
Autonomous Units:
Basic Concepts and Semantic Foundation

Karsten Hölscher
1
, Renate Klempien-Hinrichs

2
, Peter Knirsch

1
, Hans-Jörg

Kreowski
1
, Sabine Kuske

1

1
Faculty for Mathematics and Computer Science, University of Bremen,

Bremen, Germany
2
Faculty for Production Engineering, University of Bremen, Bremen,

Germany

Introduction

Today, most data processing systems and most logistic systems comprise

various, possibly distributed, components. These components typically act

autonomously, but they may also communicate and interact with each

other, spontaneously linking up to form a network. These components do

not necessarily need to be stationary. Sometimes they even move or are

carried around. Although the components act autonomously, the task to be

solved is handled by their interaction and the system as a whole. In this

paper the concept of autonomous units for modeling such systems is pro-

posed. Autonomous units form a community with a common environment,

in which they act and which they transform. Autonomous units are based

on rules, the applications of which yield changes in the environment. They

are also equipped with an individual goal, which they try to accomplish by

applying their rules. A control condition enables autonomous units to se-

lect at any time and in any situation the rule that should actually be applied

from the set of all applicable rules.

The motivation for introducing autonomous units as a modeling concept

arises from the Collaborative Research Centre 637 Autonomous Cooperat-

ing Logistic Processes. This interdisciplinary collaboration focuses on the

question whether and under which circumstances autonomous control may

be more advantageous than classical control, especially regarding time,

costs and robustness. The guiding principle of autonomous units is the

possibility to integrate autonomous control into the model of the processes.

This provides a framework for a semantically sound investigation and

Published in: Hülsmann, M.; Windt, K. (eds.): Understanding Autonomous Cooperation & Control in Logistics – The Impact on Management,
Information and Communication and Material Flow. Springer, Berlin, 2007

comparison of different mechanisms of autonomous control. In more detail

the aims are the following:

1. Algorithmic and particularly logistic processes shall be described in a

very general and uniform way, based on a well-founded semantics.

2. The range of applications and included methods should comprise

methods starting from classical process chain models like the one by

Kuhn (see, e.g., (Kuhn 2002)) or Scheer (see, e.g., (Scheer 2002)) and

the well-known Petri nets (see, e.g., (Reisig 1998)) leading to multi-

agent systems (see, e.g., (Weiss 1999)) and swarm intelligence (see,

e.g., (Kennedy and Eberhart 2001)).

3. The fact that autonomous units are based on rules provides the foun-

dation for the dynamics of the processes. The application of these

rules causes local changes in the common environment, yielding the

steps of the processes, transformations, and computations. Archetypes

for this behavior are grammatical systems of all kinds (see, e.g.,

(Rozenberg and Salomaa 1997)) and term rewriting systems (see,

e.g., (Baader and Nipkow 1998)) as well as the domain of graph

transformation (see, e.g., (Rozenberg 1997; Ehrig et al. 1999a; Ehrig

et al. 1999b) and DNA computing (see, e.g., (Păun et al. 1998)). The

rule-based approach is meant to ensure the possibility of executing

the semantics as well as to lay the foundation for formal verification.

4. The autonomous control should become apparent on two levels. On

the one hand a system comprises a community of autonomous units in

an underlying environment. On this level all the units are considered

equal in the sense that they may act independently of other units

(provided that the state of the environment is suitable for the applica-

tion of the desired rules). Since no further control exists, the units act

autonomously. On the other hand transformation units as rule-based

systems are typically nondeterministic, since at any time several rules

may be applicable, or the same rule may even be applicable at differ-

ent positions. In this case the autonomous control facilitates the selec-

tion of the different possibilities.

The following section introduces autonomous units. In Sects. 3 to 5 the

semantics of a community of autonomous units is defined in three stages.

