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Abstract. In this paper, we introduce contextual hypergraph gram-
mars, which generalize the total contextual string grammars. We
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1 Introduction

Solomon Marcus introduced the external variant of contextual grammars in 1969.
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adjoining contexts using a selection procedure, contextual grammars were dis-
covered to have some limitations. Yet, as the term contextual seems to be very
appropriate to model linguistic aspects, soon a large variety of such grammars
appeared. We mention here only several types, like the internal case, total con-
textual, grammars with choices respectively, etc. For more details, the reader is
referred to [1]. In the basic case of a contextual grammar, a context is a pair (u, v)
of strings that are to be inserted into axioms or derived strings. More explicitly,
a string x directly derives a string y using the context (u, v) if y = x1ux2vx3 for
some decomposition x = x1x2x3.

Despite the large variety of contextual grammars, it is difficult to put together
strings and structures, a very important intrinsic quality of natural languages.
There were several proposals to introduce bracketed contextual grammars [2, 3, 4]
in order to enhance the words in the generated languages with a tree structure,
or to add a dependency relation to contexts, axioms and to generated words.
However, we believe that hypergraphs provide a more general structure that
could enhance a textual string representation, and therefore we propose a new
approach to the generation of hypergraph languages.

In this paper (Section 3), we introduce the concept of contextual hypergraph
grammars as a generalization of contextual grammars by considering hyper-
graphs instead of strings as underlying data structures. The insertion operation
is taken over by a merging operation. Two hypergraphs, each with a sequence
of external vertices of the same length, are merged by identifying corresponding
external vertices whereas all other items are kept disjoint. We can see the exter-
nal vertices as gluing points, each external node “waiting for” another external
node from another hypergraph in order to become an internal node.

A contextual hypergraph grammar is given by finite sets of axioms and con-
texts both being hypergraphs. Starting with an axiom, derivations are composed
of iterated merging with contexts. While the contexts are equipped with exter-
nal vertices by definition, axioms and intermediately derived hypergraphs do
not have external vertices of their own. Therefore, before they can be merged
with some context, some preparation is necessary that equips them with external
vertices in a suitable way. For this purpose, a contextual hypergraph grammar
provides an operator Θ that depends on the contexts and associates each hyper-
graph without external vertices with a set of hypergraphs each with a proper
sequence of external vertices. The idea is that ΘC(H) for some context C and
some hypergraph H yields variants of H that can be merged with C in particular.
Such a merging defines a derivation step if H is an axiom or some already de-
rived hypergraph. In this way, the Θ-operator plays on the level of hypergraphs
the role of decomposition on the level of strings.

As shown in Section 4, hyperedge replacement grammars in the sense of [5, 6]
can be simulated as contextual hypergraph grammars using a suitable kind of
variants which are constructed by the removal of single hyperedges. By means
of a more sophisticated kind of variants that are constructed by the removal
of homomorphic images of hypergraphs up to a certain set of vertices, one can
also translate arbitrary hypergraph grammars in the double-pushout approach
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(see, e.g., [7]) into contextual hypergraph grammars. This proves in particular
that all recursively enumerable sets of hypergraphs can be generated by contex-
tual hypergraph grammars. In this sense, our new approach is computationally
complete.

2 Preliminaries

In this section, we recall all the notions and notations of hypergraphs as needed
in this paper.

We denote by N the set of natural numbers. For n ∈ N, [n] represents the
finite set {1, . . . , n}, with [0] = ∅.

For a given finite set A, |A| denotes the number of elements in A. We use
the notation P(A) for the powerset of A, i.e. the set of all subsets of A. A
function w : [n] → A is called a string over A, also denoted by w = a1 . . . an

with w(i) = ai for i ∈ [n]. The set A is also called an alphabet and strings over
A are words. For a given string w = a1 . . . an, |w| = n is the length of the string
and w(i) = ai denotes the i-th symbol of the string. We denote by λ the empty
string with |λ| = 0. The set of all strings over A is denoted by A∗.

