
From UML Models

to Graph Transformation Systems

Paul Ziemann1 Karsten Hölscher2 Martin Gogolla3

Department of Computer Science
University of Bremen
Bremen, Germany

Abstract

In this paper we present an approach that allows to validate properties of UML models. The
approach is based on an integrated semantics for central parts of the UML. We formally cover
UML use case, class, object, statechart, collaboration, and sequence diagrams. Additionally full
OCL is supported in the common UML fashion. Our semantics is based on the translation of a
UML model into a graph transformation system consisting of graph transformation rules and a
working graph that represents the system state. By applying the rules on the working graph, the
evolution of the modeled system is simulated.

Keywords: Graph transformation, UML semantics, validation, CASE tool

1 Introduction

Today the Unified Modeling Language (UML) is widely accepted as a standard
for modeling object-oriented software systems. UML is a graphical language
providing different diagram types for describing particular aspects of software
artifacts. The syntax of these diagrams is defined by means of a metamodel
in [12], notated as class diagrams. However this approach is semi-formal,
since the class diagram itself is defined in a cyclic way by the metamodel.

1 Email: ziemann@informatik.uni-bremen.de
2 Email: hoelscher@informatik.uni-bremen.de
3 Email: gogolla@informatik.uni-bremen.de

Electronic Notes in Theoretical Computer Science 127 (2005) 17–33

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.10.025

mailto:ziemann@informatik.uni-bremen.de
mailto:hoelscher@informatik.uni-bremen.de
mailto:gogolla@informatik.uni-bremen.de
http://www.elsevier.com/locate/entcs

Furthermore the semantics of UML diagrams is only expressed in natural lan-
guage. The graphical notation is enhanced by the Object Constraint Language
(OCL), which permits to formulate constraints in a textual way that cannot
be expressed by the diagrams. OCL is again semi-formally defined in [12].
A formal syntax and semantics for UML class diagrams as well as OCL has
been introduced in [13], which is also included in the accepted OCL 2.0 OMG
submission [1].

In this paper we present an integrated formal semantics not only for class
diagrams but for further basic diagram types: use case, object, statechart and
interaction diagrams. We stick to UML 1.5 but UML 2.0 likewise includes
the UML concepts covered by us, albeit some details and the naming have
changed in some cases. In particular, collaboration diagrams are called com-
munication diagrams in UML 2.0. The new integrated semantics is formalized
employing the concepts of graph transformation, which is a well-developed
field (cf. [15], [4], [5]). We are not aware of a formal approach handling this
collection of UML diagrams, in particular the formal incorporation of use
cases is new (in [17] use cases are described precisely by so-called operation
schemas including OCL pre- and postconditions but the connection to other
UML diagrams is left open).

Our approach provides a framework for an automatic translation of a UML
model into a graph transformation system. The UML model may consist of
the mentioned diagram types and can include OCL expressions. The graph
transformation system comprises a set of graph transformation rules and a
so-called working graph, hence called system state graph. As the name may
suggest, the system state graph represents the current state of the modeled
system. The graph transformation rules modify this state step by step, thus
simulating a run through the modeled system.

In contrast to most work on graph transformation, we employ an enhanced
approach, which allows OCL expressions in rules. We combine the advantages
of two worlds: the operational graph transformation world and the logic-
based OCL world. On the one hand graph transformations allow to handle
complex issues by depicting and modifying them using more intuitive graphical
representations. On the other hand, although it is theoretically possible to
represent every aspect in the graphical structure, the additional power to use
OCL as a textual notation leads to the benefit of even more compact graphs in
most cases. In our approach OCL expressions navigating in the current system
state are used as application conditions, which decide whether a certain rule
may or may not be applied. Furthermore OCL is used in attribute expressions
in the right-hand side of graph transformation rules. The modeler can also
utilize OCL for querying the current state of the modeled system.