First of all a simple sequential semantics is introduced. This semantics is

merely suitable for systems that allow only one action at a time. This cov-

ers not only many algorithms and sequential processes, but also card and

board games. The sequential semantics of autonomous units is also pre-

sented and investigated in (Hölscher et al. 2006b). On the second stage a

parallel semantics is defined. Here a number of actions take place in paral-

lel at the same time. This allows for an adequate description of parallel

derivations in L-systems (see e.g., (Rozenberg and Salomaa 1998), the fir-

ing of Petri nets, and parallel algorithms and processes. While the parallel

actions in this semantics occur sequentially, the third stage defines a con-

current semantics with no chronological relations between the acting units.

Here the autonomous units may act independently, unless a causal rela-

tionship demands a certain order of actions.

The concept of autonomous units is illustrated employing two examples.

On the one hand place-transition systems are modeled so that every transi-

tion corresponds to one autonomous unit. On the other hand a transport

network with packages and trucks is described as a system of autonomous

units. Here every package as well as every truck is modeled as an autono-

mous unit. The paper ends with a short conclusion.

It should be pointed out that autonomous units generalize the concept of

transformation units, which has been investigated in e.g. (Janssens et al.

2005; Kuske 2000; Kreowski and Kuske 1999; Kreowski et al. 1997). Here

the derivation process is controlled by a main transformation unit and no

changes of the environment can occur outside of this control. First steps

towards distributed transformation units can be found in (Knirsch and

Kuske 2002).

Autonomous Units

In this section, the concept of autonomous units is introduced as a model-

ing approach for data processing systems with autonomous components.

Autonomous units form a community with a common environment, which

they may transform.

For the sake of simplicity we represent the environments as graphs. But

graphs are used in a quite generic sense, including all sorts of diagrams.

They may be directed, undirected, labeled or attributed. Since graphs may

comprise different subgraphs and different connected components it is also

possible to use sets, multisets, and lists of graphs or even arbitrarily struc-

tured graphs as environments.

Every autonomous unit is equipped with a goal, rules and a control con-

dition, which autonomously manages the application of the rules in order

to accomplish the given goal. Rules transform the environment through

their application, thus defining a binary relation of environments as their

semantics. Since the control condition determines which rules may be ap-

plied to the current environment, its semantics is also defined as a binary

relation of environments. Goals are formulated as class expressions, the

semantics of which is a class of environments in which the goal is accom-

plished.

All available environments, rules, control conditions and class expres-

sions form a transformation approach. Its rules, control conditions and

class expressions provide the syntactical ingredients of autonomous units.

Additionally class expressions are used to define the initial environments

and the overall goals of system models.

A transformation approach A = (G, R , X, C) consists of a class of graphs

G, called environments, a class of rules R , a class of environment class ex-

pressions X and a class of control conditions C. Every rule r ∈R specifies a

binary semantic relation SEM(r) ∈G ×G. Every pair (G,H) ∈SEM(r) is a

rule application of r, which is also called a direct derivation and denoted

as HG r⇒ . The semantics of a class expression X ∈X is specified as a

set SEM(X) ⊆ G of environments. A control condition defines a binary re-

lation SEM(C) ⊆ G ×G on environments as semantics.

A community of autonomous units COM = (Goal,Init, Aut) consists of an

environment class expression Goal, defining the terminal environments

and thus the overall goal, an environment class expression Init, specifying

the initial environments, and a set Aut of autonomous units.

An autonomous unit is a tuple aut = (goal,rules,control) with goal ∈X

being the individual goal, rules ⊆ R being the set of rules, and control ∈C

being the control.

Example: Place/Transition Systems

Place/Transition (P/T) systems are a frequently used kind of Petri nets that

can be modeled as a system of autonomous units. The P/T net with its

marking is regarded as the environment. Transitions are modeled as rules.

The firing of a transition defines a rule application that changes the mark-

ing in the usual way. Class expressions may be single markings, which de-

fine themselves as semantics. A further class expression all is also needed,

meaning that all environments are permitted as goals. The control condi-

tion consists solely of the standard condition free, which defines all pairs

of environments and imposes no restrictions on the application of rules.