For a given function f : A → B, we may define the canonical extension to
strings as the function f∗ : A∗ → B∗ defined as f∗(λ) = λ, and f∗(aw) =
f(a)f∗(w) for a ∈ A and w ∈ A∗. By convention if A = ∅, then ∅∗ = {λ} and
the canonical extension to strings is also defined.

A relation R ⊆ A × A is called an equivalence relation if R is reflexive, sym-
metric and transitive. For x ∈ A, the set 〈x〉 = {z ∈ A | xRz} of all elements
related to x by R is called the equivalence class of x. The set of all equivalence
classes A/R = {〈x〉 | x ∈ A} is the quotient set of A by R.

Let Σ be an alphabet. A hypergraph over Σ is a system H = (V, E, att,
lab, ext) where V is a set of vertices, E is a set of hyperedges, att : E → V ∗,
called the attachment function, is a mapping that assigns a sequence of vertices
to every hyperedge, lab : E → Σ is a mapping that assigns a label to every
hyperedge, and ext ∈ V ∗ is a sequence of external vertices of H . For notational
convenience, the components of a hypergraph H will often be written with index
H , i.e. H = (VH , EH , attH , labH , extH).

The length |extH | is called the type of H , denoted also by type(H). The class
of all hypergraphs of type n ∈ N over Σ is denoted by HΣ,n. The class of type-0
hypergraphs HΣ,0 is also denoted by HΣ .

Analogously, for e ∈ EH , the length |attH(e)| is called the type of e. A hy-
pergraph with all hyperedges of type 2 is an ordinary directed graph. To denote
this special case, we use GΣ and GΣ,n instead of HΣ and HΣ,n respectively. If
the alphabet is not important we use simply the notations H or G. Sometimes,
to represent unlabelled hypergraphs we use the alphabet Σ = {∗}.

A hypergraph H ∈ HΣ,n is a subhypergraph of a hypergraph H ∈ HΣ,n,
denoted by H ⊆ H, if VH ⊆ VH , EH ⊆ EH , attH(e) = attH(e) and labH(e) =
labH(e) for all e ∈ EH , and extH = extH .

Given two hypergraphs H, H ′ ∈ HΣ,n, a hypergraph morphism f : H → H ′ is
a pair f = (fV , fE) of functions fV : VH → VH′ and fE : EH → EH′ such that
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we have labH(e) = labH′(fE(e)) and f∗
V (attH(e)) = attH′(fE(e)) for all e ∈ EH ,

and f∗
V (extH) = extH′ . The morphism is injective if the functions fV , fE are

injective.
The following two operations on hypergraphs, namely disjoint union and

merge, are similar to the hypergraph operations studied by Courcelle [8].
For two hypergraphs H, H we define the disjoint union denoted as H + H

that yields a hypergraph (VH 	 VH , EH 	 EH , att, lab, ext), where 	 denotes
the disjoint union of sets,

att(e) =
{

attH(e) if e ∈ EH ,
attH(e) otherwise, lab(e) =

{
labH(e) if e ∈ EH ,
labH(e) otherwise, and

ext(i) =
{

extH(i) if i ≤ |extH |,
extH(i − |extH |) otherwise for i ∈ [|extH | + |extH |].

The disjoint union of hypergraphs is associative. It is commutative only if one
component is of type 0, since the external sequence is the concatenation of the
external sequences of the component hypergraphs.

For two hypergraphs H, H ∈ HΣ,n we denote by EXT the equivalence relation
on (VH 	 VH) × (VH 	 VH) induced by extH(i) = extH(i) for all i ∈ [n]. Then
the merge operation H ◦ H of H and H is defined by

H ◦ H = ((VH 	 VH)/EXT, EH 	 EH , att, lab, λ) ∈ HΣ

where att(e) =
{

attH(e) if e ∈ EH ,
attH(e) otherwise, and lab(e) =

{
labH(e) if e ∈ EH ,
labH(e) otherwise.

1
2

…

n

merge H H H

1
2

…

n

H

Fig. 1. The merging of H and H

Figure 1 illustrates the merge operation. It should be noted that the merging
is commutative, but not associative.

