
 1

Rule-Based

Transformation of
Graphs and the
Product Type

Renate Klempien-Hinrichs, University of Bremen

Hans-Jörg Kreowski, University of Bremen

Sabine Kuske, University of Bremen

Abstract

This chapter presents rule-based graph transformation as a framework for modeling data-
processing systems. It recalls the structuring concept of graph transformation units which
allows for transforming graphs in a rule-based, modularized, and controlled way. In order to
get a flexible typing mechanism and a high degree of parallelism, this structuring concept is
extended to the product of transformation units. Moreover, it is demonstrated how the
product type can be used to transform graph transformation units. The authors advocate rule-
based graph transformation for all applications where data, knowledge, and information can
be modeled as graphs and their transformation can be specified by means of rules in an
adequate way.

P. van Bommel (ed): Transformation of Knowledge, Information and Data: Theory and Applications, pp.29-51, 2005.
© Idea Group Publishing, Hershey, Pennsylvania, USA 2005

 2

Introduction

The area of graph transformation brings together the concepts of rules and graphs with
various methods from the theory of formal languages and from the theory of concurrency, and
with a spectrum of applications, see Fig. 1.

Figure 1: Main ingredients of graph transformation

������ ���	
���
��

�������	��

Graphs are important structures in computer science and beyond to represent complex system
states, networks, and all kinds of diagrams. The application of rules provides graphs with a
dynamic dimension yielding a rich methodology of rule-based graph transformation. The
three volumes of the Handbook of Graph Grammars and Computing by Graph
Transformation give a good overview of the state of the art in theory and practice of graph
transformation (Rozenberg, 1997; Ehrig & Engels & Kreowski & Rozenberg, 1999; Ehrig &
Kreowski & Montanari & Rozenberg, 1999).
Although one encounters quite a large number of different approaches to graph
transformation in the literature, nearly all of them are composed out of five basic features.

• Graphs to represent complex relations among items in an intuitive but mathematically

well-understood way.

• Rules to describe possible changes and updates of graphs in a concise way.

• Rule applications to perform the possible changes and updates on graphs explicitly as
they are embodied in the rules.

• Graph class expressions to specify special classes of graphs to be used as initial as well as
terminal graphs.

• Control conditions to regulate the applications of rules such that the inherent non-
determinism of rule application can be cut down.

A particular choice of these five features establishes a graph transformation approach. A
selection of rules, initial and terminal graphs, and a control condition is often called a graph
transformation system or a graph grammar if there is a single initial graph as axiom (or a
finite set of initial graphs likewise). Following Kreowski and Kuske (1999a), we use the term
graph transformation unit for such a selection where we also allow importing other graph
transformation units for structuring purposes.

 3

In this paper, we recall the elementary features of graph transformation in Section 2 and –
based on it – discuss some new concepts that enhance the usefulness of graph transformation.
As graphs are derived from graphs by applying rules, the obvious semantics is a binary
relation on graphs or a binary relation between initial and terminal graphs if one provides a
subtyping mechanism. To overcome this quite restricted kind of typing, we introduce product
types in Section 3. The basic notion is a product of graph transformation units that comprises
tuples of graphs to be processed componentwise, but where the transformations of the
components run in parallel. The product, together with typical operations on products like
embedding and projection, provides a very flexible kind of typing because one can declare a
sequence of input components and a sequence of output components independently. To
transform input graphs into output graphs, all components are combined into a proper product
of graph transformation units. If one controls the parallel transformations of the components
suitably, one can get the desired interrelations between input and output graphs. In Section 4,
we demonstrate that the product type is also quite useful if one wants to transform graph
transformation units.

Graph Transformation

In this section we introduce main concepts of graph transformation like graphs, rules, and
transformation units. The concepts are illustrated with a simple example from the area of
graph theory. In the literature one can find many more applications of graph transformation
which underline the usefulness from the practical point of view. These are for example
applications from the area of functional languages (Sleep & Plasmeijer & van Eekelen 1993),
visual languages (Bardohl & Minas & Schürr & Taentzer 1999), software engineering (Nagl
1996), and UML (e.g. Bottoni & Koch & Parisi-Presicce & Taentzer 2000; Engels &
Hausmann & Heckel & Sauer 2000; Fischer & Niere & Torunski & Zündorf 2000; Petriu &
Sun 2000; Engels & Heckel & Küster 2001; Kuske 2001; Kuske & Gogolla & Kollmann &
Kreowski 2002).
Graph transformation comprises devices for the rule-based manipulation of graphs. Given a
set of graph transformation rules and a set of graphs, one gets a graph transformation system
in its simplest form. Such a system transforms a start graph by applying its graph
transformation rules. The semantics can be defined as a binary relation on graphs where the
first component of every pair is a start graph G and the second component is a graph derived
from G by applying a sequence of graph transformation rules. In general, the application of a
graph transformation rule to a graph transforms it locally, i.e. it replaces a part of the graph
with another graph part. Often one wishes to start a derivation only from certain initial
graphs, and accepts as results only those derived graphs that are terminal. Moreover, in some
cases the derivation process is regulated in a certain way to cut down the non-determinism of
rule applications. For example, one may employ a parallel mode of transformation as in L
systems, or one may restrict the order in which rules are applied. Altogether the basic
elements of a graph transformation approach are graphs, rules, their application, graph class
expressions, and control conditions.

