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Introduction 

Today, most data processing systems and most logistic systems comprise 

various, possibly distributed, components. These components typically act 

autonomously, but they may also communicate and interact with each 

other, spontaneously linking up to form a network. These components do 

not necessarily need to be stationary. Sometimes they even move or are 

carried around. Although the components act autonomously, the task to be 

solved is handled by their interaction and the system as a whole. In this 

paper the concept of autonomous units for modeling such systems is pro-

posed. Autonomous units form a community with a common environment, 

in which they act and which they transform. Autonomous units are based 

on rules, the applications of which yield changes in the environment. They 

are also equipped with an individual goal, which they try to accomplish by 

applying their rules. A control condition enables autonomous units to se-

lect at any time and in any situation the rule that should actually be applied 

from the set of all applicable rules. 

The motivation for introducing autonomous units as a modeling concept 

arises from the Collaborative Research Centre 637 Autonomous Cooperat-

ing Logistic Processes. This interdisciplinary collaboration focuses on the 

question whether and under which circumstances autonomous control may 

be more advantageous than classical control, especially regarding time, 

costs and robustness. The guiding principle of autonomous units is the 

possibility to integrate autonomous control into the model of the processes. 

This provides a framework for a semantically sound investigation and 
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comparison of different mechanisms of autonomous control. In more detail 

the aims are the following: 

1. Algorithmic and particularly logistic processes shall be described in a 

very general and uniform way, based on a well-founded semantics. 

2. The range of applications and included methods should comprise 

methods starting from classical process chain models like the one by 

Kuhn (see, e.g., (Kuhn 2002)) or Scheer (see, e.g., (Scheer 2002)) and 

the well-known Petri nets (see, e.g., (Reisig 1998)) leading to multi-

agent systems (see, e.g., (Weiss 1999)) and swarm intelligence (see, 

e.g., (Kennedy and Eberhart 2001)). 

3. The fact that autonomous units are based on rules provides the foun-

dation for the dynamics of the processes. The application of these 

rules causes local changes in the common environment, yielding the 

steps of the processes, transformations, and computations. Archetypes 

for this behavior are grammatical systems of all kinds (see, e.g., 

(Rozenberg and Salomaa 1997)) and term rewriting systems (see, 

e.g., (Baader and Nipkow 1998)) as well as the domain of graph 

transformation (see, e.g., (Rozenberg 1997; Ehrig et al. 1999a; Ehrig 

et al. 1999b) and DNA computing (see, e.g., (Păun et al. 1998)). The 

rule-based approach is meant to ensure the possibility of executing 

the semantics as well as to lay the foundation for formal verification. 

4. The autonomous control should become apparent on two levels. On 

the one hand a system comprises a community of autonomous units in 

an underlying environment. On this level all the units are considered 

equal in the sense that they may act independently of other units 

(provided that the state of the environment is suitable for the applica-

tion of the desired rules). Since no further control exists, the units act 

autonomously. On the other hand transformation units as rule-based 

systems are typically nondeterministic, since at any time several rules 

may be applicable, or the same rule may even be applicable at differ-

ent positions. In this case the autonomous control facilitates the selec-

tion of the different possibilities. 

 

The following section introduces autonomous units. In Sects. 3 to 5 the 

semantics of a community of autonomous units is defined in three stages. 

First of all a simple sequential semantics is introduced. This semantics is 

merely suitable for systems that allow only one action at a time. This cov-

ers not only many algorithms and sequential processes, but also card and 

board games. The sequential semantics of autonomous units is also pre-

sented and investigated in (Hölscher et al. 2006b). On the second stage a 



parallel semantics is defined. Here a number of actions take place in paral-

lel at the same time. This allows for an adequate description of parallel 

derivations in L-systems (see e.g., (Rozenberg and Salomaa 1998), the fir-

ing of Petri nets, and parallel algorithms and processes. While the parallel 

actions in this semantics occur sequentially, the third stage defines a con-

current semantics with no chronological relations between the acting units. 

