Example 9. Consider the tuple of units simple paths×nat×bool where the first
component is given in Example 7 and nat and bool are modeled as follows:

70 H.-J. Kreowski, S. Kuske, and G. Rozenberg

nat
initial: nat0
rules: pred =

1
⊇

1
⊆

1
3

is 0 = ⊇ ⊆

bool
initial: empty
rules: set true = empty ⊇ empty ⊆ true

terminal:
true

= TRUE

nat0

initial: = 0
rules: succ =

1
⊇

1
⊆

1

The start graph of nat0 is a node with a begin-loop and an end -loop which
may be seen as the number 0. The application of succ adds an edge to the end -
node while the added target becomes the new end. Therefore, the derived graphs
are simple paths of the form

. . . = n

with n edges, for some n ∈ N, representing the number n. There is no control, and
all graphs are terminal. In other words, nat0 generates the natural numbers being
the initial graphs of nat. The rule pred is inverse to succ so that its application
transforms the graph n + 1 into the graph n. The rule is 0 is applicable to a
graph n if and only if n = 0 such that the rule provides a 0-test. Altogether, the
unit nat can count down a given number and test whether 0 is reached.

The unit bool is extremely simple. The start graph is empty. The only rule
adds a node with a true-loop whenever applied. But after one application, the
terminal graph is reached already. This graph can be seen as the truth value
TRUE .

According to the definitions of the components, an initial graph of the tu-
ple of units simple paths × nat × bool has the form (G, n, empty), where G
is an unlabeled graph with an unlabeled loop at each node. Consider, in par-
ticular, (G0, 3, empty). To such an initial graph, one may apply the triple rule
(start, −, −) replacing an unlabeled loop of G by a begin- and an end -loop and
keeping n and empty unchanged. For example, one can derive (G1, 3, empty)
from (G0, 3, empty). Now one may apply the triple rule (run, pred, −) repeat-
edly. This builds a simple path in G edge by edge while n is decreased 1 by 1.
If G has a simple path of length n, one can derive (G′, 0, empty) in this way.
For example, one can derive (G1234, 0, empty) from (G1, 3, empty). Finally, the
triple rule (−, is 0, set true) becomes applicable deriving (G′, 0,TRUE) and
(G1234, 0,TRUE) in particular.
3 The number 1 identifies the identical nodes to make the inclusions unambiguous.

Graph Transformation Units – An Overview 71

Altogether, this models a test whether a graph has a simple path of a certain
length.

simple paths of some lengths
initial: : simple paths × nat
uses : simple paths × nat × bool
control : (start, −, −); (run, pred, −)∗; (−, is 0, set true)
terminal : bool

Due to the import, this unit is based on the tuple of units considered above.
This provides the tuple rules in the control condition, which is just a regular ex-
pression over the set of rules. But the graph class expressions are of a new type
related to the product. The initial expression means that the first two compo-
nents can be chosen freely as inputs of the modeled test. The third component
is always the empty graph so that it can be added by default. The terminal
expression means the projection to the third component as output of the test.

The semantic analysis shows that the unit simple paths of some lengths relates
a graph G and a number n to the truth value TRUE if and only if G has a
simple path of length n. Moreover, the length of every derivation is bounded
by n + 2 because n can be decreased by 1 n times at most. It is also bounded
by the number m of nodes of G plus 1 because simple paths are shorter than
m. Because the number of matches for the rules is also bounded polynomially,
the unit proves that the test for simple paths of certain lengths is in the class
NP. This is a well-known fact in this case, but illustrates that the introduced
framework supports proofs like this.

If the input length is chosen as the number of nodes of the input graph minus
1, then the unit yields TRUE if and only if the input graph has a Hamiltonian
path. In this way, the test for simple paths of certain lengths turns out to be NP -
complete because the Hamiltonian-path problem is NP -complete and a special
case.

5.5 Typing of Units

A graph transformation unit models a relation between initial and terminal
graphs. Hence one may say that the type of a unit tu = (I, P, C, T) is I → T.
The introduced product type allows a more sophisticated typing of the form
I1 × · · · × Im → T1 × · · · × Tn. This works as follows. Let tu1 × · · · × tup be a
tuple of units, let input : {1, . . . , m} → {1, . . . , p} be an injective mapping with
Ii = I(tuinput(i)) for i = 1, . . . , m, and let output : {1, . . . , n, } → {1, . . . , p} be a
mapping with Tj = T (tuoutput(j)). Moreover, there may be some extra control
condition c for the tuple of units. Then this defines a unit of type I1 ×· · ·×Im →
T1 × · · · × Tn by

typed unit
initial: input
uses: tu1 × · · · × tup

control: c
terminal: output

72 H.-J. Kreowski, S. Kuske, and G. Rozenberg

This unit relates graph tuple (G1, . . . , Gm) ∈
m∏

i=1
SEM (Ii) with the graph tu-

ple (H1, . . . , Hn) ∈
n∏

i=1
SEM (Tj) if there are graphs ((G′

1, . . . , G
′
p), (H

′
1, . . . , H

′
p))

