
Autonomous Units and Their Semantics -

the Parallel Case?

Hans-Jörg Kreowski, Sabine Kuske

University of Bremen, Department of Computer Science
P.O.Box 330440, D-28334 Bremen, Germany

(kreo,kuske)@informatik.uni-bremen.de

Abstract

Communities of autonomous units are rule-based and graph-transformational
devices to model data-processing systems that may consist of distributed and
mobile components. The components may communicate and interact with each
other, they may link up to ad-hoc networks. In this paper, we introduce and
investigate the parallel-process semantics of communities of autonomous units.

1 Introduction

Communities of autonomous units are introduced in [1] as rule-based and graph-
transformational devices to model processes that run interactively, but indepen-
dently of each other in a common environment. The main goal of this approach
is to cover new programming and modeling paradigms like communication net-
works, multiagent systems, swarm intelligence, ubiquitous, wearable and mobile
computing in a common and systematic way with rigorous formal semantics.
While the sequential process semantics is considered in [1], we introduce and
start to investigate the parallel-process semantics of communities of autonomous
units in this paper.

An autonomous unit consists of a goal, a set of rules, and a control condition.
The rules can be applied to environments which are assumed to be graphs. Rule
application is usually quite nondeterministic because many rules may be applica-
ble to an environment and even a single rule may be applicable to various parts
of the environment. The control condition can cut down this nondeterminism by
dividing all possible rule applications into the “good” and the “bad” ones. The
control condition gives the unit autonomy in the sense that the unit can decide
for one of the good rule applications to be performed. The goal describes the
environments the unit wants to reach. A set of autonomous units forms a com-
munity which is additionally provided with a description of initial environments
(where computational processes can start) and with an overall goal. A process
then consists of a finite or infinite sequence of rule applications.

? Research partially supported by the Collaborative Research Centre 637 (Autonomous
Cooperating Logistic Processes: A Paradigm Shift and Its Limitations) funded by
the German Research Foundation (DFG).

Published in: Fiadeiro, J.L.; Schobbens, P.Y. (eds.): Recent Trends in Algebraic Development Techniques, 18th International Workshop,
WADT 2006, La Roche en Ardenne, Belgium, June 1-3, 2006, Revised Selected Papers. Lecture Notes in Computer Science, Springer, Berlin
Heidelberg New York, USA, 2007

To cover parallelism, we assume that not only single rules but multisets of
rules can be applied to environment graphs. This means that in each step many
rules can be applied and single rules multiple times. As the rules may belong to
different units, the autonomous units act in parallel. The units in a community
are not directly aware of each other, but they may notice the outcome of the ac-
tivities of their co-units because some of their rules may become applicable and
others may loose this possibility. In this way, autonomous units can communi-
cate and interact. To cover these phenomena in the process semantics of a single
unit, we assume a change relation on environments that makes the environment
dynamic. Then a parallel process of a single autonomous unit can be described
as a sequence of application of multisets of rules of this unit in parallel with
changes of the environment. These notions are introduced in Sections 3 and 4
and illustrated by the running example of a community of two autonomous units
that work together and compute shortest paths. The basic ingredients including
graphs, rules, rule applications, graphs class expressions to describe goals, and
control conditions are defined by means of the notion of graph transformation
approaches in Sect. 2. All components are quite generic so that they can be
instantiated in various ways according to need or taste. Graph transformation
approaches play a somewhat similar role for graph transformation than institu-
tions for algebraic specification.

To shed some first light on the significance and usefulness of communities of
autonomous units with parallel-process semantics, we compare our concepts with
the parallelism provided by other well-known frameworks. In Sect. 5, we translate
place/transition systems into communities of autonomous units and show that
firing sequences of multisets of transitions correspond to parallel processes of
the associated community. Similarly, cellular automata can be considered as
communities of autonomous units as shown in Sect. 6. Cellular automata are
particularly interesting as all their cells change states simultaneously so that the
mode of computation is massively parallel. In Sect. 7, we discuss the relationship
between communities of autonomous units and multiagent systems. As the latter
are defined in an axiomatic way, the former can be seen as rule-based models
providing an operational semantics for multiagent systems independent of the
implementation of agents.

The introduction and investigation of autonomous units is mainly motivated
by the Collaborative Research Centre 637 Autonomous Cooperating Logistic Pro-

cesses. This interdisciplinary project focuses on the question whether logistic
processes with autonomous control may be more advantageous than those with
central control, especially regarding time, costs and robustness. The guiding
principle of autonomous units is the integration of autonomous control into rule-
based models of processes. The aims are

1. to describe algorithmic and particularly logistic processes in a very general
and uniform way, based on a well-founded semantic framework,

2. to provide a range of applications that reaches from classical process chain
models like the ones by Kuhn (see, e.g., [2]) or Scheer (see, e.g., [3]) and the

well-known Petri nets (see, e.g., [4, 5]) to agent systems see, e.g., [6]) and
swarm intelligence (see, e.g., [7]),

3. to comprise the foundation of the dynamics of processes by means of rules
where rule applications define process, transformation, and computation
steps yielding local changes.