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–3318

Our approach provides an integrated formal semantics for a large part of
UML. As no formal semantics is given for the UML, our approach relies on
a number of assumptions on how the diagrams could be used in practise and
integrated in a useful way. The precise semantics is a solid basis for further
work. For example, the representation of a UML model as a graph transform-
ation system is used here to validate the system before actually implementing
it. This is done by comparing system behavior with the expectations of the
modeler. The benefit of using graph transformations in this context obviously
is the close proximity of the simulated system run to the actual model. This
proximity allows for fewer assumptions regarding the semantics of the model
as for instance code generators have to make. It also allows for an easier hand-
ling of future extensions and changes regarding these assumptions, since only
the structure of the generated rules has to be changed in these cases. Cur-
rently, a prototypic validation system is being implemented for our approach
which generates the graph transformation rules for a given model and allows
to interactively execute and visualize the modeled system. Our approach can
be used by a modeler in an early stage of a software development process in
order to get a flair for the newly designed system.

There are several other works aiming at defining a semantics for parts of
UML using graph transformation. In [10], an integrated semantics is given
for a large part of UML. However, interaction diagrams and OCL are not
considered. Their approach is extended with interaction diagrams on instance
level in [8]. Operations are still specified by single rules, that is, all operations
have to be atomic. More efforts exist considering isolated parts of UML. In [9],
collaborations are translated into transformation rules, where collaborations
are interpreted as visual queries using pattern matching. A formal semantics
for UML statecharts is presented for example in [19]. The Fujaba tool suite [7]
supports graphical object-oriented software design and automatic code genera-
tion from story diagrams. These diagrams combine behavioral UML diagrams
and additional features. Additional approaches for consistency analysis of
UML models can be found. In [6], given UML real time models are refined
using graph transformation rules and their consistency is checked in the se-
mantic domain of CSP. [18] addresses the consistency analysis between UML
class and sequence diagrams based on graph transformation.

The structure of the rest of this paper is as follows. In the next section
the covered UML features of the model are presented and explained using a
simple example. Section 3 deals with the detailed description of the system
state concept. The translation of the model into a graph transformation sys-
tem is presented in Sect. 4 by example. The fundamental architecture of the
prototypic implementation is presented in Sect. 5. The paper closes with a

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–33 19

conclusion in Sect. 6.

2 Covered UML Features

We cover the following UML features: use case, class, object, statechart, and
interaction diagrams (collaboration and sequence diagrams) and last but not
least full OCL.

We support class diagrams for defining the structure, and interaction dia-
grams for realizing operations declared in the class diagram. An interaction
diagram contains a sequence of messages calling either an operation of a class
that in turn is realized by an interaction diagram or calling a predefined func-
tionality like creating an object or setting an attribute value.

Use cases are likewise realized by interaction diagrams. A use case resp.
its realization states which operations are called by an actor and in which
order this is done. Statechart diagrams specify the order in which operations
on an object may be executed. The kind of statechart diagram we support
are so-called protocol machines, i.e., statechart diagrams which do not need
actions on transitions. Object diagrams are used to specify the system state
to start the evolution with and to represent part of the current state of the
system.

Class StateMachine

Operation

PredefinedMessage

Message Interaction

UseCase

1 0..1

context behavior

0..1

realization0..1

realizedOp

1..*

OpCallMessage

0..1

0..1

*

1

Object
*

{xor}

1..*

*

1

Figure 1. Connection between central modeling concepts

Fig. 1 gives an overview of the connections between the central concepts.
We consider one class diagram and one use case diagram. Each class has zero
or more operations. A use case is associated with exactly one operation that
is not associated with a class. Each operation is realized by an interaction
specified in an interaction diagram. An interaction contains messages, which
are either predefined (for creating an object or setting an attribute value)

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–3320

or which call an operation of a class. For each class there can be one state
machine specified in a statechart diagram. The object diagram instantiates
the class diagram. We illustrate the usage and interplay of the diagrams by
an example UML model for a digital clock. This a rather simple example; a
more complex model fitting our approach can be found at [20].

Fig. 2 shows a use case diagram containing three use cases. The actor can
get the time, or set the hours or minutes of the clock. The two use cases for
setting the time have a parameter for the hour resp. minute the actor wants
to set.

Actor

getTime()

setMinutes(m : Integer)

setHours(h : Integer)

Figure 2. A use case diagram

DigitalClock

hours : Integer

minutes : Integer

pressA()

pressB(count : Integer)

Figure 3. A class diagram

The class diagram in Fig. 3 declares the properties of our clock. It has
one attribute holding the hours and one holding the minutes. There are two
operations on the clock: pressA() for pressing the A button and pressB() for
pressing the B button. In this simple example we have only this single class,
however multiple classes with associations and inheritance are supported in
our approach.