Here the autonomous units may act independently, unless a causal rela-

tionship demands a certain order of actions.  

The concept of autonomous units is illustrated employing two examples. 

On the one hand place-transition systems are modeled so that every transi-

tion corresponds to one autonomous unit. On the other hand a transport 

network with packages and trucks is described as a system of autonomous 

units. Here every package as well as every truck is modeled as an autono-

mous unit. The paper ends with a short conclusion. 

It should be pointed out that autonomous units generalize the concept of 

transformation units, which has been investigated in e.g. (Janssens et al. 

2005; Kuske 2000; Kreowski and Kuske 1999; Kreowski et al. 1997). Here 

the derivation process is controlled by a main transformation unit and no 

changes of the environment can occur outside of this control. First steps 

towards distributed transformation units can be found in (Knirsch and 

Kuske 2002). 

Autonomous Units 

In this section, the concept of autonomous units is introduced as a model-

ing approach for data processing systems with autonomous components. 

Autonomous units form a community with a common environment, which 

they may transform. 

For the sake of simplicity we represent the environments as graphs. But 

graphs are used in a quite generic sense, including all sorts of diagrams. 

They may be directed, undirected, labeled or attributed. Since graphs may 

comprise different subgraphs and different connected components it is also 

possible to use sets, multisets, and lists of graphs or even arbitrarily struc-

tured graphs as environments. 

Every autonomous unit is equipped with a goal, rules and a control con-

dition, which autonomously manages the application of the rules in order 

to accomplish the given goal. Rules transform the environment through 

their application, thus defining a binary relation of environments as their 

semantics. Since the control condition determines which rules may be ap-

plied to the current environment, its semantics is also defined as a binary 

relation of environments. Goals are formulated as class expressions, the 



semantics of which is a class of environments in which the goal is accom-

plished. 

All available environments, rules, control conditions and class expres-

sions form a transformation approach. Its rules, control conditions and 

class expressions provide the syntactical ingredients of autonomous units. 

Additionally class expressions are used to define the initial environments 

and the overall goals of system models. 

A transformation approach A = (G, R , X, C ) consists of a class of graphs 

G, called environments, a class of rules R , a class of environment class ex-

pressions X and a class of control conditions C. Every rule r ∈R  specifies a 

binary semantic relation SEM(r) ∈G ×G. Every pair (G,H ) ∈SEM(r) is a 

rule application of r, which is also called a direct derivation and denoted 

as HG r⇒ . The semantics of a class expression X ∈X  is specified as a 

set SEM(X ) ⊆ G of environments. A control condition defines a binary re-

lation SEM(C ) ⊆ G  ×G  on environments as semantics. 

A community of autonomous units COM = (Goal,Init, Aut) consists of an 

environment class expression Goal, defining the terminal environments 

and thus the overall goal, an environment class expression Init, specifying 

the initial environments, and a set Aut of autonomous units. 

An autonomous unit is a tuple aut = (goal,rules,control) with goal ∈X 

being the individual goal, rules ⊆ R being the set of rules, and control ∈C 

being the control. 

Example: Place/Transition Systems 

Place/Transition (P/T) systems are a frequently used kind of Petri nets that 

can be modeled as a system of autonomous units. The P/T net with its 

marking is regarded as the environment. Transitions are modeled as rules. 

The firing of a transition defines a rule application that changes the mark-

ing in the usual way. Class expressions may be single markings, which de-

fine themselves as semantics. A further class expression all is also needed, 

meaning that all environments are permitted as goals. The control condi-

tion consists solely of the standard condition free, which defines all pairs 

of environments and imposes no restrictions on the application of rules. 

If every transition t is considered as an autonomous unit 

aut(t)=(all,{t},free) a P/T net N with the set of transitions T and initial 

marking m0 is modeled as the community of autonomous units 

COM(N,m0)=(all,m0,{aut(t) | t ∈T}). 