If every transition t is considered as an autonomous unit

aut(t)=(all,{t},free) a P/T net N with the set of transitions T and initial

marking m0 is modeled as the community of autonomous units

COM(N,m0)=(all,m0,{aut(t) | t ∈T}).

Example: Transport Net

As a further illustration, a simplified example from the domain of transport

logistics is sketched.

Bremen

Dortmund

Hamburg

2

2

2
3

4

2

8
1

6!

16
2

12!3

1

!

dest

Hanover

Fig. 1. A transport net represented by a graph

A transport net is a graph in which nodes represent locations, e.g. de-

pots, where packages may be picked up and to which packages may be de-

livered. The edges represent the connections between the depots. Every

edge is labeled with the time that is needed to travel along the connection

that is represented by the edge. Fig. 1 shows a small excerpt of a transport

net containing depots in the cities Dortmund, Bremen, Hamburg and

Hanover. Trucks and packages are modeled as autonomous units, which

use the transport net as underlying environment. Instances of these

autonomous units are represented as special nodes with unique identifiers.

The transport net contains two trucks (1, 2) and one package (1). The

truck nodes are labeled with a number, which represents the amount of

time the truck may be moving around. In the given example truck 1 is

permitted to move around eight hours, while truck 2 may move around 16

hours (because it may be equipped with two drivers). Both truck nodes are

connected to a rectangular tour node which is labeled with a number and

an exclamation mark. The number defines the payload capacity of the

truck, in our example specified in tons. Truck 1 has a payload of 6 tons,

and truck 2 may load up to 12 tons of cargo. The exclamation mark indi-

cates the current tour node. A package node is labeled with a number

which specifies its weight. It is also connected to a rectangular tour node,

which in turn is connected to the depot that currently holds the package.

Analogously to the truck tour node the exclamation mark indicates the cur-

rent package tour node. An edge labeled “dest” connects the package node

with its destination depot, i.e. the depot to which the package has to be de-

livered.

L R

m

k k!

id
z-m

 zm ≤
m

k!

id
z

Fig. 2. Arranging a truck tour

The transformation unit truck contains a rule for planning a tour. This

rule is depicted in Fig. 2. The application of this rule extends the current

truck tour. This is done by adding a tour section leading from the current

depot to an adjacent depot. Here the remaining travel time z of the truck

must be at least as great as the travel time m between the depots, denoted

by the application condition m ≤ z. Such an application condition has to be

evaluated to true, otherwise the rule may not be applied. The application

of the rule defines the newly added tour section (represented by the added

tour node) as current, and reduces the travel time of the truck by the time

that is needed to drive to the adjoining depot.

A package unit has a tour planning rule that is similar to the rule of the

truck units. It is depicted in Fig. 3.

L

t
id

!

m

dest

R

t
id

!

m

Fig. 3. Planning a package tour

The application of this rule extends the package tour by adding a new

package tour node and connecting it to an adjacent depot. Analogously to

the truck rule the newly added package tour node becomes the current one.

This rule should only be applicable if the package is not planning its final

tour section. This is modeled in the left-hand side of the rule by the dashed

edge connecting the package node with a depot. This edge is labeled with

“dest”, indicating that the depot is the place to which the package should

be delivered. The dashed edge is called a negative application condition

(NAC) (Habel et al. 1996). If a situation as specified in the NAC is present

in the transport net, the rule cannot be applied. Hence, the rule must not be

applied if the adjacent depot is already the target depot of the package.

If this is the case the second tour planning rule of the package unit is

needed. It is depicted in Fig. 4.

L

t
id

!

dest

m

R

t
id

dest

m

Fig. 4. The final part of the package tour

Here the adjacent depot must be the destination depot of the package, as

indicated by the edge labeled with “dest”. Basically the application of the

rule yields the same changes as the first tour planning rule of the package

unit. The only difference is that the newly added package tour node is not

labeled with an exclamation mark. This is due to the fact, that no current

tour node is needed anymore, because the package has finished its tour

planning. Given these tour planning rules, truck units as well as package

units may independently plan their tours.

After planning its tour a package should be picked up by a truck. There-

fore, a package unit contains a rule that makes an offer to a passing truck.