belonging to the interleaving semantics of tu1×· · ·×tup, fulfilling in addition the
control condition c, and Gi = G′

input(i) for i = 1, . . . , m as well as Hj = H ′
output(j)

for j = 1, . . . , n, where the graphs Gi with i /∈ input({1, . . . , m}) can be cho-
sen arbitrarily. Some of the components of the product are inputs, some outputs,
some may be auxiliary. Initially, the input components are given. The other com-
ponents must be chosen which is meaningful if there are unique initial graphs
that can serve as defaults. Then the product is running component-wise accord-
ing to the component rules and control conditions reflecting its extra control
condition. If all components are terminal, the output components are taken as
results.

A more detailed investigation of the product type can be found in [9, 10].

6 Further Research and Related Work

In the preceding sections, we have given an overview of graph transformation
units as devices to model algorithms, processes, and relations on graphs. Such
units consist of rules together with specifications of initial and terminal graphs
as well as control conditions to cut down the nondeterminism of rule applica-
tions. Moreover, units can import other units (or other relations on graphs)
providing in this way possibilities of re-use and of structuring. The operational
semantics of graph transformation units is given by the interleavings of rule ap-
plications and calls of imported relations; it yields a relation between initial and
terminal graphs. This interleaving semantics is well-defined if the import struc-
ture is acyclic. All the considered concepts work for arbitrary graph transforma-
tion approaches, where an approach is the computational base underlying graph
transformation units. Such an approach consists of classes of graphs, rules, graph
class expressions, and of control conditions as well as a notion of rule application.
Every component of an approach can be chosen out of a wide spectrum of graph
transformation concepts one encounters in the literature. An interesting aspect
of this kind of approach independence is the possibility to construct new ap-
proaches from given ones. For example, this allows one to transform undirected
graphs as a restriction of an approach for directed graphs. This also includes
the product of approaches which handles tuples of graphs and provides a quite
general typing of semantic relations.

With respect to the modeling of graph algorithms, Plump’s and Steinert’s
concept of graph programs [11] is closely related to transformation units (cf.
also Mosbah and Ossamy [12]). The major difference is that graph programs
are based on a particular graph transformation approach. In contrast to this,
approach independence allows the modelers to choose their favorite approaches
of which the area of graph transformation offers quite a spectrum (see, e.g., [1] for
the most frequently used approaches and Corradini et al. [13], Drewes et al. [14],

Graph Transformation Units – An Overview 73

and Klempien-Hinrichs [15] as examples of newer approaches). In this context,
one may note that the categorial framework of adhesive categories provides a
kind of approach independence. While rules and rule application are fixed by
the use of pushouts, one can enjoy quite a variety of classes of graphs due to the
possible choices of the underlying category (see, e.g., [16, 17]).

As a structuring principle, transformation units are closely related to other
module concepts for graph transformation systems like the ones introduced by
Ehrig and Engels [18], by Taentzer and Schürr [19], by Große-Rhode, Parisi-
Presicce and Simeoni [20, 21] as well as Schürr’s and Winter’s package concept
[22]. Heckel et al. [23] classify and compare all these concepts including trans-
formation units in some detail.

We point out now some further possible directions of the investigation of graph
transformation units:

1. If one permits cyclic import, meaning that units can use and help each other
in a recursive way, then the interleaving semantics as defined in Section 4
is no longer meaningful because the imported relations cannot be assumed
to be defined already. In this case, the infinite iteration of the interleaving
construction works. (see, e.g.,[24]).

2. The interleaving semantics is based on the iterated sequential composition
of the relations given by rule application and the imported relations. There-
fore, it is a purely sequential semantics. But one may replace the sequential
composition by other operations on relations like, for example, parallel com-
position. Every choice of such operations defines an interlinking semantics of
graph transformation units that, in particular, covers modes of parallel and
concurrent processing (see, e.g.,[25]).

3. The semantic relations considered so far are associated to single units which
control the computations and call the service of other units. In this sense, a
graph transformation unit is a centralized computational entity. The concept
of autonomuous units (see, e.g.,[26–28]) is a generalization to a decentralized
processing of graphs. The autonomuous units in a community act, interact,
and communicate in a common environment, with each of them controling
its own activities autonomuously.

Acknowledgement. We are grateful to Andrea Corradini for valuable comments
on an earlier version of the overview.