Graphs. First of all, there is a class of graphs G, may they be directed or undirected, typed or
untyped, labelled or unlabelled, simple or multiple. Examples for graph classes are labelled

 4

directed graphs, hypergraphs, trees, forests, finite automata, Petri nets, etc. The choice of
graphs depends on the kind of applications one has in mind and is a matter of taste.
In this paper, we consider directed, edge-labelled graphs with individual, multiple edges. A
graph is a construct G = (V, E, s, t, l) where V is a set of vertices, E is a set of edges, s, t: E
→ V are two mappings assigning each edge e ∈ E a source s(e) and a target t(e), and l: E
→ C is a mapping labelling each edge in a given label alphabet C. A graph may be
represented in a graphical way with circles as nodes and arrows as edges that connect source
and target each, with the arrowhead pointing to the target. The labels are placed next to the
arrows. In the case of a loop, i.e. an edge with the same node as source and target, we may
draw a flag that is posted on its node with the label inside the box. To cover unlabelled graphs
as a special case, we assume a particular label * that is invisible in the drawings. This means
a graph G is unlabelled if l(e) = * for all e ∈ E. For instance the graph

begin

end

p p

p

p

consists of six nodes, one of them with a begin-flag, another with an end-flag, and a third one
with an unlabelled flag. Moreover, it consists of seven directed edges where some of them
are labelled with p. The p-edges form a simple path (i.e. a path without cycles) from the
begin-flagged node to the end-flagged node. If one takes the subgraph induced by the edges
of the simple path and the begin- and end-flag and removes all occurrences of the label p, one
gets the following string graph (i.e. a graph that is a simple path from a begin-flagged node to
an end-flagged node).

begin end

p

String graphs can be used to represent natural numbers. The string graph above represents
the number 4 because it has four unlabelled edges between its begin-flagged and its end-
flagged node. Whenever a string graph represents a natural number k in this way, we say that
it is the k-string graph.

Rules and rule applications. To be able to transform graphs, rules are applied to graphs
yielding graphs. Given some class R of graph transformation rules, each rule r ∈ R defines a
binary relation ⇒r⊆G×G on graphs. If G⇒rH, one says that G directly derives H by applying
r.

There are many possibilities to choose rules and their applications. Rule classes may vary
from the more restrictive ones, like edge replacement (Drewes & Kreowski & Habel, 1997)
or node replacement (Engelfriet, & Rozenberg, 1997), to the more general ones, like double-
pushout rules (Corradini et al., 1997), single-pushout rules (Ehrig et al., 1997), or PROGRES

 5

rules (Schürr, 1997).
 In this paper, we use rules of the form r = (L →K R) where L and R are graphs (the left- and
right-hand side of r, respectively) and K is a set of nodes shared by L and R. In a graphical
representation of r, L and R are drawn as usual, with numbers uniquely identifying the nodes
in K. Its application means to replace an occurrence of L with R such that the common part K
is kept. In particular, we will use rules that add or delete flags, label edges, and add or delete a
node together with an edge.
The rule r = (L →K R) can be applied to some graph G directly deriving the graph H if it can
be constructed up to isomorphism (i.e. up to renaming of nodes and edges) in the following
way.

(i) Find an isomorphic copy of L in G, i.e. a subgraph that coincides with L up to the naming
of nodes and edges.
(ii) Remove all nodes and edges of this copy except the nodes corresponding to K, provided
that the remainder is a graph (which holds if the removal of a node is accompanied by the
removal of all its incident edges).
(iii) Add R by merging K with its corresponding copy.

For example, the following rule move has as left-hand side a graph consisting of an end-
flagged node 1, a node 2 with unlabelled flag, and an unlabelled edge from node 1 to node 2.
The right-hand side consists of the same two nodes where node 1 has no flag and node 2 has
an end-flag. Moreover, there is a p-labelled edge from node 1 to node 2. The common part of
the rule move consists of the nodes 1 and 2.

move:

end

1 2

end
p

1 2

The application of move labels an unlabelled edge with p if the edge connects an end-flagged
node and a node with an unlabelled flag, moves the end-flag from the source of the edge to its
target, and removes the unlabelled flag. For example, the application of move to the graph
above yields the following graph. Note that this rule cannot be applied to the former graph in
any other way; for instance, its left-hand side requires the presence of an unlabelled flag.

begin

end

p p

p

pp

Graph class expressions. The aim of graph class expressions is to restrict the class of graphs
to which certain rules may be applied or to filter out a subclass of all the graphs that can be
derived by a set of rules. Typically, a graph class expression may be some logic formula
describing a graph property like connectivity, or acyclicity, or the occurrence or absence of
certain labels. In this sense, every graph class expression e specifies a set SEM(e) of graphs in

 6

G. For instance, all refers to all directed, edge-labelled graphs, whereas empty and bool
designate a class of exactly one graph each (the empty graph EMPTY for empty, and the graph
TRUE consisting of one true-flagged node for bool). Moreover, graph specifies all unlabelled
graphs each node of which carries a unique flag (that is unlabelled, too). Also, a particular
form of the graphs may be requested, e.g. the expression nat defines all k-string graphs.

Control conditions. A control condition is an expression that determines, for example, the
order in which rules may be applied. Semantically, it relates start graphs with graphs that
result from an admitted transformation process. In this sense, every control condition c
specifies a binary relation SEM(c) on G. As control condition we use in particular the
expression true that allows all transformations (i.e. all pairs of graphs). Moreover, we use
regular expressions as control conditions. They describe in which order and how often the
rules and imported units are to be applied. In particular, the Kleene star states that an arbitrary
number of iterations may be executed. The precise meaning of a regular expression is
explained where it is used. More about control conditions can be found in (Kuske, 2000).