This rule is depicted in Fig. 5. The rule may be applied if a tour section of

a truck coincides with a tour section of the package and the payload capac-

ity k of the truck for this tour section is sufficient for the transport of the

package (as indicated by the application condition t ≤ k). The application of

the rule inserts a new edge into the environment, connecting the package

tour node to the truck tour node. It is labeled with the actual offer n and a

question mark, indicating that an offer for transportation has been made for

the amount of n currency units.

L

m

k
id'

t
id

n?#

 kt ≤ R

m

k
id'

t
id

n?

 mn ≤≤1

Fig. 5. A package offer

The dashed edges in the left-hand side L of the rule again represent

negative application conditions. They guarantee that no previous offer was

made by the package to the truck if one of the dashed edges with the given

labels connect the tour nodes in the specified way. No offer can be made if

either the package unit has already made an offer with some amount n, or

if the truck unit has finally rejected the offer (indicated by the label “#”).

The right-hand side of the rule also contains the post-condition 1≤n≤m.

Such a post-condition has to hold after the rule is applied. In this case, the

post-condition guarantees that the package will always offer an amount

that is proportionally related to the distance.

The truck unit contains two rules which handle package offers. The first

rule is depicted in Fig. 6.

R

m

k
id'

t
id

#

L

m

k
id'

t
id

n?

Fig. 6. Refusal of an offer

It specifies the rejection of a package offer by deleting the edge represent-

ing the offer and inserting a reversely directed edge labeled “#”. In this

case a package unit cannot make another offer, because the NAC of the of-

fer rule prohibits the existence of such an edge. The second rule is depicted

in Fig. 7 and specifies the acceptance of an offer.

L

m

k
id'

t
id

n?

R

m

k-t
id'

t
id

n

Fig. 7. Accepting a package

Similar to the first rule, the edge representing the offer is removed and a

reversely directed edge is inserted. But in this case the edge is labeled with

n, indicating that the truck transports the package in this section of its tour

for a payment of n. Additionally the weight t of the package is subtracted

from the payload capacity k of the truck for the corresponding tour section.

The connections of the package tour node to the depots are removed, since

the actual route of this tour section is described by the tour node of the

truck. This removal also ensures that the package does not make any fur-

ther offers for this tour section.

In the following sections the semantics of communities of autonomous

units is defined in three variants. The simplest one is the sequential seman-

tics, which is merely suitable for systems that allow only one action at a

time. The parallel semantics allows for activities to take place in parallel,

i.e. in a synchronized way. The third variant covers true concurrency. Only

causally related activities (e.g. one action needs something that is created

by another action) occur in chronological order. Other activities may hap-

pen at any time.

Sequential Semantics

Since the application of rules provides single computational steps, a first

simple semantics for communities of autonomous units is obtained by se-

quential composition of these steps. This yields finite as well as infinite

sequential processes.

Let COM = (Goal, Init, Aut) be a community of autonomous units. A fi-

nite sequential process, also called derivation or computation is then de-

fined by (Gi)i∈[n] with [n]={0,…,n} for n ∈IN, where the following holds for

all i = 1,…,n:

An autonomous unit auti = (goali,rulesi,controli) and a rule ri ∈rulesi ex-

ist such that iri GG
i

⇒
−1 and (Gi-1,Gi) ∈SEM(controli).

Analogously, an infinite sequential process is given by a sequence

(Gi)i∈IN with the same properties as in the finite case, but for i ∈IN. In this

sense processes are arbitrary sequential compositions of rule applications

by autonomous units, obeying the control condition of the currently active

unit. The set of all sequential processes is denoted as SEQ(Aut). Accord-

ingly, SEQ(Init,Aut) contains all processes which start with an initial envi-

ronment, and SEQ(Goal,Init,Aut) = SEQ(COM) contains all finite processes

which additionally terminate in an environment that meets the goal.