Archetypes of a rule-based approach to data processing are grammatical sys-
tems of all kinds (see, e.g., [8]) and term rewriting systems (see, e.g., [9]) as well
as the domain of graph transformation (see, e.g., [10–12]) and DNA comput-
ing (see, e.g., [13]). The rule-based approach is meant to ensure an operational
semantics as well as to lay the foundation for formal verification.

In [1] we have shown that autonomous units with sequential process semantics
generalize our former modeling concept of graph transformation units (see, e.g.,
[14]). While the latter apply their rules without any interference from the outside,
an autonomous unit works in a dynamic environment which may change because
of the activities of other units in the community. This makes quite a difference
because the running of the system is no longer controlled by a central entity.
Clearly, this applies to the parallel case, too, because it generalizes the sequential
case, obviously.

2 Parallel Graph Transformation Approaches

Graph transformation (see e.g. [10, 15]) constitutes a formal specification tech-
nique that supports the modeling of the rule-based transformation of graph-like,
diagrammatic, and visual structures in an intuitive and direct way. The ingre-
dients of graph transformation are provided by so-called graph transformation
approaches. In this section, we recall the notion of a graph transformation ap-
proach as introduced in [14] but modified with respect to the purposes of this
paper.

Two basic components of every graph transformation approach are a class
of graphs and a class of rules that can be applied to these graphs. In many
cases, rule application is highly nondeterministic – a property that is not always
desirable. Hence, graph transformation approaches can also provide a class of
control conditions so that the degree of nondeterminism of rule application can
be reduced. Moreover, graph class expressions can be used in order to specify for
example sets of initial and terminal graphs of graph transformation processes.

The basic idea of parallelism in a rule-based framework is the application of
many rules simultaneously and also the multiple application of a single rule. To
achieve these possibilities, we assume that multisets of rules can be applied to
graphs rather than single rules.

Given some basic domain D, the set of all multisets D∗ over D with finite
carriers consists of all mappings m: D → N such that the carrier car(m) = {d ∈
D | m(d) 6= 0} is finite. For d ∈ D, m(d) is called the multiplicity of d in m. The
union or sum of multisets can be defined by adding corresponding multiplicities.
D∗ with this sum is the free commutative monoid over D where the multiset with
empty carrier is the null element, i.e. null: D → N with null(D) = 0. Note that

the elements of D correspond to singleton multisets, i.e. for d ∈ D, d̂: D → N

with d̂(d) = 1 and d̂(d′) = 0 for d′ 6= d. If R is a set of rules, r ∈ R∗ comprises a
selection of rules each with some multiplicity. Therefore, an application of r to
a graph yielding a graph models the parallel and multiple application of several
rules.

Formally, a parallel graph transformation approach is a system A = (G,R,X , C)
the components of which are defined as follows.

– G is a class of graphs.
– R is a class of graph transformation rules such that every r ∈ R∗ specifies a

binary relation on graphs SEM (r) ⊆ G × G.
– X is a class of graph class expressions such that each x ∈ X specifies a set

of graphs SEM (x) ⊆ G.
– C is a class of control conditions such that each c ∈ C specifies a set of se-

quences SEM Change(c) ⊆ SEQ(G) where Change ⊆ G × G.1 As we will see
later the relation Change defines the changes that can occur in the environ-
ment of an autonomous unit. Hence, control conditions have a loose seman-
tics which depends on the changes of the environment given by Change .

For technical simplicity we assume in the following that A = (G,R,X , C) is
an arbitrary but fixed parallel graph transformation approach. The multisets of
rules in R∗ are called parallel rules. A pair of graphs (G, G′) ∈ SEM (r) for some
r ∈ R∗ is an application of the parallel rule r to G with the result G′. It may be
also called a direct parallel derivation or a parallel derivation step.

Sometimes it is meaningful to parameterize the semantics of a graph class
expression x by the class of graphs. i.e. SEM G(x) ⊆ G for all G ∈ G. This allows
one to describe relations and functions between graphs rather than just sets of
graphs. An example of this kind can be found in Sect. 4.

Examples

In the following we present some instances of the components of parallel graph
transformation approaches. These will be used in the following Sections. Further
examples of graph transformation approaches can be found in e.g. [10].

Graphs. A well-known instance for the class G is the class of all directed edge-
labeled graphs. Such a graph is a system G = (V, E, s, t, l) where V is a set
of nodes, E is a set of edges, s, t: E → V assign to every edge its source s(e)
and its target t(e), and the mapping l assigns a label to every edge in E. The
components of G are also denoted by VG, EG, etc. As usual, a graph M is a
subgraph of G, denoted by M ⊆ G if VM ⊆ VG, EM ⊆ EG, and sM , tM , and lM
are the restrictions of sG, tG, and lG to EM . A graph morphism g: L → G from a
graph L to a graph G consists of two mappings gV : VL → VG, gE : EL → EG such
that sources, targets and labels are preserved, i.e. for all e ∈ EL, gV (sL(e)) =

1 For a set A 2A denotes its powerset and SEQ(A) the set of finite and infinite se-
quences over A.

sG(gE(e)), gV (tL(e)) = tG(gE(e)), and lG(gE(e)) = lL(e). In the following we
omit the subscript V or E of g if it can be derived from the context.