Example: Transport Net 

As a further illustration, a simplified example from the domain of transport 

logistics is sketched. 
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Fig. 1. A transport net represented by a graph 

 

A transport net is a graph in which nodes represent locations, e.g. de-

pots, where packages may be picked up and to which packages may be de-

livered. The edges represent the connections between the depots. Every 

edge is labeled with the time that is needed to travel along the connection 

that is represented by the edge. Fig. 1 shows a small excerpt of a transport 

net containing depots in the cities Dortmund, Bremen, Hamburg and 

Hanover. Trucks and packages are modeled as autonomous units, which 

use the transport net as underlying environment. Instances of these 

autonomous units are represented as special nodes with unique identifiers. 

The transport net contains two trucks (1, 2) and one package (1). The 

truck nodes are labeled with a number, which represents the amount of 

time the truck may be moving around. In the given example truck 1 is 

permitted to move around eight hours, while truck 2 may move around 16 

hours (because it may be equipped with two drivers). Both truck nodes are 

connected to a rectangular tour node which is labeled with a number and 

an exclamation mark. The number defines the payload capacity of the 

truck, in our example specified in tons. Truck 1 has a payload of 6 tons, 



and truck 2 may load up to 12 tons of cargo. The exclamation mark indi-

cates the current tour node. A package node is labeled with a number 

which specifies its weight. It is also connected to a rectangular tour node, 

which in turn is connected to the depot that currently holds the package. 

Analogously to the truck tour node the exclamation mark indicates the cur-

rent package tour node. An edge labeled “dest” connects the package node 

with its destination depot, i.e. the depot to which the package has to be de-

livered. 
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Fig. 2. Arranging a truck tour 
 

The transformation unit truck contains a rule for planning a tour. This 

rule is depicted in Fig. 2. The application of this rule extends the current 

truck tour. This is done by adding a tour section leading from the current 

depot to an adjacent depot. Here the remaining travel time z of the truck 

must be at least as great as the travel time m between the depots, denoted 

by the application condition m ≤ z. Such an application condition has to be 

evaluated to true, otherwise the rule may not be applied. The application 

of the rule defines the newly added tour section (represented by the added 

tour node) as current, and reduces the travel time of the truck by the time 

that is needed to drive to the adjoining depot. 

A package unit has a tour planning rule that is similar to the rule of the 

truck units. It is depicted in Fig. 3.  
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Fig. 3. Planning a package tour 

 



The application of this rule extends the package tour by adding a new 

package tour node and connecting it to an adjacent depot. Analogously to 

the truck rule the newly added package tour node becomes the current one. 

This rule should only be applicable if the package is not planning its final 

tour section. This is modeled in the left-hand side of the rule by the dashed 

edge connecting the package node with a depot. This edge is labeled with 

“dest”, indicating that the depot is the place to which the package should 

be delivered. The dashed edge is called a negative application condition 

(NAC) (Habel et al. 1996). If a situation as specified in the NAC is present 

in the transport net, the rule cannot be applied. Hence, the rule must not be 

applied if the adjacent depot is already the target depot of the package. 

If this is the case the second tour planning rule of the package unit is 

needed. It is depicted in Fig. 4. 
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Fig. 4. The final part of the package tour 

 

Here the adjacent depot must be the destination depot of the package, as 

indicated by the edge labeled with “dest”. Basically the application of the 

rule yields the same changes as the first tour planning rule of the package 

unit. The only difference is that the newly added package tour node is not 

labeled with an exclamation mark. This is due to the fact, that no current 

tour node is needed anymore, because the package has finished its tour 

planning. Given these tour planning rules, truck units as well as package 

units may independently plan their tours. 

After planning its tour a package should be picked up by a truck. There-

fore, a package unit contains a rule that makes an offer to a passing truck. 