In the latter case the semantics can also be defined by an input-output

relation, which describes the computation without intermediate steps: we

have (G,H) ∈RELSEQ(COM) if (Gi)i∈[n] ∈SEQ(COM) exists such that G=G0

and H = Gn. Even for arbitrary processes the goal specification makes

sense, since it can be determined whether Goal has been reached for proc-

esses (Gi)i∈IN in intermediate steps: Gi0 ∈SEM(Goal) for some i0 ∈IN ?

Analogously, a sequential semantics for a single autonomous unit aut =

(goal,rules,control) can be defined taking into account that besides the rule

application of the considered unit other units may also change the envi-

ronment.

Let CHANGE ⊆G ×G be a binary relation on environments, which de-

scribes all changes that are not performed by aut. Let further

N = [n] = {0,…,n} for an n ∈IN or N = IN. Then a sequential process of aut is

a sequence (Gi)i∈IN such that for all i ≥ 1 either (Gi-1,Gi) ∈CHANGE or for an

r ∈ rules Gi-1 r⇒ Gi and (Gi-1,Gi) ∈SEM(control). The set of sequential aut

processes is denoted as SEQCHANGE(aut).

The sequential processes SEQ(Aut) of a set Aut of autonomous units and

the sequential processes of one of its members are strongly connected:

SEQ(Aut)=SEQSEQ(Aut-{aut})(aut).

So every sequential process is an aut process for every autonomous unit

in Aut and vice versa, provided that the changes in the environment are

precisely the sequential processes of the other autonomous units.

Example Place/Transition Systems

Let COM(N,m0) be the system of autonomous units that corresponds to a

P/T system. Then the application of a rule yields the same effect as the fir-

ing of a transition. In this way sequential processes correspond to the firing

sequences of the P/T system.

Example Transport Net

Bremen

Dortmund

Hamburg

2

2

2
3

4

2

3

1

dest

8
1

6

6!

12
2

12!

12

Bremen

Dortmund

Hamburg

2

2

2
3

4

2

8
1

6!

16
2

12!3

1

!

dest

*
⇒

Hanover
Hanover

Fig. 8. Derivation

The planning of package and truck tours can be regarded as sequential

processes in a transport net. Fig. 8 depicts a process for the tour planning

of package 1, which intends to be transported from Dortmund to Hamburg

via Bremen, while truck 1 and truck 2 each planned a tour to Hanover,

with truck 1 originating in Dortmund and truck 2 starting in Hamburg.

Parallel Semantics

In many cases it is rather unrealistic to consider a system of autonomous

units that transform the shared environment in a sequential way. The actual

processes in most data processing systems are more suitably modeled by

allowing more than one activity on the environment at the same time. This

includes in particular the fact that different events which do not influence

each other, can happen in parallel.

In order to obtain a suitable formal definition of parallel processes it is

necessary to extend the assumptions on the given graph transformation ap-

proach. So far we have considered situations where only one rule is ap-

plied at a time. For the parallel semantics definition let us now consider

situations where a multiset of rules may be applied to the environment.

This means that a number of different rules may be applied or even a sin-

gle rule may be applied multiple times. For this purpose let A = (G, R , X, C)

be a parallel transformation approach, meaning that a binary semantic re-

lation SEM(R) ⊆ G×G exists for every multiset R of R . Instead of

(G,H) ∈SEM(R) this may also be denoted as HG R⇒ and may also be

called direct parallel derivation.

Parallel processes are then defined analogously to the sequential case.

First the occurrence of a single rule application has to be replaced by the

application of a multiset of rules. Secondly the definition for obeying the

control condition has to be changed. The corresponding sets of parallel

processes PAR(Aut), PAR(Init,Aut), and PAR(Goal,Init,Aut) = PAR(COM)

as well as an input-output relation RELPAR(COM) are then obtained analo-

gously to the sequential case.

Example Place/Transition Systems

A parallel transformation approach is obtained by defining parallel firing

of a multiset of transitions in a P/T system in the usual way. For the system

COM(N,m0) the parallel processes correspond exactly to the firing se-

quences of multisets of transitions.