Altogether, a class of graphs, a class of rules, a rule application operator, a class of graph
class expressions, and a class of control conditions form a graph transformation approach
based on which graph transformation units as a unifying formalization of graph grammars and
graph transformation systems can be defined. To transform graphs, a unit has got local rules,
but may also import other graph transformation units. Therefore, the semantic relation of a
unit is given by the interleaving of rule applications and calls of imported units.
Transformation units were presented in Andries et al. (1999) and Kreowski and Kuske
(1999b) as a modularization concept for graph transformation systems (cf. also Heckel &
Engels & Ehrig & Taentzer, 1999). In the literature there exist also some case studies where
transformation units are employed to model the semantics of functional programming
languages (Andries et al., 1999), UML state machines (Kuske, 2001), and logistic processes
(Klempien-Hinrichs & Knirsch & Kuske, 2002).

Transformation units. In general, a graph transformation system may consist of a huge set
of rules that by its size alone is difficult to manage. Transformation units provide a means to
structure the transformation process. The main structuring principle of transformation units
relies on the import of other transformation units or – on the semantic level – on binary
relations on graphs. The input and the output of a transformation unit each consist of a class
of graphs that is specified by a graph class expression. The input graphs are called initial
graphs and the output graphs terminal graphs. A transformation unit transforms initial graphs
to terminal graphs by applying graph transformation rules and imported transformation units
in a successive and sequential way. Since rule application is non-deterministic in general, a
transformation unit contains a control condition that may regulate the graph transformation
process.
A graph transformation unit is a system tu = (I, U, R, C, T) where I and T are graph class
expressions, U is a (possibly empty) set of imported graph transformation units, R is a set of
rules, and C is a control condition.
To simplify technicalities, we assume that the import structure is acyclic (for a study of cyclic
imports see (Kreowski & Kuske & Schürr, 1997)). Initially, one builds units of level 0 with
empty import. Then units of level 1 are those that import only units of level 0, and units of
level n+1 import only units of level 0 to level n, but at least one from level n.

 7

In graphical representations of transformation units we omit the import component if it is
empty, the initial or terminal component if it is set to all, and the control condition if it is
equal to true.

In the following we present some examples of transformation units. We start with very simple
specifications of natural numbers and truth values because they are auxiliary data types to be
used later to model the more interesting examples of simple paths, long simple paths, and
Hamiltonian paths.
The first transformation unit nat0 constructs all string graphs that represent natural numbers
by starting from its initial graph, which represents 0, and transforming the n-string graph into
the n+1-string graph by applying the rule succ.
The second transformation unit nat1 is a variant of nat0, but now with all n-string graphs as
initial graphs. Consequently, it describes arbitrary additions to arbitrary n-string graphs by
sequentially increasing the represented numbers by 1.

nat0

initial:

rules:

succ:

begin end

end

1

end

1

nat1

initial: nat

rules:

succ:

end

1

end

1

The third transformation unit nat2 also transforms string graphs into string graphs. It has two
rules pred and is-zero. The application of the rule pred to the n-string graph (with n ≥ 1 since
otherwise the rule cannot be applied) converts it into the n–1-string graph. The second rule is-
zero can be applied only to the 0-string graph but does not transform it, which means that this
rule can be used as a test for 0. Moreover, the transformation unit nat2 imports nat1 so that
arbitrary additions can be performed, too. The rules of nat2 and the imported unit nat1 can be
applied in arbitrary order and arbitrarily often. Hence nat2 converts n-string graphs into m-
string graphs for natural numbers m, n. Therefore nat2 can be considered as a data type
representing natural numbers with a simple set of operations.

nat2

initial: nat

rules:

pred:

begin end

end

1

*

end

1

is-zero:

begin end

1 1

uses: nat1

The forth transformation unit, bool0 = (empty, ∅, set-true, true, bool), has a single initial
graph, the empty graph EMPTY. It does not import other transformation units and it has one

 8

rule set-true which turns EMPTY to the graph TRUE. The control condition allows all
transformations, meaning that TRUE may be added arbitrarily often to EMPTY. However, the
terminal graph class expression specifies the set consisting of TRUE, which ensures that the
rule set-true is applied exactly once to the initial graph.
One can consider bool0 as a unit that describes the type Boolean in its most simple form. At
first sight, this may look a bit strange. But it is quite useful if one wants to specify predicates
on graphs by non-deterministic graph transformation: If one succeeds to transform an input
graph into the graph TRUE, the predicate holds; otherwise it fails. In other words, if the
predicate does not hold for the input graph, none of its transformations yields TRUE.

bool0

initial:

rules:

set-true: empty

true

empty

terminal:
true

The following transformation unit simple-path constitutes an example of another kind. As
initial graphs it admits all unlabelled graphs with exactly one flag on every node. It chooses
an arbitrary simple path in an initial graph by labelling the edges of the path with p and
adding a begin-flag and an end-flag to the beginning and the end of the path, respectively.
This is done with the help of two rules start and move. The rule start turns an unlabelled flag
of an arbitrary node into two flags respectively labelled with begin and end, and the rule move
is the same as above, i.e. it labels with p an edge from an end-flagged node to a node with an
unlabelled flag, moves the end-flag to the other node, and removes the unlabelled flag. The
control condition is a regular expression which is satisfied if first the rule start is applied,
followed by move applied arbitrarily often. The terminal graph class expression admits all
graphs, which is why it is not explicitly shown.