The statechart diagram in Fig. 4 specifies the states a clock can be in:
display, setMinutes and setHours. The initial state points to the state display,
which means that once a clock object is created it is in state display. It is also
specified here that executing the operation pressA() is allowed in every state
and how the state is changed by doing so. The operation pressB() is allowed
only in the states setMinutes and setHours and does not change the state.

display

setMinutes setHours

pressA()

pressA()

pressA()

pressB(count)pressB(count)

Figure 4. A statechart diagram for the class DigitalClock

The collaboration diagram shown in Fig. 5 realizes the use case setHours
by specifying the messages the actor can send. In this case we have three

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–33 21

Actor

dc : DigitalClock

1: [dc.oclInState(setMinutes)] pressA()

2: [dc.oclInState(display)] pressA()

3: pressB((24-dc.hours+h) mod 24)

Figure 5. A collaboration diagram realizing the use case setHours(h : Integer)

OpCallMessages as refered to in the metamodel in Fig. 1. The sequence num-
bers at the beginning of the messages specify the order in which they are sent.
The OCL guard in square brackets has to be fulfilled to send the message.
Finally, the arrow at the end of a row is used in UML to specify the direction
of the message. The type of the arrowhead indicates whether the message is
synchronous (filled solid arrowhead) or asynchronous (stick arrowhead). We
only consider synchronous messages, that is, before a message is sent it has to
wait until the functionality invoked by the preceding message(s) has finished.
In Fig. 5, the messages are ordered in a sequence. In the example, at first, the
actor has to press the A button once or twice so that the clock is in the state
setHours. Then she presses the B button the required number of times, which
is represented by giving an appropriate parameter to the pressB operation.
The messages are sent to a classifier role representing a digital clock.

The operation pressB(count : Integer) is realized by the collaboration dia-
gram in Fig. 6. When the operation is called on a digital clock, a message
depending on the state is sent for setting the attribute. Then, the operation is
called recursively if count is greater than zero. These messages are sent from
the clock that received the message to itself via a �self� association role. This
kind of association role does not need to have a corresponding association in
the class diagram.

Actor

dc : DigitalClock

«self»

1: pressB(count)

1.1a: [dc.oclInState(setHours) and count<>0] setAttributeHours((dc.hours+1) mod 24)

1.1b: [dc.oclInState(setMinutes) and count<>0] setAttributeMinutes((dc.minutes+1) mod 60)

1.2: [count>0] pressB(count-1)

Figure 6. A collaboration diagram realizing the operation pressB()

The object diagram in Fig. 7 depicts the initial system state of the system:
there is one digital clock with its attributes set to zero.

Note that sequence and collaboration diagrams are based on the same
information in the metamodel of UML 1.5 and thus are semantically equivalent
(cf. [2], pages 249–250). It is even possible to convert one diagram type into
the other without loss of information [3]. However, in the concrete syntax of
sequence diagrams the association roles are not visualized. If the association

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–3322

dc : DigitalClock

hours = 0

minutes = 0

Figure 7. An object diagram

roles were nevertheless included in a sequence diagram, it could also be used
instead of a collaboration diagram in the model.

In the next section, we describe the components of the graph representing
the state of the modeled system.

3 System States Including Processes

Technically a system state is represented as a directed and labeled graph with
attributed nodes and edges (cf. e.g. [11]). To begin with, a system state graph
contains attributed objects and links connecting them. So far this graph can
be regarded as an object diagram. However, a system state contains two
more important concepts: (1) object states, which are attached to objects
according to the statechart diagrams, and (2) processes, which represent the
actual execution of operations. The abstract syntax of system states is shown
in Fig. 8 by means of a metamodel.

The upper part of the diagram represents information from the class and
use case diagram (for each use case there is an operation that is not linked
to a class). Objects are connected to their classes (their primary class and all
its superclasses). Correspondingly, all the other nodes on instance level (Link
etc.) are connected to the element on specification level (Association etc.).
In order to determine the initial state of an object during the execution of
operations, a node representing this state is connected to the corresponding
class as specified by an optional statechart diagram. Objects can be connected
to a state, representing either its current state or the state the object will be
in after completing a currently firing transition. Note that the state of an
object is not necessarily related to the configuration of its attribute values but
that it can be considered as an additional feature.