3 Contextual Hypergraph Grammars

In this section we introduce the new concept of contextual hypergraph gram-
mars and their generated hypergraph languages. Besides a label alphabet and
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a subalphabet of terminal labels, a contextual hypergraph grammar consists of
two finite sets of hypergraphs: a set of axioms and a set of contexts, as well as an
operator that specifies how each context can be used to derive hypergraphs from
hypergraphs. Moreover, various examples are given to illustrate the derivation
mechanism of contextual hypergraph grammars.

Definition 1 (Contextual Hypergraph Grammar). A contextual hyper-
graph grammar is a system CHG = (Σ, T, A, C, Θ) where Σ is a finite set of
labels, T ⊆ Σ is a set of terminal labels, A ⊂ HΣ is a finite set of axioms, C
is a finite set of hypergraphs of various types called hypergraph contexts, and
Θ = (ΘC)C∈C is a family of mappings where every ΘC : HΣ → P(HΣ,type(C)) is
a selection function for every hypergraph context C ∈ C. The elements of ΘC(H)
are called variants of the hypergraph H.

A derivation relation is defined on HΣ ×HΣ and the hypergraph G directly de-
rives the hypergraph H, denoted by G ⇒ H, if there are C ∈ C and G′ ∈ ΘC(G)
such that H = C ◦ G′, i.e. H is a merging of a variant of G with some hy-
pergraph context. We denote by ⇒∗ the reflexive and transitive closure of the
derivation relation ⇒. The language generated by a contextual hypergraph gram-
mar CHG = (Σ, T , A, C, Θ) consists of all terminal hypergraphs derived from
some axiom, i.e. L(CHG) = {H ∈ HT | Z ⇒∗ H for Z ∈ A}.
In this paper, we assume that the function Θ is computable, so that the gener-
ated languages are recursively enumerable. It should be noted that we assume
terminal labels in contrast to the usual definition of centextual grammars in the
string case. But this allows us more flexibility from the very beginning. The
task of the Θ function is to provide variants of a type-0 hypergraph that can be
merged with a chosen context. While in all following examples the originals and
their variants are closely related, the very general definition of Θ admits also
much more sophisticated constructions.

Example 1 (All Graphs). As a first example, we define a contextual hypergraph
grammar that generates the set of all directed (unlabeled) graphs:

CHGall = ({∗}, {∗}, {empty}, {V ertex,Edge}, Θall)

where empty denotes the empty graph and V ertex, Edge and Θall are given as
follows.

1. V ertex is the type-0 graph with a single vertex without edges.
2. Edge is the graph with two vertices and a connecting edge whose attachment

defines also the sequence of external vertices.
3. The only V ertex-variant of a hypergraph is the hypergraph itself, that is

Θall,V ertex(H) = {H}.
4. The Edge-variants of a type-0 hypergraph are given by all choices of a se-

quence of two distinct vertices, i.e. Θall,Edge(H) = {(H, v1v2) | v1, v2 ∈
VH , v1 �= v2} where (H, v1v2) = (VH , EH , attH , labH , v1v2).

Given a hypergraph H (of type 0), V ertex◦H adds a single vertex disjointly to H ,
and Edge ◦ (H, v1v2) adds a new edge to H connecting v1 and v2 for each choice
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of v1v2. If a graph G has n vertices, VG can be generated by V ertexn ◦ empty
up to the naming of vertices. Then every edge of G can be added successively,
connecting the proper vertices by means of the context Edge. In other words,
CHGall generates the set of all graphs.

Example 2 (Eulerian Graphs). Our second example is a contextual hypergraph
grammar that generates the sets of all Eulerian graphs (where a graph is Eulerian
if it has a cycle passing each edge exactly once):

CHGEuler = ({∗}, {∗}, {2Cycle0}, {V ertex, 2Cycle, 2Path}, ΘEuler)

where V ertex is the same graph as in the previous example, 2Cycle0 is the type-
0 graph consisting of a cycle of length 2, 2Cycle is the same graph with its two
vertices as external vertices, and 2Path is a graph with three vertices, say v1,
v2, and v3, two edges, one from v1 to v2 and the other from v2 to v3, and v1v2v3
as sequence of external vertices. ΘEuler is defined as follows.