Example Transport Net

The tour planning of package and truck units can also be regarded as paral-

lel processes in a transport net. The process depicted in Fig. 8 can be mod-

eled as a parallel procedure of one package tour planning step and both

truck tour planning steps, followed (or preceeded) by the remaining pack-

age tour planning step.

In general, sequential and parallel processes may produce very different

results. Consider for instance cellular automata, where a transition step of

all linked finite automata depends on the state of their neighbors. Here a

parallel computational step of some automata would change the context of

the other automata such that later steps yield different configurations. In

other approaches, like e.g. Petri nets, term replacement, or most ap-

proaches to graph transformation, parallel changes do not affect the final

output, but yield a reduced number of transformation steps. This is due to

the fact that the parallel actions may also occur sequentially in an arbitrary

order without affecting the final result. This phenomenon is called true

concurrency. In order to obtain true concurrency in the context of parallel

transformation approaches the following has to hold:

Let R = R' + R'' be the sum of two multisets of rules and XG R⇒ be a

parallel derivation step. Then parallel derivation steps HG R '⇒ and

XRH ''⇒ exist for a suitable environment H.

Remember that every multiset is the commutative sum of its single ele-

ments. For this reason true concurrency implies that every parallel step

could also be executed as an arbitrarily ordered sequence of the corre-

sponding single rule applications, yielding the same result. Parallel proc-

esses and their sequentialization are called equivalent in the context of

concurrency. Consider an equivalence class of a parallel process, i.e. all

processes that are equivalent to each other. Then the chronological order of

two rule applications can only be determined if the one causally depends

on the other. Otherwise they can be applied in parallel or in an arbitrarily

ordered sequential way.

Since every sequential transformation step is a special case of a parallel

transformation step, the sequential semantics of autonomous units is con-

tained in the parallel semantics, i.e. SEQ(A) ⊆ PAR(A) is true for the proc-

esses of a set of autonomous units A. Furthermore an equivalent process

s ∈SEQ(A) can be found for every process s∈PAR(A). For a system of

autonomous units S this implies in particular

RELSEQ(S)=RELPAR(S).

Concurrent Semantics

Like the sequential process semantics, the parallel process semantics may

not be suitable for every application situation. This is due to the fact that

components which act autonomously and independently, do not necessar-

ily start and finish their activities simultaneously, as is the case with paral-

lel steps. If such components act far away from each other, or work on

completely different tasks without influencing each other it may even not

be possible to determine simultaneity. Anyway, demanding or enforcing

simultaneity would not make any sense in this case. A chronological order

of concurrent and distributed processes is only given in the case that one

activity needs something that another activity provides. Such causal rela-

tionships can be expressed by directed edges between these activities. In

the case of concurrent processes this results in an acyclic graph of activi-

ties. Such a graph yields a concept for concurrent processes in communi-

ties of autonomous units. This is basically the same idea as in the notion of

processes of Petri nets.

Let COM = (Goal,Init,Aut) be a system of autonomous units over a par-

allel transformation approach A = (G,R ,X,C). Then a concurrent process

consists of an initial environment G0 and an acyclic, directed graph

run=(V,E,lab), with a set of nodes V and a set of edges E ⊆V×V. The

nodes are marked with lab:V →R , which maps every node to a rule. The

following must also hold for G0 and run:

1. Every node in run must be reachable via a path originating in an ini-

tial node, i.e. a node without incoming edges.

2. Every complete beginning part of run, i.e. every subgraph which con-

tains all initial nodes and with every node also all paths from the ini-

tial nodes to that node, is either finite or contains an infinite path.

3. For every complete beginning part a parallel process (Gi)i∈N together

with a bijection between the nodes of the subgraph and the applied

rules can be found for N = [n], n ∈IN or N = IN . These rules conform to

the markings of the nodes. This bijective relation keeps the causal de-

pendency. This means that a rule which marks the source of an edge

in the subgraph is always applied in an earlier step than the rule

which marks the target of this edge.