The existence of a process in the system state implies that some kind of
functionality has been asked for earlier. Suitable graph transformation rules
can then be applied to simulate this functionality. These rules also have to
respect that specific object states are required according to the statechart.

All kinds of processes have a status and a sequence number and can have
an activator process. The status can be waiting, active or finished. An OpCall-
Process is connected to an operation, several local variables and an object it is
running on (the owner of the process). Fig. 9 and 10 show the different kinds of

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–33 23

LinkEnd Link

AttributeLink

value : Value

*
2..* 1

Process

(from processes)

AssociationEnd

role : String

multiplicity : String

Attribute

name : String

type : Type

Class

name : String Association

name : String

*

* *

1 1
1

State

name : String

NextStateState

Operation

name : String

returnType : Type

concurrency : CallConcurrencyKind

Parameter

name : String

type : Type

*

*

1

SystemStates

1

superclass

subclass

*

*

0..1

1 * 2..* 1

initial0..1

1

state nextState0..1 0..1

*

* stateOf

nextStateOf

1
1

*

1 *

Object

{xor}

Figure 8. Abstract syntax of system states

Process

status : enum{waiting,active,finished}

seqNo : SequenceNumber

OpCallProcess

resultVarName : String

AtomicProcess

(from atomic processes)

Parameter
(from system states)

1

*

*

1

activator 0..1

*

LocalVar

name : String

type : Type

value : Value

*

Object
(from system states)

owner1

*

Operation
(from system states)

Processes

0..1

Figure 9. Kinds of processes

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–3324

processes. Each kind has its special attributes and associations. In particular,
Fig. 10 shows the atomic processes corresponding to the predefined messages
mentioned earlier. They are called atomic because they do not activate other
processes.

AtomicProcess

DestroyProcess

CreateProcess

className : String

resultVarName : String

SetAttributeProcess

attributeName : String

value : Value

SetLocalVarProcess

localVarName : String

type : Type

value : Value

LocalVar

name : String

type : Type

value : Value

ReturnProcess

type : Type

value : Value

LinkProcess

assocName : String

UnlinkProcess

assocName : String

Object
(from system states)

*

2..*

2..*

*

0..1

0..1

Atomic Processes

ownerowner 11

Figure 10. Atomic processes

To briefly illustrate the concept of a process in this context let us consider
an OpCallProcess by example. An OpCallProcess is associated with an opera-
tion of a class. Let us now assume that an interaction diagram defines that
the effect of this operation is exactly to call another operation. Then there
would be a rule creating another process node, that is associated with the
operation to be called. The system state also includes the information that
the first process is the activator of the second one.

4 Translation into a Graph Transformation System

A graph transformation system consists of a working graph and a set of rules
which rewrite parts of this graph when applied. We use the algebraic graph
model for attributed, directed and labeled graphs and their transformations
(cf. e.g. [11]). Roughly speaking a graph transformation rule consists of a left-
hand side and a right-hand side. The left-hand side specifies the part of the
working graph that has to be changed and the right-hand side specifies these
changes. Nodes that should be preserved during the rewriting have to occur in
both sides of the rule. Nodes that only occur in the left-hand side are deleted
while nodes that only occur in the right-hand side are added to the working

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–33 25

c : Class

name = "DigitalClock"

a1 : Attribute

name = "hours"

type = Integer

a2 : Attribute

name = "minutes"

type = Integer

o1 : Operation

name = "pressA"

returnType = void

concurrency = guarded

o2 : Operation

name = "pressB"

returnType = void

concurrency = guarded

o4 : Operation

name = "setHours"

returnType = void

concurrency = guarded

o5 : Operation

name = "setMinutes"

returnType = void

concurrency = guarded

p2 : Parameter

name = "h"

type = Integer

p3 : Parameter

name = "m"

type = Integer

o : Object
al1 : AttributeLink

value = 0

al2 : AttributeLink

value = 0

s : State

name = "display"

o3 : Operation

name = "getTime"