This rule is depicted in Fig. 5. The rule may be applied if a tour section of 

a truck coincides with a tour section of the package and the payload capac-

ity k of the truck for this tour section is sufficient for the transport of the 

package (as indicated by the application condition t ≤ k). The application of 

the rule inserts a new edge into the environment, connecting the package 

tour node to the truck tour node. It is labeled with the actual offer n and a 



question mark, indicating that an offer for transportation has been made for 

the amount of n currency units. 
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Fig. 5. A package offer 

 

The dashed edges in the left-hand side L of the rule again represent 

negative application conditions. They guarantee that no previous offer was 

made by the package to the truck if one of the dashed edges with the given 

labels connect the tour nodes in the specified way. No offer can be made if 

either the package unit has already made an offer with some amount n, or 

if the truck unit has finally rejected the offer (indicated by the label “#”). 

The right-hand side of the rule also contains the post-condition 1≤n≤m. 

Such a post-condition has to hold after the rule is applied. In this case, the 

post-condition guarantees that the package will always offer an amount 

that is proportionally related to the distance. 

The truck unit contains two rules which handle package offers. The first 

rule is depicted in Fig. 6. 
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Fig. 6. Refusal of an offer 

It specifies the rejection of a package offer by deleting the edge represent-

ing the offer and inserting a reversely directed edge labeled “#”. In this 



case a package unit cannot make another offer, because the NAC of the of-

fer rule prohibits the existence of such an edge. The second rule is depicted 

in Fig. 7 and specifies the acceptance of an offer.  
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Fig. 7. Accepting a package 

 

Similar to the first rule, the edge representing the offer is removed and a 

reversely directed edge is inserted. But in this case the edge is labeled with 

n, indicating that the truck transports the package in this section of its tour 

for a payment of n. Additionally the weight t of the package is subtracted 

from the payload capacity k of the truck for the corresponding tour section. 

The connections of the package tour node to the depots are removed, since 

the actual route of this tour section is described by the tour node of the 

truck. This removal also ensures that the package does not make any fur-

ther offers for this tour section. 

In the following sections the semantics of communities of autonomous 

units is defined in three variants. The simplest one is the sequential seman-

tics, which is merely suitable for systems that allow only one action at a 

time. The parallel semantics allows for activities to take place in parallel, 

i.e. in a synchronized way. The third variant covers true concurrency. Only 

causally related activities (e.g. one action needs something that is created 

by another action) occur in chronological order. Other activities may hap-

pen at any time. 

Sequential Semantics 

Since the application of rules provides single computational steps, a first 

simple semantics for communities of autonomous units is obtained by se-

quential composition of these steps. This yields finite as well as infinite 

sequential processes. 



Let COM = (Goal, Init, Aut) be a community of autonomous units. A fi-

nite sequential process, also called derivation or computation is then de-

fined by (Gi)i∈[n] with [n]={0,…,n} for n ∈IN, where the following holds for 

all i = 1,…,n: 

An autonomous unit auti = (goali,rulesi,controli) and a rule ri ∈rulesi ex-

ist such that iri GG
i

⇒
−1  and (Gi-1,Gi) ∈SEM(controli). 

Analogously, an infinite sequential process is given by a sequence 

(Gi)i∈IN  with the same properties as in the finite case, but for i ∈IN. In this 

sense processes are arbitrary sequential compositions of rule applications 

by autonomous units, obeying the control condition of the currently active 

unit. The set of all sequential processes is denoted as SEQ(Aut). Accord-

ingly, SEQ(Init,Aut) contains all processes which start with an initial envi-

ronment, and SEQ(Goal,Init,Aut) = SEQ(COM) contains all finite processes 

which additionally terminate in an environment that meets the goal. 

In the latter case the semantics can also be defined by an input-output 

relation, which describes the computation without intermediate steps: we 

have (G,H) ∈RELSEQ(COM) if (Gi)i∈[n] ∈SEQ(COM) exists such that G=G0 

and H = Gn. Even for arbitrary processes the goal specification makes 

sense, since it can be determined whether Goal has been reached for proc-

esses (Gi)i∈IN  in intermediate steps: Gi0 ∈SEM(Goal) for some i0 ∈IN ? 