The first condition enforces that run does not contain infinite paths

without start. Otherwise there would be a path with no corresponding

process. The second condition implies that only finitely many nodes are

causally independent of each other. The third condition guarantees that

concurrent processes are actually executable.

Example Place/Transition Systems

With the notion of occurrence nets at least the special case of Condi-

tion/Event(C/E) nets has a similar process concept. If every path of length

2 that runs along a condition is replaced with a directed edge in such an

occurrence net, then a concurrent process in the aforementioned sense is

obtained.

Example Transport Net

In the transport net example the tours of trucks as well as packages can be

planned concurrently. The negotiation for transport of different truck-

package pairs may also occur in a concurrent way.

An elaborated description of the relation between parallel and concur-

rent processes goes beyond the scope of this paper and thus has to be de-

ferred to further work. But it is noteworthy to mention that in the case of

true concurrency a strong relation between concurrent processes and ca-

nonical derivations exists. This has been investigated in (Kreowski 1978)

in the context of graph transformation employing the double-pushout ap-

proach. Such canonical derivations represent equivalence classes of paral-

lel derivations in a unique way by enforcing maximum parallelity and an

application as soon as possible.

Conclusion

In this chapter we have introduced the new concept of autonomous units.

This rule-based concept is meant to model data processing systems com-

prising different distributed components and processes. These components

may act autonomously but they may also communicate and interact with

each other. The operational semantics of such systems has been defined in

three stages. Sequential and parallel processes establish a chronological

order of the activities in such a system. In the context of concurrent proc-

esses only the chronological order of causally related activities is fixed.

The approach employs graphs and graph transformation rules allowing

visual models, as illustrated by the example of transport nets. At the same

time the concept is flexible by allowing to embed different modelling ap-

proaches, which provides the opportunity of semantical comparisons be-

tween different modeling methods. The example of Petri nets gives a hint

in this direction, which has to be substantiated by further research in future

work. Anyhow a number of aspects have not been addressed so far and

some questions have been left unanswered in this introductory work. This

includes, among others, the following:

1. The sequential and parallel processes are composed of application of

either single rules or multisets of rules. This is closely related to the

semantics of labeled transition systems, which are frequently used for

the semantic foundation of communication and distributed systems.

This relation demands further investigation.

2. As indicated at the end of Sect. 5, a strong relation exists between

concurrent processes and canonical derivations, the latter being spe-

cial kinds of parallel processes. The detailed investigation of this rela-

tionship would be interesting.

3. A remarkable aspect of the classical transformation units is the struc-

turing principle. This is achieved by the import feature of transforma-

tion units, which allows them to import other transformation units and

utilize them to solve subtasks. So far only autonomous units with se-

quential semantics have been defined with an additional structuring

principle (cf. (Hölscher et al. 2006b)). But it would generally make

sense for autonomous units to modularize the solution of a task or to

let subtasks be handled by other autonomous units. For this reason,

future work should also concentrate on structured autonomous units

in the parallel and concurrent cases.

4. The main task for further investigation of autonomous units will be to

investigate the means of control. On the one hand specific control

mechanisms allowing for autonomy have to be investigated. This will

comprise in particular concepts for the evaluation of the environment

and for a more goal oriented control. On the other hand, the control,

which is currently only defined for single steps, has to be enhanced to

also cover extended processes, as this is already the case with classi-

cal transformation units and sequential autonomous units.

5. The significance and suitability of autonomous units as a modeling

approach will be proved by a number of case studies. These will

comprise studies reaching from games over agent systems and artifi-

cial ant colonies to the conventional approaches of process modeling.

A first example can be found in (Hölscher et al. 2006b), where the

board game ludo is modelled with autonomous units.

6. A further theoretical investigation of autonomous units together with

existing theoretical results would be useful for the practical applica-

tion of autonomous units. This includes for example decidability re-

sults of control conditions (Hölscher et al. 2006a) or class expressions

as well as (automated) correctness proofs.