returnType= void

concurrency = guarded

p1 : Parameter

name = "count"

type = Integer

Figure 11. Start system state for the clock example

graph. Every node is marked with an identifier that is notated in the upper
compartment right before the colon. Nodes with same identifiers in both sides
are thus preserved. Negative application conditions (NAC) may be used as
well. They are denoted as graphs that extend the left-hand side in order to
specify a situation that is not wanted in the working graph, i.e., if such a
situation can be found, the rule cannot be applied. Application conditions
in the form of boolean OCL expressions may be used as well to restrict the
application of a rule in certain situations. These expressions are evaluated in
an analogous way to OCL expressions in [13], since the system state graph
represents a special object diagram, which in turn corresponds to a formal
system state as explained in [13]. Variables representing attribute values in
the usual way can also be used in both sides of a rule. These variables can
also be employed in OCL expressions in the right-hand side of a rule in order
to calculate new attribute values.

As start graph (or start system state) we choose the object diagram the
user has delivered for this purpose and attach the initial states to the objects
and classes in case there is a statechart diagram for the classes. We then have
a system state without processes. Fig. 11 shows the initial system state for
our clock example. It is depicted as an instance of the metamodel presented

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–3326

in Fig. 8. We could also have used some concrete syntax to hide the class,
attribute, operation and parameter nodes as it is usually done with object
diagrams, but here we chose this more abstract representation so that we can
better describe how the rules on the system state work.

The system state contains all classes, operations and attributes from the
class diagram and also an operation (possibly with parameters) for each use
case. In the example, there is one object with two attribute links that is
connected to the class and to a state.

Basically we need two kinds of rules: Rules that depend on the given model
and rules that do not, i.e., predefined rules. The following two subsections
describe these rules and how to construct them.

4.1 Rules Depending on the Model

The initial system state does not contain any processes, i.e., there is no oper-
ation that is called and waiting to be executed. This is what the use cases are
needed for: For every use case we construct a rule that adds an OpCallProcess
node with local variables for holding the arguments where necessary.

Fig. 12 shows the rule for the use case setHours. The rule creates a new
OpCallProcess connected to the Operation with the name setHours. The status
is set to waiting and the sequence number is set to 0. Because the operation
setHours has a parameter h of type Integer, a corresponding local variable node
is created and linked with the new process. Its value is set to x, which is a
free variable. Thus, this rule is a parameterized rule that needs an assignment
that binds x to an actual value before it can be applied.

o : Operation

name = "setHours"

o : Operation

name = "setHours"

p : OpCallProcess

status = waiting

seqNo = 0

v : LocalVar

name = "h"

type = Integer

value = x

L R

Figure 12. Rule for creating a use case process

With the rules described so far, we are now able to add processes to the
system state in order to actually start a system run. Next we need rules
that handle these processes, i.e., change the system state according to the
semantics specified in the interaction diagrams. For every operation specified
by an interaction diagram, we construct a set of rules. This holds for all
operations no matter whether they belong to a class or to a use case. We call
an operation, for which an interaction is given, a user-defined operation.

A user-defined operation calls several other operations. Which one and
in which order is specified in an interaction diagram. An interaction dia-

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–33 27

o : Object

c : Class

name = "DigitalClock"

p1 : OpCallProcess

status = active

o1 : Operation

name = "setHours"

p3 : OpCallProcess

status = waiting

seqNo = 3

o2 : Operation

name = "pressB"

v1 : LocalVar

name = "h"

value = h

v 2: LocalVar

name = "count"

type = Integer

value = (24-dc.hours+h) mod 24

activator

o : Object

c : Class

name = "DigitalClock"

p2 : OpCallProcess

status = finished

seqNo = 2

p1 : OpCallProcess

status = active

o1 : Operation

name = "setHours"

o2 : Operation

name = "pressB"

v1 : LocalVar

name = "h"

value = x

activator

L R

owner

Figure 13. Rule for sending the message “3: pressB(h-dc.hours)”

gram contains messages sent between classifier roles in a specific order. Each
message represents the call of either a user-defined operation (of a class) or
it represents the call of a predefined functionality (like setting an attribute
value). Every sent message corresponds to the creation of a process node,
so we need a rule for each message of the interaction. We now examine the
rule that “sends” the third message of the interaction diagram for setHours as
depicted in Fig. 5. The rule is shown in Fig. 13.