simple-path

rules:

cond: start ; move

start:

move:

begin end

end

1 2

end
p

1 2

*

1 1

initial: graph

 9

Interleaving semantics of transformation units. Transformation units transform initial
graphs to terminal graphs by applying graph transformation rules and imported
transformation units so that the control condition is satisfied. Hence, the semantics of a
transformation unit can be defined as a binary relation between initial and terminal graphs.
For example, the interleaving semantics of the transformation unit simple-path consists of all
pairs (G,G’) such that G is an unlabelled graph with exactly one flag on every node and G’ is
obtained from G by labelling the edges of a simple path with p, setting a begin-flag at the
source of the path and an end-flag at the target of the path, and removing the flags from the
intermediate nodes on the path.
In general, for a transformation unit tu without import, the semantics of tu consists of all pairs
(G,G’) of graphs such that
1. G is an initial graph and G’ is a terminal graph;
2. G’ is obtained from G via a sequence of rule applications, i.e. (G,G’) is in the reflexive
and transitive closure of the binary relation obtained from the union of all relations ⇒r where
r is some rule of tu; and
3. the pair (G,G’) is allowed by the control condition.
If the transformation unit tu has a non-empty import, the interleaving semantics of tu consists
of all pairs (G,G’) of graphs which satisfy the preceding items 1 and 3, and where, in addition
to rules, imported transformation units can be applied in the transformation process of tu, i.e.
the second item above is extended to:
2’. G’ is obtained from G via a sequence of rule applications and applications of imported
units. This means that (G,G’) is in the reflexive and transitive closure of the binary relation
obtained from the union of all relations ⇒r and SEM(u) where r is some rule of tu and u is
some imported transformation unit of tu.
More formally, the interleaving semantics of tu is defined as follows. Let tu =(I, U, R, C, T)
be a transformation unit. Then the interleaving semantics SEM(tu) is recursively defined as

SEM(tu) = SEM((I,U,R,C,T)) = SEM(I) × SEM(T) ∩ (∪r ∈ R ⇒r ∪ ∪u ∈ U SEM(u))* ∩ SEM(C).

If the transformation unit tu is of level 0, the semantic relation is well-defined because the
union over U is the empty set. If tu is of level n+1, we can inductively assume that SEM(u) of
each imported unit u is already well-defined, so that SEM(tu) is also well-defined as a union
and intersection of defined relations.

Product Type

As the iterated application of rules transforms graphs into graphs yielding an input-output
relation, the natural type declaration of a graph transformation unit tu = (I, U, R, C, T) is tu:
I→T where moreover the initial and terminal graphs are subtypes of the type of graphs that
are transformed by the unit. But in many applications one would like to have a typing that
allows one to consider several inputs and maybe even several outputs, or at least an output of
a type different from all inputs. For instance, a test whether a given graph has a simple path
of a certain length would be suitably declared by long-simple-path: graph × nat → bool (or
something like this) asking for a graph and a non-negative integer as inputs and a truth value

 10

as output.
Such an extra flexibility in the typing of graph transformations can be provided by products
of graph transformation units together with some concepts based on the products. In more
detail, we introduce the following new features.

1. The product of graph transformation units providing tuples of graphs to be processed and
particularly tuples of initial and terminal graphs as well as tuples of rules and calls of
imported units, called action tuples, that can be executed on graph tuples in parallel.
2. The embedding and projection of a product into resp. onto another product that allow one
to choose some components of a product as inputs or outputs and to copy some components
into others.
3. The semantics of a product of graph transformation units is the product of the component
semantics such that – intuitively seen – all components run independently from each other. If
one wants to impose some iteration and interrelation between the components, one can use
control conditions for action tuples like for rules and imported units.

The product type generalizes the notion of pair grammars and triple grammars as introduced
by Pratt (1971) and Schürr (1994), respectively.

Product of Graph Transformation Units

Let tu1,…,tum for m ≥ 1 be a sequence of graph transformation units with tuj = (Ij, Uj, Rj, Cj, Tj)
for j = 1,...,m. Then the product prod = tu1 ×…× tum = ∏i=1

m tui transforms m-tuples of graphs

(G1,…,Gm) by means of componentwise transformation
The global semantic relation of the product is just the product of the semantic relations of the
components, i.e. ((G1,…,Gm), (H1,…,Hm)) ∈ SEM(prod) if and only if (Gi,Hi) ∈ SEM(tui) for i
= 1,...,m.
But there is also a notion of a single computation step that transforms graph tuples by
applying action tuples. An action tuple (a1,…,am) consists of rules, imported units and an
extra void action −, i.e. ai ∈ Ri or ai ∈ Ui or ai = − for i = 1,...,m. It transforms a graph tuple
(G1,…,Gm) into a graph tuple (G1’,…,Gm’) if Gi ⎯→ai Gi' for ai ∈ Ri and (Gi,Gi’) ∈ SEM(ai)
for ai ∈ Ui and Gi = Gi’ for ai = −.
In other words, a computation step applies simultaneously rules to some components and
performs calls of import units in other components while the remaining components of the
graph tuple are kept unchanged.
Let a single computation step be denoted by (G1,…,Gm) → (G1’,…,Gm’), and let →* be the

reflexive and transitive closure of →. Then one can say that (G1,…,Gm) →* (H1,…,Hm)
satisfies the control condition tuple (C1,…,Cm) if (Gi,Hi) ∈ SEM(Ci) for i = 1,...,m. Similarly,
(G1,…,Gm) is an initial graph tuple if Gi ∈ SEM(Ii), and (H1,…,Hm) is a terminal graph tuple
if Hi∈SEM(Ti) for i = 1,...,m. If all this holds, the pair of tuples belongs to the step semantics
of the product, which is denoted by STEPSEM(prod). It is easy to see that the global
semantics and the step semantics coincide, i.e. SEM(prod) = STEPSEM(prod).
For example, consider the product simple-path × nat2 of the transformation units simple-path