1. ΘEuler,V ertex = Θall,V ertex,
2. ΘEuler,2Cycle(H) = {(H, v1v2) ∈ Θall,Edge | v1 or v2 not isolated},
3. ΘEuler,2Path(H) = {(H − e, v1v2v3) | e ∈ EH , v1, v2, v3 pairwise distinct}

where H −e is the subhypergraph of H obtained by removing the hyperedge
e, and (H−e, v1v2v3) is H−e with v1v2v3 instead of λ as sequence of external
vertices.

It is not difficult to see that the merging of V ertex, 2Cycle or 2Path with
an admitted variant of the axiom or a derived graph preserves connectivity up
to isolated vertices as well as the property that indegree equals outdegree for
each vertex. Conversely, every graph with these properties can be obtained from
2Cycle0 by a sequence of such mergings. Altogether, the grammar generates
the language of Eulerian graphs according to the well-known characterization of
Eulerian graphs by these two properties.

In a similar manner, we can generate the sets of all Hamiltonian graphs or all
non-Hamiltonian graphs.

Example 3 (Square Grids Graphs).

CHGSG = ({a, c, N}, {a, c}, {E, F}, {Stop, Cont, Corner, T ile}, ΘSG)

In Figure 2 we see the grammar’s hypergraphs. ΘSG is defined as follows.

1. ΘSG,Stop(H) = {(VH , EH \ {e1}, attH |EH\{e1}, labH |EH\{e1}, v1v2v4) | (v1,
v2, v3, v4 ∈ VH , pairwise distinct nodes), e1 ∈ EH , condStop(H, v1, v2, v3,
v4, e1)}; condStop(H, v1, v2, v3, v4, e1) is a boolean function that is true when
the following conditions hold:
– attH(e1) = v2v1, labH(e1) = N ,
– ∃ edges e2, e3 ∈ EH , attH(e2) = v2v3, labH(e2) = a, attH(e3) = v3v4,

labH(e3) = a,
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E F Stop Cont Corner T ile
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Fig. 2. CHGSG hypergraphs
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Fig. 3. ΘSG,Stop returns nonempty sets for these hypergraphs

– |{e ∈ H | attH(e) ∈ V ∗
Hv3V

∗
H , labH(e) = a}| = 4,

– |{e ∈ H | attH(e) ∈ V ∗
Hv4V

∗
H}| = 2.

In order to understand the conditions checked by ΘSG,Stop we present in
Figure 3 two hypergraphs containing vertices and edges such that condStop
is true.

2. ΘSG,Cont = ΘSG,Stop.
3. ΘSG,Corner(H) = {(VH , EH \ {e1, e2}, attH |EH\{e1,e2}, labH |EH\{e1,e2},

v1v2v3) | (v1, v2, v3 ∈ VH pairwise distinct vertices), (e1, e2 ∈ EH , distinct
edges), attH(e1) = v2v1, labH(e1) = N , attH(e2) = v2v3, labH(e2) = c}.

4. ΘSG,Tile(H) = {(VH , EH \{e1}, attH |EH\{e1}, labH |EH\{e1}, v1v2v4) | (v1, v2,
v3, v4 ∈ VH pairwise distinct nodes), e1 ∈ EH ,
NOT condStop(H, v1, v2, v3, v4, e1), attH(e1) = v2v1, labH(e1) = N , ∃ an
edge e2 ∈ EH , attH(e2) = v2v3, labH(e2) = a}.

It is not difficult to see the existence of only one edge labelled by N to all
derived hypergraphs except the ones from the language as an invariant for all
the derivations. Also all nonempty Θ sets contain hypergraphs with the external
nodes in the neighborhood of the edge labelled by N .
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Our example actually generates only odd sizes square grids; to get all even
square grids we should add the corresponding axioms.

The graph languages generated by Eulerian, Hamiltonian, Square Grid Gram-
mars are particularly interesting because they cannot be generated by any con-
text-free (hyper)graph grammar (c.f., e.g., [5, 6] where the generative power of
hyperedge replacement grammars is discussed).