Analogously, a sequential semantics for a single autonomous unit aut = 

(goal,rules,control) can be defined taking into account that besides the rule 

application of the considered unit other units may also change the envi-

ronment. 

Let CHANGE ⊆G ×G be a binary relation on environments, which de-

scribes all changes that are not performed by aut. Let further 

N = [n] = {0,…,n} for an n ∈IN or N = IN. Then a sequential process of aut is 

a sequence (Gi)i∈IN  such that for all i ≥ 1 either (Gi-1,Gi) ∈CHANGE or for an 

r ∈ rules Gi-1 r⇒ Gi and (Gi-1,Gi) ∈SEM(control). The set of sequential aut 

processes is denoted as SEQCHANGE(aut). 

The sequential processes SEQ(Aut) of a set Aut of autonomous units and 

the sequential processes of one of its members are strongly connected: 

SEQ(Aut)=SEQSEQ(Aut-{aut})(aut). 

So every sequential process is an aut process for every autonomous unit 

in Aut and vice versa, provided that the changes in the environment are 

precisely the sequential processes of the other autonomous units. 



Example Place/Transition Systems 

Let COM(N,m0) be the system of autonomous units that corresponds to a 

P/T system. Then the application of a rule yields the same effect as the fir-

ing of a transition. In this way sequential processes correspond to the firing 

sequences of the P/T system. 

Example Transport Net 
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Fig. 8. Derivation 

 

The planning of package and truck tours can be regarded as sequential 

processes in a transport net. Fig. 8 depicts a process for the tour planning 

of package 1, which intends to be transported from Dortmund to Hamburg 

via Bremen, while truck 1 and truck 2 each planned a tour to Hanover, 

with truck 1 originating in Dortmund and truck 2 starting in Hamburg. 

Parallel Semantics 

In many cases it is rather unrealistic to consider a system of autonomous 

units that transform the shared environment in a sequential way. The actual 

processes in most data processing systems are more suitably modeled by 

allowing more than one activity on the environment at the same time. This 

includes in particular the fact that different events which do not influence 

each other, can happen in parallel. 

In order to obtain a suitable formal definition of parallel processes it is 

necessary to extend the assumptions on the given graph transformation ap-

proach. So far we have considered situations where only one rule is ap-

plied at a time. For the parallel semantics definition let us now consider 

situations where a multiset of rules may be applied to the environment. 



This means that a number of different rules may be applied or even a sin-

gle rule may be applied multiple times. For this purpose let A = (G, R , X, C ) 

be a parallel transformation approach, meaning that a binary semantic re-

lation SEM(R) ⊆ G×G exists for every multiset R of R . Instead of 

(G,H) ∈SEM(R) this may also be denoted as HG R⇒  and may also be 

called direct parallel derivation. 

Parallel processes are then defined analogously to the sequential case. 

First the occurrence of a single rule application has to be replaced by the 

application of a multiset of rules. Secondly the definition for obeying the 

control condition has to be changed. The corresponding sets of parallel 

processes PAR(Aut), PAR(Init,Aut), and PAR(Goal,Init,Aut) = PAR(COM) 

as well as an input-output relation RELPAR(COM) are then obtained analo-

gously to the sequential case. 

Example Place/Transition Systems 

A parallel transformation approach is obtained by defining parallel firing 

of a multiset of transitions in a P/T system in the usual way. For the system 

COM(N,m0) the parallel processes correspond exactly to the firing se-

quences of multisets of transitions. 

Example Transport Net 

The tour planning of package and truck units can also be regarded as paral-

lel processes in a transport net. The process depicted in Fig. 8 can be mod-

eled as a parallel procedure of one package tour planning step and both 

truck tour planning steps, followed (or preceeded) by the remaining pack-

age tour planning step. 

