
Coherently Explaining UML Statechart and

Collaboration Diagrams by Graph

Transformations

Paul Ziemann 1 ,2

Department of Computer Science
University of Bremen
Bremen, Germany

Karsten Hölscher3

Department of Computer Science
University of Bremen
Bremen, Germany

Martin Gogolla4

Department of Computer Science
University of Bremen
Bremen, Germany

Abstract

In this paper we continue our work on the formalization and validation of UML models by means
of graph transformation systems. We here concentrate on statechart and collaboration diagrams
albeit our approach covers use case, class, object, and sequence diagrams as well. The statechart
and collaboration diagrams describe the operations of the underlying class diagram and include
OCL expressions as guards and parts of message expressions. We illustrate in detail the generation
of graph transformation rules for the statechart and collaboration diagrams.

Keywords: UML, graph transformation, integrated formal semantics, OCL

Electronic Notes in Theoretical Computer Science 130 (2005) 263–280

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.03.014

http://www.elsevier.com/locate/entcs

1 Introduction

The Unified Modeling Language (UML) has recently become a widely accepted
standard for the visualization, specification, construction, and documentation
of object-oriented software systems. It is well established and used in industry
as well as in research. The UML is a graphical language that comprises a
number of different diagram types for different purposes. The syntax of these
diagram types is defined in the UML metamodel [9]. But the semantics of the
language constructs is only given in natural language. As the UML is sup-
posed to support a software engineer in constructing precise models, a formal
foundation for UML is needed. The graphical notation is enhanced by the
Object Constraint Language (OCL), which permits to formulate constraints
that cannot be expressed by the diagrams in a textual way. OCL is formally
defined in [11]. Currently, the 2.0 version of UML is about to be finalized [10]
but the language definition will still be informal.

By translating a given UML model into a graph transformation system we
provide an integrated formal semantics for a large part of UML. Integrated
means that a model in our approach may comprise use case, class, object,
statechart and interaction (collaboration and sequence) diagrams. We stick
to UML 1.5 but UML 2.0 likewise includes the UML concepts covered by us,
albeit some details and the naming have changed in some cases. In particular,
collaboration diagrams are called communication diagrams in UML 2.0.

The graph transformation system consists of graph transformation rules
and a working graph, which represents a snapshot of the current state (hence
called system state) of the modeled system. The system state changes during a
run of the system, i.e. graph transformation rules are applied rewriting parts
of the working graph. Using our approach modelers can validate a system
model by performing system runs and comparing their expectations with the
results of these runs.

In this paper we present the fundamental concept of system states and
the translation of a given UML model into a graph transformation system
focusing on the rules evolving from statechart and collaboration diagrams.
An important aspect for us is that our approach integrates the OCL. OCL
expressions that appear in the model are used in rules as well. When applying

1 Research partially supported by the EC Research Training Network SegraVis (Syntactic
and Semantic Integration of Visual Modeling Techniques) and by the German Research
Foundation (DFG) as part of the Collaborative Research Centre 637 Autonomous Cooper-
ating Logistic Processes — A Paradigm Shift and its Limitations and the project UML-AID.
2 Email: ziemann@tzi.de
3 Email: hoelscher@tzi.de
4 Email: gogolla@tzi

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280264

mailto:ziemann@tzi.de
mailto:hoelscher@tzi.de
mailto:gogolla@tzi.de

a rule, these expressions are evaluated.

Several other works can be found, that provide a precise semantics for
parts of UML by means of graph transformation. An integrated semantics
similar to the one presented here is introduced in [5] for class, object and stat-
echart diagrams. Since this approach does not cover interaction diagrams, it
is extended in [3] adding interaction diagrams on instance level. However, the
operations have to be specified by single rules, thus only atomic operations are
considered. In addition, the modeller is forced to enrich the UML model with
graph transformation by himself, thus that approach is not purely UML con-
form in contrast to the approach presented in this paper. This work discusses
in more detail our approach that has already been presented in [15] which
illustrated the basic concept only by means of an example. In the present
paper, we explain the approach in a more general way.

In [14] a formal semantics for UML statecharts based on a combination
of metamodeling and graph transformation is presented. Collaborations are
interpreted in [4] as visual queries and translated into graph transformation
rules using pattern matching. An operation semantics for statecharts based on
graph transformation is presented in [8]. In [6] rewrite rules and its operational
semantics are used in order to translate UML statecharts for the purpose of
model checking. The Fujaba tool suite [2] automatically generates code from
behavioral UML diagrams and additional features using graph transformations
that are formulated as story diagrams. Consistency analysis between UML
models employing graph transformation can be found in [1] and [13]. In the
first work graph transformation is used to refine UML real time models. Their
consistency is checked in the semantic domain of CSP. In the second work the
consistency between class and sequence diagrams is checked by means of graph
transformation.