4 Simulation Results

In this section, we show that contextual hypergraph grammars generalize total
contextual grammars on strings. Moreover, contextual hypergraph grammars can
simulate in a natural way two well-known types of graph grammars: hyperedge
replacement grammars [5, 6], which provide a context-free generation mechanism
for (hyper)graph sets, and hypergraph grammars in the double-pushout approach
[7], which is one of the most frequently used graph transformation frameworks.

4.1 Contextual String-Hypergraph Grammars

The notion of contextual grammars evolved starting from the initial paper pro-
posed by Solomon Marcus up to the current definition [1].

Definition 2 (Total Contextual Grammars). A (string) total contextual
grammar is a construct TCG = (Σ, A, C, ϕ), where Σ is an alphabet, A is a
finite subset of Σ∗, C is a finite subset of Σ∗×Σ∗ and ϕ : Σ∗×Σ∗×Σ∗ → P(C).
The elements of A are called axioms, the elements of C are called contexts, and
ϕ is a choice function.

A derivation relation ⇒
TC

is defined as x ⇒
TC

y if and only if x = x1x2x3,

y = x1ux2vx3, for x1, x2, x3 ∈ Σ∗, and (u, v) ∈ C, s.t. (u, v) ∈ ϕ(x1, x2, x3).
The transitive closure of the relation ⇒

TC
is denoted by ∗⇒

TC
.

The generated language is L(TCG) = {w ∈ Σ∗ | a
∗⇒

TC
w, for a ∈ A}.

In order to relate string contextual grammars with contextual hypergraph gram-
mars, we need the notion of a string hypergraph −→s for a string s so that a string
language L can be considered as a hypergraph language

−→
L .

We will use the “·” operator to denote the concatenation of numeric symbols.

Definition 3 (string-hypergraph). Let us consider an alphabet Σ and a finite
nonempty string s = a1 . . . an over Σ.

A string-hypergraph context denoted by s ∈ HΣ,n is the hypergraph ([n], {eci |
i ∈ [n]}, (att(eci) = i, for all i ∈ [n]), (lab(eci) = ai, for all i ∈ [n]), 1 · . . . · n)
with all its vertices as external nodes; and let λ = empty.

A string-hypergraph denoted by −→s ∈ HΣ is the hypergraph ([n + 1], {eci | i ∈
[n]}∪{esi | i ∈ [n]}, (att(eci) = i, att(esi) = i ·(i+1), for all i ∈ [n]), (lab(eci) =
ai, lab(esi) = ∗, for all i ∈ [n])) having no external nodes but some sequential
edges in order to reconstruct a string form a string-hypergraph.

−→
λ = V ertex.

For a given string language L we denote by
−→
L = {−→s | s ∈ L}.
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2
…v1

n1
v2 vn

1

ec1:a1

1

ec2:a2

1

ecn:an

…v1 v2 vn vn+1

1

ec1:a1

1

ec2:a2

1

ecn:an

es11 2 esn1 2

Fig. 4. A string-hypergraph context and a string-hypergraph

We can see a representation of a string-hypergraph context and a string-hypergraph
in Figure 4, the rectangles are the hyperedges with their names and labels, while
the numbers next to them represent the attachments to nodes.

A total contextual (string) grammar TCG = (Σ, Ax, Ctx, ϕ) can be trans-
formed into a contextual hypergraph grammar CHG(TCG) = (Σ, Σ, A, C,
ΘTCG) in the following way. A = {−→a | a ∈ Ax} that is the axioms are trans-
formed into string-hypergraphs, C = {u+w | (u, w) ∈ Ctx}, that is each context
is transformed into the disjoint union of the left and right string-hypergraph
contexts. The function ΘTCG,u+w(−−→xyz) takes a string-hypergraph and prepares
it for the merging operation with a string-hypergraph context. Figure 5 shows
the Θ-preparation, where the ec hyperedges took labels from the original string.