 11

and nat2. Its semantics consists of all pairs ((G1,G2), (H1,H2)) where (G1,G2) is in the
semantics of simple-path and (H1,H2) is in the semantics of nat2. This product combines two
units in a free way like the well-known Cartesian product. In order to model interrelation
between the components, e.g. to test if a path in a graph is of a certain length, we would like
to have control conditions for the computation steps and a boolean value as output. This can
be achieved with the concepts introduced in the following two subsections.

Embedding and Projection

If not all initial graph class expressions of a product are meant as inputs, but some of them are
just of an auxiliary nature for intermediate computations or to be used as outputs, one may
choose the input types and embed their product into the actual product that provides the graph
tuples to be transformed. This is possible whenever the auxiliary components have got
unique initial graphs and if every chosen input type is a subtype of the corresponding initial
graphs.

Let prod = tu1 ×…× tum be a product of transformation units and let X be a set of graph class
expressions that is associated with the product components by an injective mapping ass:
X→{1,…,m} such that SEM(x) ⊆ SEM(Iass(x)) for all x ∈ X. Assume, moreover, for all j ∈
{1,…,m}\ ass(X) that either SEM(Ij) = {Gj} for some graph Gj or SEM(x) ⊆ SEM(Ij) for
some chosen x ∈ X, which will be denoted by copy: x→ j. Then we get an embedding of the
product of the graphs in SEM(x) for x ∈ X into the product of initial graphs of the product
prod,

embed: ∏
x∈X

SEM(x) → ∏

j=1

m
SEM(Ij)

defined by embed((Gx)x∈X) = (G1,…,Gm) with Gi = Gx for ass(x) = i and copy: x → i, and Gi
∈ SEM(Ii) = {Gi} otherwise.

This means that each input component is embedded into its corresponding component of the
product of units with respect to ass and into all other components given by the copy relation.
All remaining components of the product of units are completed by the single initial graphs of
these components.
As a simple example, let prod = simple-path × nat2 × bool0 and let X = {graph,nat}.
Consider the initial graph class expressions graph, nat and empty of the transformation units
simple-path, nat2, and bool0, respectively. Every pair (G1,G2) ∈ SEM(graph) × SEM(nat) can
be embedded into SEM(graph) × SEM(nat) × SEM(empty) by choosing ass(graph) = 1 and
ass(nat) = 2, i.e. we get embed((G1,G2)) = (G1,G2,EMPTY) for every pair (G1,G2) ∈
SEM(graph) × SEM(nat).

Conversely, if one wants to get rid of some component graphs, the well-known projection
may be employed. The same mechanism can be used to multiply components, which allows
one, in particular, to copy a component graph into another component.

 12

Let Y be a set which is associated with the product prod by ass: Y → {1,…,m}. Then one can
consider the product of the terminal graphs in SEM(Tass(y)) for all y ∈ Y as the semantics of
the association ass, i.e. SEM(ass) = ∏y ∈Y

 SEM(Tass(y)) . The product of terminal graphs of the
product prod can be projected to SEM(ass), i.e. proj: ∏i=1

m SEM(Ti) → SEM(ass) defined by
proj(H1,…,Hm) = (Hass(y))y ∈ Y. For example, consider the terminal graph class expressions all
and bool of the transformation units simple-path, nat2, and bool0. Let Y = {3} and let ass(3) =
3. The semantics of ass is equal to the terminal graph TRUE of bool0 and every triple
(H1,H2,H3) ∈ SEM(all) × SEM(all) × SEM(bool) is projected to H3, i.e. to TRUE.
In general, there are two cases of interest. Firstly, if Y ⊆ {1,…,m} and ass is the
corresponding inclusion, then proj is the ordinary projection of a product to some of its
components. (This is the case in the described example.) Secondly, if several elements of Y
are mapped to the same index i, this results in the multiplication of the i-th component.

Embedding and projection may be used to realize transformations on graphs with type
declarations of the form trans: in1×…×ink→ out1×…×outl where the ini and the outj are
graph class expressions. The intention is that trans relates the product of inputs SEM(in1)
×…× SEM(ink) with the product of outputs SEM(out1) ×…× SEM(outl). This is obtained by
using a product prod of graph transformation units tu1,…,tuk+l such that SEM(ini) ⊆ SEM(Ii)
for i = 1,…,k and SEM(Tj) ⊆ SEM(outj) for j = k+1,…,k+l. The first k inclusions allow one to
embed the inputs into the initial graph tuples of the product prod if, for j = k+1,…,k+l, we can
choose some i with copy: i → j or SEM(Ij) = {Gj} for some graph Gj. The last l inclusions
allow one to project the terminal graph tuples of prod onto outputs. Therefore, the semantic
relation of trans has the proper form, but the output tuples are totally independent of the input
tuples due to the product semantics. To overcome this problem, we generalize the notion of
control conditions in such a way that it applies not only to the control of rule applications and
calls of imported units, but also to action tuples.