The rule creates the process p3 (displayed in the middle of the right-hand
side of the rule) belonging to the operation named pressB. A prerequisite for
the rule to be applied is that a process of a setHours operation is active and that
the process corresponding to the predecessor message is finished (as shown in
the left-hand side of the rule by process p2). This is the reason why processes
have a sequence number attribute seqNo. It is needed to refer to the process
that has to be finished, in this case it is the one with the sequence number 2.
In the right-hand side, the new process is connected to its activator, operation
and owner object. In addition it has a newly created local variable compliant
to the given parameter. The value of the local variable is an OCL expression
that is evaluated when applying the rule. The predecessor does not occur in
the right-hand side. It is removed from the system state because it is no longer
needed.

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–3328

If the attribute concurrency of the associated operation is guarded, an NAC
ensures that no process of the same operation is already running on the owner.
We do not show this NAC here.

4.2 Predefined Rules

Some messages do not call a user-defined operation but rather a predefined
functionality. There are messages for creating an object of a specific class,
destroying an object, connecting objects with a link of a given association,
unlinking objects, setting an attribute value, setting a local variable value,
and returning a result. Corresponding to these messages there are atomic
processes that are not associated with an operation but instead with other
information needed for the task. These atomic processes have already been
shown in Fig. 10. The rules are constructed straight forward to realize the
intended functionality.

Finally we have a rule for collecting garbage. This rule removes local
variables that are no longer attached to a process node.

5 Implementation

Currently a prototype for the concepts discussed in this paper is being imple-
mented. The goal of this prototype is to visualize the evolution of the system
state. When provided with a model and an initial object diagram, the pro-
totype automatically generates the graph transformation rules and the initial
system state graph. A graphical user interface then permits the user to view
the evolution of the system state step by step and to examine the current state
by querying it using OCL.

For this reason the prototype must be able to perform graph transform-
ations as well as evaluate OCL expressions. Instead of implementing a new
tool for these purposes, we chose to combine two well established tools. The
graph transformation part is done by AGG [16] and the evaluation of OCL
expressions is performed by the USE tool [14].

The model and the initial object diagram are specified in USE-like syntax.
The USE tool had to be extended in order to be able to read collaboration,
use case, and statechart diagram definitions and to represent their features in
its internal model representation. Furthermore the possibility to evaluate the
oclInState operation had to be added to the OCL expression interpreter.

The core prototype comprises mainly two parts. The first part generates
the graph transformation rules as well as the initial system state from the
given model specification. This is achieved using the API of the second part
of the prototype, which is visualized in Fig. 14. The main class of this part is

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–33 29

the Grammar. This core class stores the generated graph transformation rules
and the system state and deals with the actual rule application. As discussed
earlier, a rule may contain OCL expressions as application conditions or as
a means to calculate new attribute values. Since AGG is not able to handle
OCL expressions, these rules cannot exactly be AGG rules. For this reason
a system state rule has been developed, which extends the functionality of
an AGG rule. The expressions calculating new attribute values are stored as
constant string values in the corresponding attributes of the AGG nodes of the
AGG rule, while the application conditions are stored directly in the system
state rule.

Grammar

createRule() : Rule

applyRule(Rule)

step()

SystemState

USEState

Rule

AGGRule

ApplicationCondition

exp ression : OCLExp ress ion

Synchronizer

changes : Set

update()

synchronize(SystemState)

AGGGraph

addObserver(Observer)

deleteObserver(Observer)

1

1 1

0..1

1

1 1

*
*

1

1 1

0..1 1

1

1

Figure 14. Simplified class diagram of the prototype

The system state grammar contains the system state. This system state
combines the concepts of AGG and USE. A system state consists of an AGG
working graph and a USE state. The AGG graph is necessary to be able to
let AGG handle the pure graph rewriting, while the USE state is needed for
the evaluation of OCL expressions. When applying a rule, the system state
grammar has to ensure that the AGG graph and the USE state of the system
state are synchronized. The application of a system state rule then works as
follows.