ΘTCG,u+w(−−→xyz) = {([|xuywz| + 1], EC ∪ ES, att, lab, (|x| + 1) · . . . · |xu| ·
(|xuy|+1) · . . . · |xuyw|) | for (u, w) ∈ Ctx, x, y, z ∈ Σ∗, s.t.(u, w) ∈ ϕ(x, y, z)},
where

– ES = {esi | i ∈ [|xuywz|]},
– EC = {eci | i ∈ [|xyz|]},
– att(esi) = i · (i + 1), lab(esi) = ∗, for i in [|xuywz|],
– att(eci) = i for 1 ≤ i ≤ |x|, att(eci) = i + |u| for |x| + 1 ≤ i ≤ |xy|,

att(eci) = i + |uw| for |xy| + 1 ≤ i ≤ |xyz|, lab(eci) = xyz(i) for i in [|xyz|].

Using this construction, it is easy to prove the following theorem.

Theorem 1. Let TCG be a total contextual (string) grammar and CHG(TCG)
the corresponding contextual hypergraph grammar. Then they generate the same
string-hypergraph language, i.e.

−−−−−→
L(TCG) = L(CHG(TCG)).

4.2 Hyperedge Replacement Grammars

A hyperedge replacement grammar is a system HRG = (N, T, P, S) where N ⊆ Σ
is a set of nonterminal labels, T ⊆ Σ is a set of terminal labels, P is a set of

…

v1 v|x| v|x|+1

x1 x|x|

v|xu|

…

y1

v|xu|+1

…

v|xuy|

y|y|

v|xuy|+1

… v|xuyw|

v|xuyw|+1

z1

…

v|xuywz|

z|z|

v|xuywz|+1

Fig. 5. An object returned by the function ΘTCG
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rules having the form (A ::= R) with A ∈ N and R ∈ HΣ,n for some n ∈ N, and
S ∈ N is a start symbol.

For technical simplicity, we assume that the nonterminals are typed, meaning
that there is a mapping type : N → N subject to the following conditions:

i) type(A) = type(R) for each (A ::= R) ∈ P ,
ii) type(e) = type(labR(e)) for each e ∈ ER with R being the right-hand side

of some rule (A ::= R) ∈ P .

Let H ∈ HΣ and e ∈ EH with type(e) = type(labH(e)). Then H derives
directly H through (labH(e) ::= R) ∈ P if H = (H − e) ◦ R. Note that the
merging of (H − e) and R is always defined because the types of e and R are
equal and e transfers its type to (H − e). Here H − e denotes the removal of e
from H yielding the hypergraph H − e = (VH , EH \ {e}, att, lab, attH(e)) where
att and lab are the restrictions of attH and labH , respectively, to the set EH \{e}.

A direct derivation of H from H is denoted by H → H and the reflexive and
transitive closure of this relation by →∗.

The language generated by a hyperedge replacement grammar HGR = (N ,
T , P , S) consists of all terminal hypergraphs derivable from the start han-
dle, i.e. L(HRG) = {H ∈ HT | S◦ →∗ H}. Here, a handle of a nonterminal
A ∈ N denotes the hypergraph A◦ = ([type(A)], {e0}, att, lab, 1 . . . type(A)) with
att(e0) = 1 . . . type(A) and lab(e0) = A.

A hyperedge replacement grammar HRG = (N, T, P, S) can be translated into
a contextual hypergraph grammar CHG(HRG) = (N ∪ T, T, {S◦}, {R | (A ::=
R) ∈ P}, ΘHRG) with ΘHRG,R(H) = {H − e | e ∈ EH , (labH(e) ::= R) ∈ P}
such that CHG(HRG) generates the same language as HRG.

Theorem 2. Let HRG be a hyperedge replacement grammar and CHG(HRG)
the corresponding contextual hypergraph grammar. Then HRG and CHG(HRG)
generate the same language, i.e. L(HRG) = L(CHG(HRG)).

4.3 Hypergraph Grammars

In this subsection, we introduce hypergraph grammars in the so-called double-
pushout approach. They generalize hyperedge replacement grammars in that
a direct derivation does not replace a hyperedge only, but a subgraph (up to
external nodes) which is a matching of a left-hand side of a rule.