References

1. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)

2. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformation. Applications, Languages and
Tools, vol. 2. World Scientific, Singapore (1999)

3. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformation. Concurrency, Parallelism,
and Distribution, vol. 3. World Scientific, Singapore (1999)

74 H.-J. Kreowski, S. Kuske, and G. Rozenberg

4. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.J., Kuske, S.,
Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and
programming. Science of Computer Programming 34(1), 1–54 (1999)

5. Kreowski, H.J., Kuske, S.: Graph transformation units and modules. In: [2], pp.
607–638.

6. Kreowski, H.J., Kuske, S.: Graph transformation units with interleaving semantics.
Formal Aspects of Computing 11(6), 690–723 (1999)

7. Kuske, S.: More about control conditions for transformation units. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 323–337. Springer, Heidelberg (2000)

8. Kuske, S.: Transformation Units—A Structuring Principle for Graph Transforma-
tion Systems. PhD thesis, University of Bremen (2000)

9. Klempien-Hinrichs, R., Kreowski, H.J., Kuske, S.: Rule-based transformation of
graphs and the product type. In: van Bommel, P. (ed.) Transformation of Knowl-
edge, Information, and Data: Theory and Applications, pp. 29–51. Idea Group
Publishing, Hershey, Pennsylvania (2005)

10. Klempien-Hinrichs, R., Kreowski, H.J., Kuske, S.: Typing of graph transformation
units. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT
2004. LNCS, vol. 3256, pp. 112–127. Springer, Heidelberg (2004)

11. Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig,
H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS,
vol. 3256, pp. 128–143. Springer, Heidelberg (2004)

12. Mosbah, M., Ossamy, R.: A programming language for local computations in
graphs: Computational completeness. In: 5th Mexican International Conference on
Computer Science (ENC 2004), pp. 12–19. IEEE Computer Society, Los Alamitos
(2004)

13. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)

14. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Eetvelde, N.V.: Adaptive star
grammars. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.
(eds.) ICGT 2006. LNCS, vol. 4178, pp. 77–91. Springer, Heidelberg (2006)

15. Klempien-Hinrichs, R.: Hyperedge substitution in basic atom-replacement lan-
guages. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT
2002. LNCS, vol. 2505, pp. 192–206. Springer, Heidelberg (2002)

16. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement
systems: A new categorical framework for graph transformation. Fundamenta In-
formaticae 74(1), 1–29 (2006)

17. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. (eds.): Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006)

18. Ehrig, H., Engels, G.: Pragmatic and semantic aspects of a module concept for
graph transformation systems. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G.
(eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 137–154. Springer, Heidelberg
(1996)

19. Taentzer, G., Schürr, A.: DIEGO, another step towards a module concept for graph
transformation systems. In: Corradini, A., Montanari, U. (eds.) SEGRAGRA 1995,
Joint COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Com-
putation. Electronic Notes in Theoretical Computer Science, vol. 2, Elsevier, Am-
sterdam (1995)

Graph Transformation Units – An Overview 75

20. Grosse-Rhode, M., Parisi Presicce, F., Simeoni, M.: Refinements and modules for
typed graph transformation systems. In: Fiadeiro, J.L. (ed.) WADT 1998. LNCS,
vol. 1589, pp. 137–151. Springer, Heidelberg (1999)

21. Große-Rhode, M., Parisi-Presicce, F., Simeoni, M.: Formal software specification
with refinements and modules of typed graph transformation systems. Journal of
Computer and System Sciences 64(2), 171–218 (2002)

22. Schürr, A., Winter, A.J.: UML packages for PROgrammed Graph REwriting Sys-
tems. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998.
LNCS, vol. 1764, pp. 396–409. Springer, Heidelberg (2000)

23. Heckel, R., Engels, G., Ehrig, H., Taentzer, G.: Classification and comparison of
module concepts for graph transformation systems. In: [2], pp. 639–689.

24. Kreowski, H.J., Kuske, S., Schürr, A.: Nested graph transformation units. Interna-
tional Journal on Software Engineering and Knowledge Engineering 7(4), 479–502
(1997)

25. Janssens, D., Kreowski, H.J., Rozenberg, G.: Main concepts of networks of trans-
formation units with interlinking semantics. In: Kreowski, H.J., Montanari, U.,
Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and
Systems Modeling. LNCS, vol. 3393, pp. 325–342. Springer, Heidelberg (2005)

26. Hölscher, K., Kreowski, H.-J., Kuske, S.: Autonomous units and their semantics
— the sequential case. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,
Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 245–259. Springer, Heidel-
berg (2006)

27. Hölscher, K., Klempien-Hinrichs, R., Knirsch, P., Kreowski, H.J., Kuske, S.: Au-
tonomous units: Basic concepts and semantic foundation. In: Hülsmann, M.,
Windt, K. (eds.) Understanding Autonomous Cooperation and Control in Logis-
tics. The Impact on Management, Information and Communication and Material
Flow, Springer, Berlin, Heidelberg, New York (2007)

28. Kreowski, H.J., Kuske, S.: Autonomous units and their semantics - the parallel
case. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp.
56–73. Springer, Heidelberg (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