Control Conditions for Action Tuples

A control condition regulates the use of rules and imported units formally by intersecting the
interleaving semantics with the semantic relation given by the control condition. This is
easily generalized to action tuples if one replaces the interleaving semantics by the step
semantics of the product of graph transformation units.
In concrete cases, the control condition may refer to action tuples like it can refer to rules and
imported units. To make this more convenient, action tuples may get identifiers.

As an example how the features based on the product may be used, we specify the test long-
simple-path that transforms graphs and non-negative integers as inputs into truth values as
output.

 long-simple-path: graph × nat → bool
 prod: simple-path × nat2 × bool0

 13

 actions: a0 = (start, −, −)
 a1 = (move, pred, −)
 a2 = (−, is-zero, set-true)
 cond: a0 ; a1* ; a2

It is modelled on top of the product of the units simple-path, nat2 and bool0. The typing is
appropriate as graph and nat specify the initial graphs of simple-path and nat2 respectively,
and bool refers to the terminal graph of bool0.
Hence, a computation in long-simple-path starts with an unlabelled graph and a non-negative
integer completed to a triple by the initial graph of bool0. Then the control condition requires
to perform a0 that chooses a start node in the graph without changing the other two
components. This is followed by the iteration of a1 which in each step synchronously
prolongs a simple path in the first component by one edge and decreases the integer in the
second component by 1. Hence we get a graph with a path of the input length if the second
component becomes zero. This is tested by the second component of a2. In the positive case,
a2 is performed yielding TRUE as output in the third component. In other words, long-
simple-path computes TRUE if and only if the input graph G has got a simple path of the
input length n.

Transformation of Graph Transformations

Two graph transformations may be related with each other in various significant ways.

1. They may be semantically equivalent, meaning that their semantic relations coincide or,
seen from another perspective, that a semantic relation is modelled in two different ways.
2. One graph transformation may be the refinement of the other one, meaning that each
computational step of the one can be accomplished by an interleaving sequence of the other.
3. One graph transformation may be reduced to the other, meaning that the semantic relation
of the one can be translated into the semantic relation of the other.
Such situations are nicely modelled by transformations of graph transformations. In the case
of two graph transformation units tui = (Ii, Ui, Ri, Ci, Ti) with SEM(tui) ⊆ SEM(Ii) × SEM(Ti)
for i = 1,2, a transformation of the translational type (or a translation for short) of tu1 into tu2
is defined by two graph transformation units tu1-2-tu2(I) = (I1, UI, RI, CI, I2) and tu1-2-tu2(T)
= (T1, UT, RT, CT, T2) where the former transforms initial graphs of tu1 into initial graphs of
tu2 and the latter does the same with respect to terminal graphs.

How a translation relates graph transformations units is depicted in Figure 2.

 14

Figure 2: Translation of graph transformation units

tu -2-tu (I)1 2

tu -2-tu (T)1 2

tu1 tu2

Clearly, such a translation is only meaningful if it preserves the semantics, which is covered
by the notion of correctness. A translation of tu1 into tu2 is correct if the diagram in Figure 2
commutes, i.e. if the sequential compositions of the semantic relations of SEM(tu1) with
SEM(tu1-2-tu2(T)) on one hand and of SEM(tu1-2-tu2(I)) with SEM(tu2) on the other hand
coincide.

Correct translations can be very helpful because they carry over certain properties from the
source unit to the target unit and the other way round. For example, if some question is
undecidable for the source unit, the corresponding question must be undecidable for the target
unit provided that the translating units have computable semantic relations (which holds in all
reasonable cases). To demonstrate the usefulness of translations more explicitly, we restrict
the notion of translations to the notion of reductions as used in the study of the complexity
class NP of all decision problems that can be computed non-deterministically in polynomial
time. A reduction of tu1 to tu2 is a correct translation of tu1 into tu2 subject to the following
further conditions.

(i) tu1 and tu2 model predicates, i.e. their output domain is bool,
(ii) tu1-2-tu2(T) is the identity on bool, and
(iii) tu1-2-tu2(I) has no import and runs in polynomial time, i.e. each derivation starting in an
initial graph of tu1 has a length polynomial in the size of its start graph and can be prolonged
such that it derives an initial graph of tu2.

If tu2 models an NP-problem, i.e. it has no import and each derivation starting in an initial
graph has a length that is polynomial in the size of the start graph, then the composition of the
reduction and the semantic relation of tu2 is in NP, too. While the reduction yields an output
for every input in a polynomial number of steps, the following computation in tu2 runs also in
polynomial time, but it is nondeterministic because it may compute TRUE for some of its
inputs while other computations for the same input end in deadlocks. Hence the sequential
composition, which is the semantic relation of tu1 due to the correctness of the translation, is
nondeterministic, too, with polynomial runtime. By a similar reasoning, it turns out that tu2
models an NP-complete problem if tu1 does, i.e. if each NP-problem can be reduced to the

 15

semantic relation of tu1. So the graph-transformational variants of reductions may be used to
investigate the class NP in the same way as ordinary reductions are useful. But as many
interesting problems in NP are graph problems, graph-transformational reductions may be
quite suitable.