Other classes of graphs are trees, forests, Petri nets, undirected graphs, hy-
pergraphs, etc.

Rules. As a concrete example of rules we consider the so-called dpo-rules each
of which consists of a triple r = (L, K, R) of graphs such that L ⊇ K ⊆ R. The
application of a rule to a graph G yields a graph G′, if one proceeds according to
the following steps: (1) Choose a graph morphism g: L → G so that for all items
x, y (nodes or edges) of L g(x) = g(y) implies that x and y are in K. (2) Delete
all items of g(L)− g(K) provided that this does not produce dangling edges. (In
the case of dangling edges the morphism g cannot be used.) (3) Add R to the
resulting graph D, and (4) glue D and R by identifying the nodes and edges of
K in R with their images under g. The conditions of (1) and (2) concerning g
are called gluing condition.

Graph transformation rules can be depicted in several forms. In the following
they are either shown in the form L ⊇ K ⊆ R or by drawing only its left-hand
side L and its right-hand side R together with an arrow pointing from L to R.
The different nodes of K are distinguished by different fill-styles.

A graph transformation rule (L, K, R) with positive context is a quadruple
(PC, L, K, R) such that L ⊆ PC. It can be applied to G by applying (L, K, R)
to G as described provided that there is a morphism g′: PC → G such that the
restriction of g′ to L equals g. A graph transformation rule with negative context
is defined as (NC, L, K, R) where (L, K, R) is a rule and L ⊆ NC. It can only
be applied to G if the negative context of L is not in G, i.e. if the morphism
g: L → G cannot be extended to some morphism g′: NC → G of which g is the
restriction to L (cf. also [16]).

Given two rules ri = (Li, Ki, Ri) (i = 1, 2) their parallel composition yields
the rule r1+r2 = (L1+L2, K1+K2, R1+R2) where + denotes the disjoint union
of graphs. In the same way one can construct a parallel rule from any multiset
r ∈ R∗. For every pair (G, G′) ∈ SEM (r1 + r2) there exist graphs M1 and M2

such that (G, M1) and (M2, G
′) are in SEM (r1) and (G, M2) and (M1, G

′) are in
SEM (r2). This means that the graph G′ can also be obtained from G by applying
the rules r1 and r2 sequentially and in any order. Moreover, let ri (i = 1, 2) be
two (parallel) rules and let gi: Li → G be two morphisms that satisfy the gluing
condition described in steps (1) and (2) of a rule application. Then r1 and r2 are
independent w.r.t. gi if the the following independence condition is satisfied:

g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2).

In this case both rules can be applied to G in parallel via the application of r1+r2

using the graph morphism 〈g1 + g2〉: L1 +L2 → G such that 〈g1 + g2〉(x) = gi(x)
if x is an element of Li (see, e.g., [17] for more details).

Graph class expressions. Every subset M ⊆ G is a graph class expression that
specifies itself, i.e. SEM (M) = M . Moreover, every set L of labels specifies the

class of all graphs in G the labels of which are elements of L. Every set P ⊆ R∗ of
(parallel) graph transformation rules can also be used as a graph class expression
specifying the set of all graphs that are reduced w.r.t. P where a graph is said
to be reduced w.r.t. P if no rules of P can be applied to the graph. The least
restrictive graph class expression is the term all specifying the class G.

Control conditions. The least restrictive control condition is the term free that
allows all parallel graph transformations, i.e. SEM Change(free) = SEQ(G) for all
Change ⊆ G × G. Another useful control condition is alap(P) where P ⊆ R∗.
It applies P as long as possible. More precisely, for every Change ⊆ G × G
SEM Change(alap(P)) consists of all finite sequences (G0, . . . Gn) ∈ SEQ(G) for
which there is an i ∈ {0, . . . , n} such that no rule in P can be applied to the
graphs in (Gi, . . . , Gn). The condition alap(P) can also be used to specify infinite
sequences, a more complicated case that is not needed here.

3 Autonomous Units

Autonomous units act within or interact on a common environment which is
modeled as a graph. An autonomous unit consists of a set of graph transfor-
mation rules, a control condition, and a goal. The graph transformation rules
contained in an autonomous unit aut specify all transformations the unit aut

can perform. Such a transformation comprises for example a movement of the
autonomous unit within the current environment, the exchange of information
with other units via the environment, or local changes of the environment. The
control condition regulates the application process. For example, it may require
that a sequence of rules be applied as long as possible or infinitely often. The
goal of a unit is a graph class expresson determining how the transformed graphs
should look like.

Definition 1 (Autonomous unit). An autonomous unit is a system aut =
(g, P, c) where g ∈ X is the goal, P ⊆ R is a set of graph transformation rules,
and c ∈ C is a control condition. The components of aut are also denoted by
gaut , Paut , and caut , respectively.