In general, sequential and parallel processes may produce very different 

results. Consider for instance cellular automata, where a transition step of 

all linked finite automata depends on the state of their neighbors. Here a 

parallel computational step of some automata would change the context of 

the other automata such that later steps yield different configurations. In 

other approaches, like e.g. Petri nets, term replacement, or most ap-

proaches to graph transformation, parallel changes do not affect the final 

output, but yield a reduced number of transformation steps. This is due to 

the fact that the parallel actions may also occur sequentially in an arbitrary 

order without affecting the final result. This phenomenon is called true 

concurrency. In order to obtain true concurrency in the context of parallel 

transformation approaches the following has to hold: 



Let R = R' + R'' be the sum of two multisets of rules and XG R⇒  be a 

parallel derivation step. Then parallel derivation steps HG R '⇒  and 

XRH ''⇒  exist for a suitable environment H. 

Remember that every multiset is the commutative sum of its single ele-

ments. For this reason true concurrency implies that every parallel step 

could also be executed as an arbitrarily ordered sequence of the corre-

sponding single rule applications, yielding the same result. Parallel proc-

esses and their sequentialization are called equivalent in the context of 

concurrency. Consider an equivalence class of a parallel process, i.e. all 

processes that are equivalent to each other. Then the chronological order of 

two rule applications can only be determined if the one causally depends 

on the other. Otherwise they can be applied in parallel or in an arbitrarily 

ordered sequential way. 

Since every sequential transformation step is a special case of a parallel 

transformation step, the sequential semantics of autonomous units is con-

tained in the parallel semantics, i.e. SEQ(A) ⊆ PAR(A) is true for the proc-

esses of a set of autonomous units A. Furthermore an equivalent process 

s ∈SEQ(A) can be found for every process s∈PAR(A). For a system of 

autonomous units S this implies in particular 

RELSEQ(S)=RELPAR(S). 

Concurrent Semantics 

Like the sequential process semantics, the parallel process semantics may 

not be suitable for every application situation. This is due to the fact that 

components which act autonomously and independently, do not necessar-

ily start and finish their activities simultaneously, as is the case with paral-

lel steps. If such components act far away from each other, or work on 

completely different tasks without influencing each other it may even not 

be possible to determine simultaneity. Anyway, demanding or enforcing 

simultaneity would not make any sense in this case. A chronological order 

of concurrent and distributed processes is only given in the case that one 

activity needs something that another activity provides. Such causal rela-

tionships can be expressed by directed edges between these activities. In 

the case of concurrent processes this results in an acyclic graph of activi-

ties. Such a graph yields a concept for concurrent processes in communi-

ties of autonomous units. This is basically the same idea as in the notion of 

processes of Petri nets. 



Let COM = (Goal,Init,Aut) be a system of autonomous units over a par-

allel transformation approach A = (G,R ,X,C ). Then a concurrent process 

consists of an initial environment G0 and an acyclic, directed graph 

run=(V,E,lab), with a set of nodes V and a set of edges E ⊆V×V. The 

nodes are marked with lab:V →R , which maps every node to a rule. The 

following must also hold for G0 and run: 

1. Every node in run must be reachable via a path originating in an ini-

tial node, i.e. a node without incoming edges. 

2. Every complete beginning part of run, i.e. every subgraph which con-

tains all initial nodes and with every node also all paths from the ini-

tial nodes to that node, is either finite or contains an infinite path. 

3. For every complete beginning part a parallel process (Gi)i∈N  together 

with a bijection between the nodes of the subgraph and the applied 

rules can be found for N = [n], n ∈IN or N = IN . These rules conform to 

the markings of the nodes. This bijective relation keeps the causal de-

pendency. This means that a rule which marks the source of an edge 

in the subgraph is always applied in an earlier step than the rule 

which marks the target of this edge. 

The first condition enforces that run does not contain infinite paths 

without start. Otherwise there would be a path with no corresponding 

process. The second condition implies that only finitely many nodes are 

causally independent of each other. The third condition guarantees that 

concurrent processes are actually executable. 