As an illustrating example, we specify a reduction from the Hamiltonian-path problem HP
into the unit long-simple-path. We assume that HP is a predicate with the typing HP: graph
→ bool that yields TRUE for an input graph G if and only if G has a simple path that visits all
nodes. An explicit specification by graph transformation is not needed, but it would look
similar to simple-path, only making sure that all nodes are involved. Due to the typing, the
reduction must consist of a graph transformation unit of the type HP-2-lsp: graph → graph ×
nat that copies the input graph as output graph and computes the number of nodes minus one
of the input graph as second output. For this purpose, the product of the units mark-all-nodes,
graph and nat0 will be used. The unit graph = (graph, ∅, ∅, true, graph) takes unlabelled
graphs as initial and terminal graphs without import and rules such that its semantics is the
identity relation on SEM(graph), i.e. the input graph becomes the output graph. The unit
mark-all-nodes consists of unlabelled graphs as initial graphs, of one rule mark that replaces
the unlabelled flag by another flag (ok-labelled for example), and of graphs without
unlabelled flags as terminal graphs. This is an auxiliary unit the meaning of which is that each
derivation from an initial to a terminal graph has the number of nodes as length. Hence an
action tuple that applies the rule mark in the first component allows one to count the number
of nodes.
Summarizing, we get the following specification.

 HP-2-lsp: graph → graph × nat0
 prod: mark-all-nodes × graph × nat0
 copy: 1 → 2
 actions: b0 = (mark, −, −)
 b1 = (mark ,−, succ)
 cond: b0 ; b1*

Note that the length of all computations is bounded by the number of nodes of the input graph
and that each computation can be prolonged until all nodes are marked. As one always marks
the first node without increasing the initial integer 0 and as all other nodes are marked while
the integer is increased by 1 in each step, one ends up with the number of nodes minus 1 as
integer output. And the runtime of HP-2-lsp is linear. If one composes the semantic relation
of HP-2-lsp with that of long-simple-path, it returns TRUE if and only if the original input
graph has got a simple path of a length that is the number of nodes minus 1 such that it visits
all nodes. In other words, the translation is correct. And as the Hamilton-path problem is NP-
complete, our reduction shows that long-simple-path is also NP-complete (which is already
well known in this case).

 16

Conclusion

In this paper, we have given an introductory survey of graph transformation with graphs,
rules, rule application, graph class expressions, and control conditions as basic features. As all
the concepts are handled in a generic, parametric way, this covers nearly all the graph
transformation approaches one encounters in the literature (see, e.g., Rozenberg (1997) for an
overview). Readers who are interested to see a spectrum of applications of graph
transformation and its relation to the theory of concurrency are referred to the Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 2 and 3 (Ehrig & Engels &
Kreowski & Rozenberg, 1999; Ehrig & Kreowski & Montanari & Rozenberg, 1999).

In addition, we have proposed the new concept of product types that allow one to transform a
tuple of graphs by the synchronous transformation of the components. This is quite helpful to
specify transformations with a flexible typing, i.e. with an arbitrary sequence of input graphs
and an arbitrary sequence of output graphs. Moreover, the types of the input and output
graphs need not be subtypes of the same type of graphs anymore. As a consequence, the
product type is particularly useful if one wants to transform graph transformations into each
other. Further investigation of the product type may concern the following aspects.

As we used graph-transformational versions of the truth values and the natural numbers in our
illustrating examples, one may like to combine graph types with arbitrary abstract data types.
In the presented definition, we consider the product of graph transformation units. But one
may like to import products in units and to use components that are again products. Whether
such a composite use of products works must be investigated.
The transformation of graph transformation units is only tentatively sketched in Section 4. It
must be worked out how it helps to study refinement and semantic equivalence and other
interesting relationships between graph transformation systems.

Acknowledgements

The research presented here was partially supported by the EC Research Training Network
SegraVis (Syntactic and Semantic Integration of Visual Modelling Techniques).

References

Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S., Plump, D.,

Schürr, A., & Taentzer, G. (1999). Graph transformation for specification and
programming. Science of Computer Programming, 34(1), 1–54.

Bardohl, R., Minas, M., Schürr, A., & Taentzer, G. (1999). Application of Graph
Transformation to Visual Languages. In H. Ehrig, G. Engels, H.-J. Kreowski, & G.
Rozenberg (Eds.), Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 2: Applications, Languages and Tools (pp. 105–180). Singapore:
World Scientific.

 17

Bottoni, P., Koch, M., Parisi-Presicce, F., & Taentzer, G. (2000). Consistency Checking and
Visualization of OCL Constraints. In A. Evans, S. Kent, & B. Selic (Eds.), Proc. UML
2000 – The Unified Modeling Language. Advancing the Standard, Lecture Notes in
Computer Science Vol. 1939 (pp. 294–308). Springer.

Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., & Löwe, M. (1997). Algebraic
Approaches to Graph Transformation – Part I : Basic Concepts and Double Pushout
Approach. In G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 1: Foundations (pp. 163–245). Singapore: World
Scientific.

Drewes, F., Kreowski, H.-J., & Habel, A. (1997). Hyperedge Replacement Graph Grammars.
In G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations (pp. 95–162). Singapore: World Scientific.

Ehrig, H., Engels, G., Kreowski, H.-J., & Rozenberg, G. (Eds.) (1999). Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications,
Languages and Tools. Singapore: World Scientific.

Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., & Corradini, A. (1997).
Algebraic Approaches to Graph Transformation – Part II: Single Pushout Approach
and Comparison with Double Pushout Approach. In G. Rozenberg (Ed.), Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 1: Foundations (pp.
247–312). Singapore: World Scientific.