An autonomous unit modifies an underlying environment while striving for
its goal. Its semantics consists of a set of transformation processes being finite
or infinite sequences of environment transformations. An environment transfor-
mation comprises the parallel application of local rules or environment changes
typically performed by other autonomous units that are working in the same
environment. These environment changes are given as a binary relation of en-
vironments. Because the parallel-process semantics is meant to describe the si-
multaneous activities of autonomous units, the environment changes must be
possible while a single autonomous unit applies its rules. To achieve this, we
assume that there are some rules, called metarules, the application of which
defines environment changes. Consequently, environment changes and ordinary

rules can be applied in parallel. Hence, in this parallel approach a transfor-
mation process of an autonomous unit consists of a sequence of parallel rule
applications which combine local rule applications with environment changes
specified by other components. Every autonomous unit has exactly one thread
of control. Autonomous units regulate their transformation processes by choos-
ing in every step only those rules that are allowed by its control condition. A
finite transformation process is called successful if its last environment satisfies
the unit goal. Every infinite transformation process is successful if it contains
infinitely many environments that satisfy the goal.

Definition 2 (Parallel semantics).

1. Let aut = (g, P, c) be an autonomous unit and let Change ⊆ G × G. Let
MR ⊆ R∗ be a set of parallel rules, called metarules, such that SEM (MR) =⋃

r∈MR

SEM (r) = Change . Let s = (G0, G1, G2, · · ·) ∈ SEQ(G).

Then s ∈ PARChange(aut) if

– for i = 0, · · · , |s| if s is finite2 and for i ∈ N if s is infinite, (Gi−1, Gi) ∈
SEM (r + r′) for some r ∈ P∗ and r′ ∈ MR,

– s ∈ SEM Change(c).

2. The sequence s is called a successful transformation process if s is finite and
G|s| ∈ SEM (g) or there is an infinite monotone sequence i0 < i1 < i2 < · · ·
with Gij

∈ SEM (g) for all j ∈ N.

The elements of PARChange(aut) are sequences of applications of parallel
rules which may be called the parallel processes of aut . Every single step of
these processes applies a parallel rule of the form r + r′ where r is a parallel rule
of the unit aut and r′ is a metarule. Therefore, while the autonomous unit acts
on the environment graph, the environment may change in addition. But as r
and r′ may be the null rule and r + null = r as well as null + r′ = r′, a step can
also be an exclusive activity of aut or a change of the environment only.

Examples

As examples of autonomous units consider the units minimum and sum depicted
in Fig. 1. The underlying graphs are labeled with natural numbers representing
distances. The graph class expression for the goals of both units is all meaning
that both units do not have any particular goal. The rule of minimum deletes
the longer one out of two parallel edges labeled with natural numbers. The
control condition of the unit minimum requires that the rule be applied as long
as possible. In other words, a minimum process can only stop if no parallel edges
are around. Two rule applications are independent if they delete different edges.
This means that the rule can be applied k times in parallel, if the corresponding
parallel rule application deletes k edges. In particular, one can transform each
graph in a simple one without parallel edges in a single step.

2 For a finite sequence s its number of elements is denoted by |s|.

The rule of the second unit sum can be applied to a path e1, e2 provided that
e1 and e2 are labeled with natural numbers x and y and that there exists no edge
from the source of e1 to the target of e2 that is labeled with a number z ≤ x+y.
The last requirement is expressed by the dashed edge which represents negative
context. The rule inserts a new edge from the source of e1 to the target of e2 and
labels it with x+y. This rule must also be applied as long as possible. Moreover,
the rule can only be applied if the graph morphism from the left-hand side of
the rule to the current graph is injective. This means that the rule can only be
applied to loop-free paths. This condition ensures that no loops are produced
in the computation of the sums of the edge labels. Each two applications of the
sum-rule are independent because nothing is deleted. Consequently, the sum-rule
can be applied k times in parallel for every k ∈ N as long as there are loop-free
paths of length 2 satisfying the negative application condition. In particular, a
parallel rule can be applied so that afterwards each loop-free path of length 2
and distance x + y has got a parallel edge of distance z ≤ x + y.

minimum

goal: all

rules:

−→

x

y

min(x, y)

(x, y ∈ N)

cond: alap

sum

goal: all

rules:
−→

x y

z

x y

x + y

(x, y, z ∈ N, z ≤ x + y)

cond: alap, injective

Fig. 1. Two autonomous units.

4 Communities of Autonomous Units

Autonomous units are meant to work within a community of autonomous units
that modify the common environment together. In the parallel case these mod-
ifications take place in an interleaving manner. Every community is composed
of an overall goal that should be achieved, an environment specification that
specifies the set of initial environments the community may start working with,
and a set of autonomous units. The overall goal may be closely related to the
goals of the autonomous units in the community. Typical examples are the goals
admitting only graphs that satisfy the goals of one or all autonomous units in
the community.

Definition 3 (Community). A community is a triple COM = (Goal , Init ,Aut),
where Goal , Init ∈ X are graph class expressions called the overall goal and the
initial environment specification, respectively, and Aut is a set of autonomous
units.