If the rule has an application condition, the system state grammar uses
the USE state and the USE expression evaluator to determine the value of
given expressions depending on the match of the left-hand side of the rule to
the system state. If it evaluates to true, the rule may be applied, otherwise
another match is tested. If there is no further match, the application of the
rule to the current system state is not possible. The actual application is then
performed by AGG on the AGG graph of the system state. This comprises

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–3330

the correct handling of possible variables in the left-hand side of the rule. In
order to keep the USE state of the system state synchronous to the AGG
graph, the observer facility of AGG is used. An instance of class Synchronizer
is registered as an observer of the observable AGG graph. Whenever this
graph is changed, the synchronizer is informed via its update method. These
changes are accumulated to change the USE state once AGG has completed
the rule application. When the rule application is finished, the synchronizer
is removed from the observer list of the AGG graph. At this stage, there may
be unevaluated OCL expressions as string constants in attribute values of the
working graph. They are now interpreted by USE and the values replace
the corresponding constants. Then the system state grammar changes the
USE state according to the previously collected changes of the AGG graph.
Afterwards the USE state and the AGG graph represent the same system state
and the next rule application may be calculated.

In order to provide the possibility to calculate the next step of a system
state evolution, the system state grammar permits to apply any rule in the
set of system state rules. This is done by randomly choosing one of the rules
until an applicable one is found. Instead the user may also select a process to
be executed. Furthermore the user may choose a new use case. In this case
optional parameters have to be provided by the user. Note that a use case
rule is always applicable and that such a use case rule needs to be selected to
actually start a system state evolution.

6 Conclusion and Future Work

We have presented an integrated semantics for UML based on the translation
of a given UML model into a graph transformation system. To demonstrate
our approach an example model comprising several UML diagrams has been
introduced. Next we have described our idea of a system state by means
of a metamodel followed by a discussion of the translation of a given model
into model-depending and predefined graph transformation rules by example.
Finally the basic concepts of the prototypic software implementing this ap-
proach have been addressed. The prototype translates a given UML model
into a graph transformation system and allows to monitor the evolution of the
system state step by step.

The next goal is to complete the prototype implementation and to provide
a convenient GUI for it. So eventually our approach can be evaluated in
practice. As the approach and the tool areit is suitable for early stages of the
software development process, it might become impractical when using large
and very detailed models. In this case the aforementioned GUI should allow

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–33 31

the user to choose different views on the system run, like e.g. hiding objects
and their details that are of no interest in a certain situation.

An interesting topic would be the integration of further diagram types like
activity diagrams into our approach. We will also investigate whether and
how the diagrams already covered can be extended with yet missing UML fea-
tures. Case studies will provide feedback on the practicability of the approach
and tool. In particular, more insight is needed into the process of asserting
properties of UML models on the basis of our approach, for instance, based on
transformation invariants. In this way our approach will automatically benefit
from future cognitions in the field of graph transformation.

References

[1] Boldsoft and Rational Software Corporation and IONA, Response to the UML 2.0 OCL RfP
(ad/2000-09-03), http://www.klasse.nl/ocl/ocl-subm.html.

[2] Booch, G., J. Rumbaugh and I. Jacobson, “The Unified Modeling Language User Guide,”
Addison-Wesley, 1998.

[3] Cordes, B., K. Hölscher and H.-J. Kreowski, UML interaction diagrams: Correct translation of
sequence diagrams into collaboration diagrams, in: M. Nagl, J. Pfaltz and B. Böhlen, editors,
AGTIVE’03 Proceedings, Lecture Notes in Computer Science, 2004, to appear.

[4] Ehrig, H., G. Engels, H.-J. Kreowski and G. Rozenberg, editors, “Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Languages and
Tools,” World Scientific, Singapore, 1999.

[5] Ehrig, H., H.-J. Kreowski, U. Montanari and G. Rozenberg, editors, “Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 3: Concurrency, Parallelism, and
Distribution,” World Scientific, Singapore, 1999.

[6] Engels, G., R. Heckel, J. M. Küster and L. Groenewegen, Consistency-preserving model
evolution through transformations, in: J.-M. Jézéquel, H. Hussmann and S. Cook, editors,
UML 2002 - The Unified Modeling Language. Model Engineering, Languages, Concepts, and
Tools. 5th International Conference, Dresden, Germany, September/October 2002, Proceedings,
LNCS 2460 (2002), pp. 212–226.