A hypergraph grammar is a system HG = (T, P, Z) where T ⊆ Σ is a set
of terminal labels, P is a finite set of rules of the form L ⊇ K ⊆ R with
L, K, R ∈ HΣ , and Z ∈ HΣ is an axiom.

Without loss of generality, we may assume that the gluing hypergraph K of
each rule L ⊇ K ⊆ R is totally disconnected, i.e. EK = ∅, and VK = [n] for
some n ∈ N. Therefore, the rule can be represented by the pair (L, 1 . . . n) ::=
(R, 1 . . . n).

A hypergraph H ∈ HΣ directly derives a hypergraph H ∈ HΣ through the ap-
plication of the rule (L, 1 . . . n) ::= (R, 1 . . . n) if there is a hypergraph morphism
g : L → H such that
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(1) attH(e) ∈ (VH \ (gV (VL) \ gV ([n])))∗ for all e ∈ EH \ gE(EL),
(2) gE is injective, and gV (v) = gV (v′) for v �= v′ implies v, v′ ∈ [n],
(3) X = (VH \(gV (VL)\gV ([n]))), EH \gE(EL), attX , labX, gV (1) . . . gV (n)) with

attX(e) = attH(e) and labX(e) = labH(e) for all e ∈ EH \ gE(EL), and
(4) H = X ◦ (R, 1 . . . n).

A direct derivation from H to H through the rule r is denoted by H →
P

H if

r ∈ P . The reflexive and transitive closure of the relation →
P

is denoted by ∗→
P

.

Let HG = (T, P, Z) be a hypergraph grammar. Then the generated language
L(HG) contains all terminal hypergraphs derivable from the axiom through
given rules i.e. L(HG) = {H ∈ HT | Z

∗→
P

H}.

It should be noted that the hypergraphs H and H are pushouts of the in-
termediate hypergraph X and the left-hand side L respectively the right-hand
side R using the gluing hypergraph K. H and H remain invariant whether K
is totally disconnect or has got hyperedges. In the double − pushout approach,
the hypergraphs X and H are usually constructed as pushout complement and
pushout respectively. We prefer the given version because it is easier related to
contextual hypergraph grammars.

A hypergraph grammar HG = (T, P, Z) can be transformed into a contex-
tual hypergraph grammar CHG(HG) = (Σ, T, {Z}, CHG, ΘHG) where CHG =
{(R, 1 . . . n) | ((L, 1 . . . n) ::= (R, 1 . . . n)) ∈ P} and ΘHG,(R,1...n)(H) contains all
hypergraphs X that are constructed as in Point 3 above for all rules
((L, 1 . . . n) ::= (R, 1 . . . n)) ∈ P and hypergraph morphisms g : L → H that
fulfil Points 1 and 2.

We get H ⇒ H with H = (R, 1 . . . n) ◦ X for some (R, 1 . . . n) ∈ CHG and
X ∈ ΘHG,(R,1...n)(H) if and only if H →

P
H. This proves the following theorem.

Theorem 3. Let HG be a hypergraph grammar and CHG(HG) the correspond-
ing contextual hypergraph grammar. Then HG and CHG(HG) generate the
same language, i.e. L(HG) = L(CHG(HG)).

It is known that hypergraph grammars in the double-pushout approach generate
all recursively enumerable hypergraph languages. Using the theorem, this holds
for our new concept of contextual hypergraph grammars, too.

5 Conclusion

We have introduced a new type of hypergraph grammars, namely contextual
hypergraph grammars, that generalize in a natural way the contextual string
grammars. Using the power of our formalism, we are able to simulate already
existing devices for the generation of hypergraph languages, like hyperedge re-
placement grammars and hypergraph grammars in the double-pushout approach.
Our approach is useful to model operations with annotated documents even with
multiple structures including syntactic-semantic structures, dependencies, mul-
tilingual information, etc. Further investigations are needed to study possible
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hierarchies within the generated languages. Also, the type and complexity of the
Θ function deserve special attention. Possible classes to be studied are arbitrary
functions, NP , or P . Furthermore, types of specifying a matching condition may
be distinguished, such as global checking, local checking, without labels, without
edges limitation, with a maximum number of connections, etc.
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