In a community all units work on the common environment in a self-controlled
way by applying their rules. The change relation integrated in the semantics of
autonomous units makes it possible to define a parallel semantics of a commu-
nity in which every autonomous unit may perform its transformation processes.
From the point of view of a single autonomous unit, the changes of the environ-
ment that are not caused by itself must be activities of the other units in the
community. This is reflected in the following definition.

Definition 4 (Change relation). Let COM = (Goal , Init ,Aut) be a commu-
nity. Then for each aut ∈ Aut the change relation w.r.t. autChange(aut) is given
by the parallel rules composed of rules of the autonomous units in COM other
than aut as metarules, i.e. Change(aut) =

⋃

aut′∈Aut−{aut}

SEM (Paut ′ ∗).

Every transformation process of a community must start with a graph spec-
ified as an initial environment of the community. Moreover, it must be in the
parallel semantics of every autonomous unit participating in the community.
Analogously to successful transformation processes of autonomous units, a finite
transformation process of a community is successful if its last environment sat-
isfies the overall goal. Every infinite transformation process of a community is
successful if it meets infinitely many environments that satisfy the overall goal.

Definition 5 (Parallel community semantics).

1. Let COM = (Goal , Init ,Aut). Then the parallel community semantics of
COM consists of all finite or infinite sequences s = (G0, G1, . . .) ∈ SEQ(G)
such that G0 ∈ SEM (Init) and s ∈ PARChange(aut)(aut) for all aut ∈ aut .

2. The sequence s is called a successful transformation process if s is finite and
G|s| ∈ SEM (Goal) or there is an infinite monotone sequence i0 < i1 < · · ·
such that Gij

∈ SEM (Goal) for all j ∈ N.

3. The parallel community semantics is denoted by PAR(COM). Its elements
are called parallel processes of COM .

As the definition of the community semantics shows, there is a strong connec-
tion between the semantics of a community COM = (Goal , Init ,Aut) and the
semantics of an autonomous unit aut ∈ Aut . The parallel semantics of COM is a
subset of the semantics of aut with respect to the change relation Change(aut).
Conversely, one may take the intersection of the parallel semantics of all au-
tonomous units with respect to their own change relation each and restrict this
to the sequences starting in an initial environment. Then one gets the parallel
semantics of the community. This reflects the autonomy because no unit can be
forced to do anything that is not admitted by its own control.

Example

In following we shortly illustrate how communities of autonomous units can be
used to find shortest paths by working in parallel. The presented community
CAU (spath) is a parallel variant of the famous shortest-path algorithm of Floyd
[18].

As initial environments CAU (spath) admits all directed edge-labeled graphs
so that every edge from v to v′ is labeled with a number representing the distance
from v to v′. The set of autonomous units of CAU (spath) consists of the two
units minimum and sum presented in Fig. 1 above.

The goal of the community CAU (spath) is twofold: (1) Whenever there is
an edge e and a path p from a node v to a node v′ the distance of e has to be
less or equal to the distance of p (i.e. the distances edges are the shortest). (2)
Whenever there is an edge from a node v to a node v′, there is a shortest path
from v to v′ in the initial environment with the same distance. (This guarantees
that the computed edges yield the distances of the shortest paths in the initial
graphs.)

The parallel semantics of CAU (spath) is equal to the parallel semantics of
the unit minimum if the change relation is given by all (parallel) transformations
of sum and if the transformation processes start with an initial environment of
CAU (spath). The analogous property holds for the unit sum. More formally, this
means

PAR(CAU (spath))= PARPAR(minimum)(sum)|SEM (InitCAU (spath))
= PARPAR(sum)(minimum)|SEM (InitCAU (spath)).

Moreover it can be shown that the community CAU (spath) works correctly,
i.e. the parallel semantics of CAU (spath) contains only finite sequences (G0, . . . , Gn)
such that for every two nodes v and v′ there is an edge e with distance x in Gn

from v to v′ if and only if the shortest path in G0 from v to v′ has distance x (cf.
[19] for a correctness proof concerning the sequential variant of this algorithm).

5 Petri Nets

The area of Petri nets (see, e.g., [4, 5]) is established as one of the oldest, well-
known, and best studied frameworks in which parallelism is precisely introduced
and investigated. Hence it is meaningful to relate Petri nets with the parallel
semantics of communities of autonomous units and to shed some light on the sig-
nificance of the latter in this way. It turns out for instance that place/transition
nets, which are the most frequently used variants of Petri nets, can be seen as a
special case of communities of autonomous units where the transitions play the
role of the units.

A place/transition system S = (P, T, F, m0) consists of a set P of places, a
set T of transitions, a flow relation F ⊆ (P ×T)∪(T ×P), and an initial marking
m0 : P → N, i.e. m0 ∈ P∗. The sets P and T are assumed to be disjoint so that
N = (P ∪ T, F) is a bipartite graph (with the projections as source and target
maps respectively).

The transitions can fire if they are enabled meaning that they transform
markings being multisets of places. This is formally defined as follows.