Ehrig, H., Kreowski, H.-J., Montanari, U., & Rozenberg, G. (Eds.) (1999). Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 3: Concurrency,
Parallelism, and Distribution. Singapore: World Scientific.

Engelfriet, J., & Rozenberg, G. (1997). Node Replacement Graph Grammars. In G.
Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations (pp. 1–94). Singapore: World Scientific.

Engels, G., Hausmann, J.H., Heckel, R., & Sauer, S. (2000). Dynamic Meta Modeling: A
Graphical Approach to the Operational Semantics of Behavioral Diagrams in UML. In
A. Evans, S. Kent, & B. Selic (Eds.), Proc. UML 2000 – The Unified Modeling
Language. Advancing the Standard, Lecture Notes in Computer Science Vol. 1939
(pp. 323–337). Springer.

Engels, G., Heckel, R., & Küster, J.M. (2001). Rule-Based Specification of Behavioral
Consistency Based on the UML Meta-model. In M. Gogolla, & C. Kobryn (Eds.),
UML 2001 – The Unified Modeling Language. Modeling Languages, Concepts, and
Tools, Lecture Notes in Computer Science Vol. 2185 (pp. 272–286). Springer.

Fischer, T., Niere, J., Torunski, L., & Zündorf, A. (2000). Story Diagrams: A new Graph
Transformation Language based on UML and Java. In H. Ehrig, G. Engels, H.-J.
Kreowski, & G. Rozenberg (Eds.), Proc. Theory and Application of Graph
Transformations, Lecture Notes in Computer Science Vol. 1764 (pp. 296–309).
Springer.

Heckel, R., Engels, G., Ehrig, H., & Taentzer, G. (1999). Classification and Comparison of
Module Concepts for Graph Transformation Systems. In H. Ehrig, G. Engels, H.-J.
Kreowski, & G. Rozenberg (Eds.), Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 2: Applications, Languages and Tools (pp. 669–689).
Singapore: World Scientific.

Klempien-Hinrichs, R., Knirsch, P., & Kuske, S. (2002). Modeling the Pickup-and-Delivery
Problem with Structured Graph Transformation. In H.-J. Kreowski, P. Knirsch, Proc.

 18

APPLIGRAPH Workshop on Applied Graph Transformation, Satellite Event of
ETAPS 2002 (pp. 119–130).

Kreowski, H.-J., & Kuske, S. (1999a). Graph Transformation Units and Modules. In H.
Ehrig, G. Engels, H.-J. Kreowski, & G. Rozenberg (Eds.), Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications,
Languages and Tools (pp. 607–638). Singapore: World Scientific.

Kreowski, H.-J., & Kuske, S. (1999b). Graph transformation units with interleaving
semantics. Formal Aspects of Computing, 11(6), 690–723.

Kreowski, H.-J., Kuske, S., & Schürr, A. (1997). Nested graph transformation units.
International Journal on Software Engineering and Knowledge Engineering 7, 479–
502.

Kuske, S. (2000). More about control conditions for transformation units. In H. Ehrig, G.
Engels, H.-J. Kreowski, & G. Rozenberg (Eds.), Proc. Theory and Application of
Graph Transformations, Lecture Notes in Computer Science Vol. 1764 (pp. 323–
337). Springer.

Kuske, S. (2001). A Formal Semantics of UML State Machines Based on Structured Graph
Transformation. In M. Gogolla, & C. Kobryn (Eds.), UML 2001 – The Unified
Modeling Language. Modeling Languages, Concepts, and Tools, Lecture Notes in
Computer Science Vol. 2185 (pp. 241–256). Springer.

Kuske, S., Gogolla, M., Kollmann, R., & Kreowski, H.-J. (2002). An Integrated Semantics
for UML Class, Object, and State Diagrams based on Graph Transformation. In M.
Butler, & K. Sere (Eds.), 3rd Int. Conf. Integrated Formal Methods (IFM'02), Lecture
Notes in Computer Science Vol. 2335 (pp. 11–28). Springer.

Nagl, M. (Ed.) (1996). Building Tightly Integrated Software Development Environments: The
IPSEN Approach. Lecture Notes in Computer Science Vol. 1170. Springer.

Petriu, D.C., & Sun, Y. (2000). Consistent Behaviour Representation in Activity and
Sequence Diagrams. In A. Evans, S. Kent, & B. Selic (Eds.), Proc. UML 2000 – The
Unified Modeling Language. Advancing the Standard, Lecture Notes in Computer
Science Vol. 1939 (pp. 359–368). Springer.

Pratt, T.W. (1971). Pair grammars, graph languages, and string-to-graph translations. Journal
of Computer and System Sciences, 5(6), 560–595.

Rozenberg, G. (Ed.) (1997). Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations. Singapore: World Scientific.

Schürr, A. (1994). Specification of Graph Translators with Triple Graph Grammars. In G.
Tinhofer (Ed.), Proc. WG'94 20th Int. Workshop on Graph-Theoretic Concepts in
Computer Science, Lecture Notes in Computer Science Vol. 903 (pp. 151–163).
Springer.

Schürr, A. (1997). Programmed Graph Replacement Systems. In G. Rozenberg (Ed.),
Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1:
Foundations (pp. 479–546). Singapore: World Scientific.

Sleep, R., Plasmeijer R., & van Eekelen, M. (Eds.) (1993). Term Graph Rewriting: Theory
and Practice. John Wiley.