[7] Fischer, T., J. Niere, L. Torunski and A. Zündorf, Story diagrams: A new graph transformation
language based on UML and Java, in: H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg,
editors, Proc. Theory and Application to Graph Transformations (TAGT’98), Paderborn,
November, 1998, LNCS 1764 (1998).

[8] Gogolla, M., P. Ziemann and S. Kuske, Towards an integrated graph based semantics for UML,
in: Graph Transformation and Visual Modeling Techniques (GT-VMT 2002), ENTCS 72, 2003.

[9] Heckel, R. and S. Sauer, Strengthening uml collaboration diagrams by state transformations,
in: H. Hussmann, editor, Fundamental Approaches to Software Engineering, 4th International
Conference, FASE 2001, held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2001, Genova, Italy, April 2-6, 2001, Proceedings, LNCS 2029
(2001), pp. 109–123.

[10] Kuske, S., M. Gogolla, R. Kollmann and H.-J. Kreowski, An Integrated Semantics for UML
Class, Object, and State Diagrams based on Graph Transformation, in: M. Butler and K. Sere,
editors, 3rd Int. Conf. Integrated Formal Methods (IFM’02), LNCS 2335 (2002), pp. 11–28.

[11] Löwe, M., M. Korff and A. Wagner, An Algebraic Framework for the Transformation of
Attributed Graphs, in: R. Sleep, R. Plasmeijer and M. van Eekelen, editors, Term Graph
Rewriting: Theory and Practice, John Wiley, New York, 1993 pp. 185–199.

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–3332

http://www.klasse.nl/ocl/ocl-subm.html

[12] OMG, “OMG Unified Modeling Language Specification, Version 1.5, March 2003,” Object
Management Group, Inc., Framingham, Mass., http://www.omg.org, 2003.

[13] Richters, M., “A Precise Approach to Validating UML Models and OCL Constraints,” Ph.D.
thesis, Universität Bremen, Logos Verlag, Berlin, BISS Monographs, No. 14 (2002).

[14] Richters, M., A UML-based Specification Environment (last revision 2001), http://www.db.
informatik.uni-bremen.de/projects/USE.

[15] Rozenberg, G., editor, “Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations,” World Scientific, Singapore, 1997.

[16] Rudolf, M. and G. Taentzer, The Attributed Graph Grammar System AGG (last revision 2003),
http://tfs.cs.tu-berlin.de/agg.

[17] Sendall, S. and A. Strohmeier, From use cases to system operation specifications, in: A. Evans,
S. Kent and B. Selic, editors, UML 2000 - The Unified Modeling Language. Advancing the
Standard. Third International Conference, York, UK, October 2000, Proceedings, LNCS 1939
(2000), pp. 1–15.

[18] Tsiolakis, A. and H. Ehrig, Consistency analysis of UML class and sequence diagrams
using attributed graph grammars, in: H. Ehrig and G. Taentzer, editors, Proc. of Joint
APPLIGRAPH/GETGRATS Workshop on Graph Transformation Systems, Berlin, March
2000, 2000, Technical Report no. 2000/2, Technical University of Berlin.

[19] Varró, D., A formal semantics of UML statecharts by model transition systems, in: A. Corradini,
H. Ehrig, H.-J. Kreowski and G. Rozenberg, editors, Graph Transformation. First International
Conference, ICGT 2002, Barcelona, Spain, October 2002, Proceedings, LNCS 2505 (2002), pp.
378–392.

[20] Ziemann, P. and K. Hölscher, Example UML Model (2004), http://www.tzi.de/~hwaters/
example.pdf.

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–33 33

http://www.omg.org
http://www.db.informatik.uni-bremen.de/projects/USE
http://www.db.informatik.uni-bremen.de/projects/USE
http://tfs.cs.tu-berlin.de/agg
http://www.tzi.de/~hwaters/example.pdf
http://www.tzi.de/~hwaters/example.pdf

	Introduction
	Covered UML Features
	System States Including Processes
	Translation into a Graph Transformation System
	Rules Depending on the Model
	Predefined Rules

	Implementation
	Conclusion and Future Work
	References