A multiset m ∈ P∗ is called a marking. A transition t ∈ T is enabled w.r.t.
m if •t ≤ m where •t : P → N describes the input places of t that flow into
t, i.e. •t(p) = 1 if (p, t) ∈ F and •t(p) = 0 otherwise. The order •t ≤ m is
defined place-wise, i.e. •t(p) ≤ m(p) for all p ∈ P or, in other words, m(p) 6= 0
if (p, t) ∈ F . If t is enabled w.r.t. m, it can fire resulting in a marking which
is obtained by subtracting •t from m and by adding t• given by t•(p) = 1 if
(t, p) ∈ F and t•(p) = 0 otherwise. Such a firing is denoted by m [t〉m − •t +t•.
If one interprets m(p) as the number of tokens on the place p, then the firing of
t removes one token from each input place of t and puts a new token on each of
the output places of t.

Analogously, a multiset of transitions τ ∈ T∗ can be fired in parallel by
summing up all input places and all output places:

m[τ > m − •τ +τ• provided that •τ ≤ m.

Here •τ and τ• are defined by •τ (p) =
∑

t∈T τ(t) ∗ •t(p) and τ•(p) =∑
t∈T τ(t) ∗ t•(p) for all p ∈ P, and the order •τ ≤ m is again place-wise defined,

i.e. •τ (p) ≤ m(p) for all p ∈ P .
Now one may consider the underlying net, which is the bipartite graph N,

together with a marking as an environment. This is represented by the mark-
ing because the net is kept invariant. The transitions can be seen as rules and
the firing of multisets of transitions as parallel rule application. As environment
class expressions, we need single markings describing themselves as initial mark-
ings and the constant all accepting all environments. The only control condition
needed is the constant free allowing a unit the free choice of rules. Then these
components form a graph transformation approach, and a place/transition sys-
tem S = (P, T, F, m0) can be translated into a community of autonomous units

CAU (S) = (all, m0, {aut(t) | t ∈ T})

With aut(t) = (all, {t}, free).
It is not difficult to prove that there is a one-to-one correspondence between

the firing sequences of the place/transition system S that start in the initial
marking and the parallel processes of the related community of autonomous
units CAU(S) if one removes the firing symbol from the firing sequences. The
following figure depicts the relation.

P/T−2−CAU

firing deriver

adapter

S CAU (S)

=

The adapter transforms a firing sequence into a sequence of markings by remov-
ing the firing symbol between each two successive markings.

6 Cellular Automata

Cellular automata (see, e.g., [20]) are well-known computational devices that
exhibit massive parallelism. A cellular automaton consists of a network of cells
each of which being in a particular state. In a computational step, all cells
change their states in parallel depending on the states of their neighbours. To
simplify technicalities, one may assume that the neighbourhoods of all cells are
regular meaning that they have the same number of neighbours and that the
state transition of all cells is based on the same finite-state automaton. This
leads to the following formal definition.

A cellular automaton is a system CA = (G, A, init) where

– G = (V, E, s, t, l) is a regular graph of type k subject to the condition: for
each v ∈ V, there is a sequence of edges e(v)1, · · · , e(v)k with s(e(v)i) = v
and l(e(v)i) = i for all i = 1, . . . , k,

– A = (Q, Qk, d) is a finite-state automaton, i.e. Q is a finite set of states, Qk

is the input set and d ⊆ Q ×Qk × Q is the state transition with k-tuples of
states as inputs, and

– init: V → Q is the initial configuration.

If the graph G is infinite, one assumes a sleeping state q0 ∈ Q in addition such
that d(q0, q

k
0) = {q0} and active(init) = {v ∈ V | init(v) 6= q0} is finite.

The latter means that only a finite number of nodes is not sleeping ini-
tially and that the sleeping state can only wake up if not all inputs are sleep-
ing. The edge sequence e(v)1 · · · e(v)k yields the neighbours of v as targets, i.e.
t(e(v1)) · · · t(e(v)k)).

A configuration is a mapping con: V → Q that assigns each node (which rep-
resent cells) an actual state. Configurations can be updated by state transitions
of all actual states using the states of the neighbours as input.

Let con: V → Q be a configuration. Then con′: V → Q is a directly derived
configuration, denoted by con con′, if the following holds for every v ∈ V :

con′(v) ∈ d(con(v), con(t(e(v)1)) · · · con(t(e(v)k))).

The semantics of a cellular automaton CA is given by all configurations that can
be derived from the initial configuration:

L(CA) = {con | init ∗ con}

It is worth noting and easy to prove that all configurations derivable from the ini-
tial configuration have a finite number of nodes with non-sleeping states. Typical
examples of regular graphs underlying cellular automata are the following: The
set of nodes is the set of all points in the plane with integer coordinates, i.e. Z×Z.
Then there are various choices for the neighbourhood of a node (x, y) ∈ Z × Z.
that establish the set of edges with sources and targets. Typical ones are:

1. the four nearest nodes (to the north, east, south and west): (x, y + 1), (x +
1, y), (x, y − 1), (x − 1, y),

2. the eight nearest nodes: (x, y+1), (, x+1, y+1), (x+1, y), (x+1, y−1), (x, y−
1), (x − 1, y − 1), (x − 1, y), (x − 1, x + 1),

3. only the neighbours to the south and the west: (x, y − 1), (x − 1, y).