Example Place/Transition Systems 

With the notion of occurrence nets at least the special case of Condi-

tion/Event(C/E) nets has a similar process concept. If every path of length 

2 that runs along a condition is replaced with a directed edge in such an 

occurrence net, then a concurrent process in the aforementioned sense is 

obtained.  

 

Example Transport Net 

In the transport net example the tours of trucks as well as packages can be 

planned concurrently. The negotiation for transport of different truck-

package pairs may also occur in a concurrent way. 

An elaborated description of the relation between parallel and concur-

rent processes goes beyond the scope of this paper and thus has to be de-



ferred to further work. But it is noteworthy to mention that in the case of 

true concurrency a strong relation between concurrent processes and ca-

nonical derivations exists. This has been investigated in (Kreowski 1978) 

in the context of graph transformation employing the double-pushout ap-

proach. Such canonical derivations represent equivalence classes of paral-

lel derivations in a unique way by enforcing maximum parallelity and an 

application as soon as possible. 

Conclusion 

In this chapter we have introduced the new concept of autonomous units. 

This rule-based concept is meant to model data processing systems com-

prising different distributed components and processes. These components 

may act autonomously but they may also communicate and interact with 

each other. The operational semantics of such systems has been defined in 

three stages. Sequential and parallel processes establish a chronological 

order of the activities in such a system. In the context of concurrent proc-

esses only the chronological order of causally related activities is fixed. 

The approach employs graphs and graph transformation rules allowing 

visual models, as illustrated by the example of transport nets. At the same 

time the concept is flexible by allowing to embed different modelling ap-

proaches, which provides the opportunity of semantical comparisons be-

tween different modeling methods. The example of Petri nets gives a hint 

in this direction, which has to be substantiated by further research in future 

work. Anyhow a number of aspects have not been addressed so far and 

some questions have been left unanswered in this introductory work. This 

includes, among others, the following: 

1. The sequential and parallel processes are composed of application of 

either single rules or multisets of rules. This is closely related to the 

semantics of labeled transition systems, which are frequently used for 

the semantic foundation of communication and distributed systems. 

This relation demands further investigation. 

2. As indicated at the end of Sect. 5, a strong relation exists between 

concurrent processes and canonical derivations, the latter being spe-

cial kinds of parallel processes. The detailed investigation of this rela-

tionship would be interesting. 

3. A remarkable aspect of the classical transformation units is the struc-

turing principle. This is achieved by the import feature of transforma-

tion units, which allows them to import other transformation units and 

utilize them to solve subtasks. So far only autonomous units with se-

quential semantics have been defined with an additional structuring 



principle (cf. (Hölscher et al. 2006b)). But it would generally make 

sense for autonomous units to modularize the solution of a task or to 

let subtasks be handled by other autonomous units. For this reason, 

future work should also concentrate on structured autonomous units 

in the parallel and concurrent cases. 

4. The main task for further investigation of autonomous units will be to 

investigate the means of control. On the one hand specific control 

mechanisms allowing for autonomy have to be investigated. This will 

comprise in particular concepts for the evaluation of the environment 

and for a more goal oriented control. On the other hand, the control, 

which is currently only defined for single steps, has to be enhanced to 

also cover extended processes, as this is already the case with classi-

cal transformation units and sequential autonomous units. 

5. The significance and suitability of autonomous units as a modeling 

approach will be proved by a number of case studies. These will 

comprise studies reaching from games over agent systems and artifi-

cial ant colonies to the conventional approaches of process modeling. 

A first example can be found in (Hölscher et al. 2006b), where the 

board game ludo is modelled with autonomous units. 

6. A further theoretical investigation of autonomous units together with 

existing theoretical results would be useful for the practical applica-

tion of autonomous units. This includes for example decidability re-

sults of control conditions (Hölscher et al. 2006a) or class expressions 

as well as (automated) correctness proofs. 
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