References

Baader F, Nipkow T (1998) Term Rewriting and All That. Cambridge University

Press, Cambridge

Ehrig H, Engels G, Kreowski H-J, Rozenberg G (eds) (1999) Handbook of Graph

Grammars and Computing by Graph Transformation, vol 2: Applications,

Languages and Tools. World Scientific, Singapore

Ehrig H, Kreowski H-J, Montanari U, Rozenberg G (eds) (1999) Handbook of

Graph Grammars and Computing by Graph Transformation, vol 3: Concur-

rency, Parallelism, and Distribution. World Scientific, Singapore

Janssens D, Kreowski H-J, Rozenberg G (2005) Main Concepts of Networks of

Transformation Units with Interlinking Semantics. In: Kreowski H-J, Mon-

tanari U, Orejas F, Rozenberg G, Taentzer G (eds) Formal Methods in Soft-

ware and System Modeling, Lecture Notes in Computer Science vol 3393.

Springer, Berlin Heidelberg New York, pp 325-342

Habel A, Heckel R, Taentzer G (1996) Graph Grammars with Negative Applica-

tion Conditions. Fundamenta Informaticae, 26:287-313

Hölscher K, Klempien-Hinrichs R, Knirsch P (2006a) Undecidable Control Con-

ditions in Graph Transformation Units. In: Moreira Martins A, Ribeiro L (eds)

Brazilian Symposium on Formal Methods (SBMF 2006), pp 121-135

Hölscher K, Kreowski H-J, Kuske S (2006b) Autonomous Units and their Seman-

tics – the Sequential Case. In: Corradini, A, Ehrig H, Montanari U, Ribeiro L,

Rozenberg G (eds) Proc. 3
rd

 International Conference on Graph Transforma-

tions (ICGT 2006), Lecture Notes in Computer Science vol 4178, Springer,

Berlin Heidelberg New York, pp 245-259

Kennedy J, Eberhart RC (2001) Swarm Intelligence. Morgan Kaufmann Publish-

ers, San Francisco

Kreowski H-J, Kuske S (1999) Graph Transformation Units with Interleaving Se-

mantics. Formal Aspects of Computing 11(6):690-723

Knirsch P, Kuske S (2002) Distributed Graph Transformation Units. In: Corradini

A, Ehrig H, Kreowski H-J, Rozenberg G (eds) Proc. First International Con-

ference on Graph Transformation (ICGT), Lecture Notes in Computer Science

vol 2505, Springer, Berlin Heidelberg New York, pp 207-222

Kreowski H-J, Kuske S, Schürr A (1997) Nested Graph Transformation Units. In-

ternational Journal on Software Engineering and Knowledge Engineering,

7(4):479-502

Kreowski H-J (1978) Manipulationen von Graphmanipulationen. Ph.D. thesis,

Berlin

Kuhn A (2002) Prozessketten - ein Modell für die Logistik. In: Wiendahl H-P (ed)

Erfolgsfaktor Logistikqualität. Springer, Berlin Heidelberg New York, pp

58-72

Kuske S (2000) Transformation Units-A Structuring Principle for Graph Trans-

formation Systems. Ph.D. thesis, Bremen

Păun G, Rozenberg G, Salomaa A (1998) DNA Computing-New Computing

Paradigms. Springer, Berlin Heidelberg New York

Reisig W (1998) Elements of Distributed Algorithms-Modeling and Analysis with

Petri Nets. Springer, Berlin Heidelberg New York

Rozenberg G (ed) (1997) Handbook of Graph Grammars and Computing by

Graph Transformation, vol 1: Foundations. World Scientific, Singapore

Rozenberg G, Salomaa A (eds) (1997) Handbook of Formal Languages, vol 1-3.

Springer, Berlin Heidelberg New York

Rozenberg G, Salomaa A (eds) (1998) Lindenmayer Systems. Springer, Berlin

Heidelberg New York

Scheer A-W (2002) Vom Geschäftsprozeß zum Anwendungssystem. Springer,

Berlin Heidelberg New York

Weiss G (ed) (1999) Multiagent Systems-A Modern Approach to Distributed Arti-

ficial Intelligence. The MIT Press, Cambridge, Massachusetts