The edges connecting a node with a neighbour may be numbered in the given
order.

Cellular automata can be translated into communities of autonomous units
where each cell is transformed into a unit.

celaut−2−CAU
CA CAU (CA)

The environments are given by the configurations. To get a graph representation
of a configuration con, the underlying regular graph G is extended by a loop at
each node v which is labeled with con(v), i.e. (G, con) = (V, E + V, s, t, l), such
that G is a subgraph and s(v) = t(v) = v and l(v) = con(v) for all v ∈ V ⊆ E+V.

The community of autonomous units CAU (CA) associated with a cellular
automaton CA = (G, A, init) gets (G, init) as initial environment and an au-
tonomous unit aut(v) for each v ∈ V.

Each of these units has the same rules with positive context which reflect the
state transition:

q

q1

q2

qk

1
2

k

⊇ ⊆ q′

provided that q′ ∈ d(q, q1, · · · , qk) and not all their states are sleeping. Moreover
each unit aut(v) has got a control condition requiring that the central node
must be mapped to v. This means that the matching of the left-hand side of
each rule is fixed and no search for it is needed. Moreover, the matchings of
rules of different units are not overlapping so that the rules can be applied in
parallel. If a node is sleeping and all its neighbours are sleeping too, then no rule
can be applied. A parallel rule is maximal if all other nodes are matched. It is
easy to see that the application of such a parallel rule corresponds exactly to a
derivation step on the respective configurations.

In other words, the semantics of a cellular automaton CA and the parallel
semantics PAR(CAU (CA)) of the community of autonomous units CAU(CA)
are nicely related to each other if one applies maximal parallel rules only. Let
L(PAR(CAU(CA))) be the set of configurations con such that a parallel pro-
cess (G, init) · · · (G, con) ∈ PAR(CAU(CA)) exists. Then L(PAR(CAU(CA)))
equals L(CA). This correctness result is depicted by the following figure.

celaut−2−CAU

generator deriver

squeezer
L(CA) = L(PAR(CAU (CA)))

CA CAU (CA)

PAR(CAU (CA))

A finite-state automaton fitting the third neighbourhood is

SIER = ({b, w}, {b, w}2, d)

with d(b, x, y) = b for all x, y ∈ {b, w}, d(w, b, w) = d(w, w, b) = b, and d(w, b, b) =
d(w, w, w) = w. The state w is sleeping.

The initial configuration may map the node (0, 0) to b and all others to w.
There is a very nice pictorial interpretation of this cellular automaton. Each

node (x, y) is represented by the square spanned by the points (x, y), (x, y +
1), (x + 1, y + 1), (x + 1, y). If a configuration con assigns b to (x, y), the square
gets the color black and white otherwise. The initial configuration consists of a
single black square. Because the automaton is derteministic, there is exactly one

derivation for each length, where the shorter derivations are initial sections of
the longer ones. The first five steps are

After 15 steps the picture looks as follows:

And all derived configurations can be seen as approximations of the Sierpinski
triangle, a famous fractal. (see, e.g., [21]).

7 Multiagent Systems

Multiagent systems are modelling and programming devices well-known in arti-
ficial intelligence (see, e.g., Wooldridge et al. [6]). A multiagent system provides
a set of agents and an initial environment state. Starting at this state, the agents
change environment states step by step where they act together in parallel in
each step. Each agent can perceive the current environment state at least partly.
Based on this perception and its own intention, the agent chooses an action to be
performed next. Therefore, a process in a multiagent system MAS is a sequence

es0 es1 es2 · · ·

of environment states esi for all i where es0 is initial. Each environment state
esi+1 is given by the state transition τ of MAS depending on the previous state
esi and the action act(ag)i chosen by every agent ag of MAS . The choice of
such an action is made according to the function doag each agent ag is pro-
vided with. The do-function yields an action depending on the agent’s percep-
tion perceiveag(esi) of the current state and the agent’s intention intendag. The
global state transition τ and the functions doag , perceiveag and intendag which
are individually assigned to each agent ag of MAS are assumed to satisfy some
consistency properties (cf. [6] for details). Altogether, multiagent systems form a
logical and axiomatic approach to model distributed information proccesses that
interact on common environment states. It should be noted that all functions of
MAS are allowed to be nondeterministic so that chosen actions as well as the
next state may not be uniquely determined.

Communities of autonomous units are nicely related to multiagent systems
as may be not too surprising from the description above. Actually, a community
of autonomous units CAU = (Goal , Init ,Aut) turns out to be a particular rule-
based model of multiagent systems. The environment states are the environment
graphs. The agents are the units. The initial graphs are explicitly given. The
rules – or the parallel rules likewise – of a unit are the actions of the agent
embodied by the unit. The control condition plays the role of the do-function
because it identifies the rules that are allowed to be applied next. As the control
condition can take into account the current environment graph, the perception
of the agent is also reflected. The most important aspect of the correspondence
between agents and units is the transition function that is made operational by
means of parallel rule application. The parallel rule to be applied in each step is
just the sum of all rules chosen by the various units according to their control. If
one considers the parallel rules of a unit as actions, the parallel processes of the
community and the processes of the corresponding multiagent system coincide.
If only the rules are actions, the multiagent system is not parallel with respect
to single agents. That all agents must act in parallel in each step is a minor
difference to community processes because a multiagent system may provide
void actions without effect to the environment.

The relation between communities of autonomous units and multiagent sys-
tems is only sketched because a full formal treatment is beyond the scope of
the paper. But even on this informal level, it should be clear that both con-
cepts fit nicely together and may profit from each other. Communities of au-
tonomous units represent explicit models of multiagent systems on one abstract,
implementation-independent level with a precise, rule-based operational seman-
tics. The perceive-do mechanism of multiagent systems to choose next actions
provides a wealthy supply of control conditions that can be employed in modeling
by means of autonomous units.

8 Conclusion

In this paper, we have supplemented the sequential-process semantics of au-
tonomous units in [1] by a parallel-process semantics which allows the units
of a community to act and interact simultaneously in a common environment.
Moreover, we have studied the relationship of autonomous units to three other
modeling frameworks that provide notions of parallelism: Petri nets, cellular au-
tomata, and multiagent systems. While the first two have been correctly trans-
formed into autonomous units, autonomous units have turned out to be models
of multiagent systems in that the environments are instantiated as graphs, the
actions of agents as rules, and the environment transformation as parallel rule
application. This is the very first step of the investigation of autonomous units
in a parallel setting. The future study may include the following topics:

1. Besides Petri nets, the theory of concurrency offers a wide spectrum of no-
tions of processes like communicating sequential processes, calculus of com-

municating systems, traces, and bigraphs. A detailed comparison of them
with autonomous units can lead to interesting insights.

2. The basic idea of autonomous units is that each of them decides for itself
which rule is to be applied next. They are independent of each other and the
parts of the environment graphs where their rules apply may be far away
from each other. Hence a sequential behaviour of the community (like in
many card and board games) will be rarely adequate. But also the parallel
behaviour does not always reflect the actual situations to be modeled because
a parallel step provides a graph before and a graph after the step whereas
there may be activities of units that cannot be related to each other with
respect to time. A proper concurrent semantics of autonomous units may fix
this problem.

3. In all explicit examples, we have made use of the fact that independent rule
applications can be applied in parallel. This holds in the DPO approach (as
well as in the SPO approach) together with several other properties and con-
structions that relate parallel and sequential processes yielding true concur-
rency for example. It seems to be meaningful to extend these considerations
to the framework of autonomous units.

References

1. Hölscher, K., Kreowski, H., Kuske, S.: Autonomous units and their semantics —
the sequential case. In: Proc. International Conference of Graph Transformation.
Volume 4178 of Lecture Notes in Computer Science. (2006) 245–259

2. Kuhn, A.: Prozessketten – Ein Modell für die Logistk. In Wiesendahl, H.P., ed.:
Erfolgsfaktor Logistikqualität. Springer Verlag (2002) 58–72

3. Scheer., A.W.: Vom Geschäftsprozeß zum Anwendungssystem. Springer Verlag
(2002)

4. Reisig, W.: Elements of Distributed Algorithms: Modeling and Analysis With Petri
Nets. Springer Verlag (1998)

5. Bause, F., Kritzinger, P.: Stochastic Petri Nets - An Introduction to the Theory
(Second Edition). Vieweg & Sohn Verlag Braunschweig/Wiesbaden (Germany)
(2002)

6. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10(2) (1995)

7. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann (2001)
8. Rozenberg, G., Salomaa, A., eds.: Handbook of Formal Languages, Vol. 1–3.

Springer Verlag (1997)
9. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University

Press (1998)
10. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph

Transformation, Vol. 1: Foundations. World Scientific, Singapore (1997)
11. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph

Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages and Tools. World Scientific, Singapore (1999)

12. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G., eds.: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 3: Concurrency, Paral-
lelism, and Distribution. World Scientific, Singapore (1999)

13. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing — New Computing
Paradigms. Springer Verlag (1998)

14. Kreowski, H.J., Kuske, S.: Graph transformation units with interleaving semantics.
Formal Aspects of Computing 11(6) (1999) 690–723

15. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.J., Kuske, S.,
Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and
programming. Science of Computer Programming 34(1) (1999) 1–54

16. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3,4) (1996) 287–313

17. Corradini, A., Ehrig, H., Heckel, R., Löwe, M., Montanari, U., Rossi, F.: Algebraic
approaches to graph transformation part I: Basic concepts and double pushout
approach. [10] 163–245

18. Even, S.: Graph Algorithms. Computer Science Press (1979)
19. Kreowski, H.J., Kuske, S.: Graph transformation units and modules. In Ehrig, H.,

Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph Grammars
and Computing by Graph Transformation, Vol. 2: Applications, Languages and
Tools. World Scientific, Singapore (1999) 607–638

20. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc. (2002)
21. Peitgen, H., Jürgens, H., Saupe, D.: Chaos and Fractals. Springer, Berlin (2004)