The structure of the paper is as follows. In the next section an example
model consisting of a class, collaboration, and statechart diagram is introduced
and explained. Section 3 provides an overview of system states in general. The
formal background of our graph transformation approach and the translation
of a model into a graph transformation system is explained in Section 4, fo-
cusing on the rule generation concerning the sending of messages. The paper
closes with a conclusion.

2 Integrated Specification with USE

In order to explain the core mechanism of our approach, we provide a small
example model. It only consists of diagrams that are needed for the mechan-
isms described later on, which concentrate on a central part of our approach

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280 265

handling class, collaboration and statechart diagrams. A proper model would
also comprise an object diagram specifying the initial system state and a use
case diagram specifying the operations the user can invoke. In the example
we model a very basic chat system, resembling the Internet chat system ICQ.
Figure 1 depicts the class diagram of this model.

ICQServer

connect(caller : ICQClient, calleeID : Integer)

ICQSession

establish(c1 : ICQClient, c2 : ICQClient)

receive(line : String)

Clients Chat1 * 2 *

client client

ICQClient

id : Integer

print(line : String)

Figure 1. Example class diagram

The model comprises the three classes ICQServer, ICQClient, and ICQSes-
sion. An ICQServer can have any number of ICQClients, while the latter can
only be a client of exactly one ICQServer. The ICQClient has an attribute id,
which uniquely identifies a user operating the client. This id has been created
during the registration, which is necessary for users to be able to be part of
ICQ chats. This registration is not modeled in our example. The actual chat
of exactly two ICQClients is managed by the class ICQSession. Naturally, an
ICQClient can take part in more than one chat, therefore it can be connected
to any number of sessions.

Actor

server : ICQServer

client2 : ICQClientclient1 : ICQClient

session : Session

«local»«local»

1: connect(caller, calleeID)

callee

«self»

«local»

1.1: callee := self.client->select(id = calleeID)

caller
1.2: create()

1.3: establish(c1=caller, c2=callee)

1.3.1a: link(assoc=Chat, session=session, client=c1)

1.3.1b: link(assoc=Chat, session=session, client=c2)«self»

1.3.2: receive(line="established!")

1.3.2.1a: [line.length<=512] print(line=line)

1.3.2.1b: [line.length<=512] print(line=line)

c1 c2

«local»
«local»

Figure 2. Example collaboration diagram

The operations belonging to the classes ICQServer and ICQSession are spe-
cified in the collaboration diagram shown in Fig. 2. A collaboration diagram
specifies an interaction of objects by visualizing classifier roles exchanging
messages via association roles. Classifier roles are depicted as rectangles con-
taining identifiers and corresponding class names (the base classifier of the
classifier role), separated by a colon. Classifier roles represent objects (in-
stances of the corresponding base classes) that play a specific role in the inter-
action. Association roles are depicted as edges connecting the classifier roles.

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280266

The association roles may be labeled with a colon followed by the name of
an association from class diagram (base association). However, this mech-
anism is not used in the example. Special stereotypes (text in guillemots)
mark association roles that have no base association. It is for instance always
possible that a classifier role sends a message to itself, via an association role
stereotyped as �self� (as depicted in Fig. 2 at ICQServer and ICQSession). The
stereotype �local� specifies that the classifier role at one end of the associ-
ation role represents a local variable with the name of that variable given as
role name. Arrows next to association roles depict messages, pointing in the
direction of the receiving classifier role. Messages always invoke some kind
of operation. Note that the invocation of an operation is not the same as its
actual execution. An invocation is regarded as putting an execution request
into the queue of the receiving object.

A solid filled arrowhead depicts a synchronous message, i.e., any following
message cannot be sent until the operation that has been invoked by the
synchronous message has been finished. Asynchronous messages are depicted
by stick arrowheads, but our example does not contain asynchronous messages.
The nesting of sequence numbers reflects the order of these messages as well
as different levels of activation. Increasing numbers on the same nesting level
represent successive message calls from the same level of activation, e.g., 1.3 is
the successor of 1.2. If messages are on the same level of activation, they are
sent from the same classifier role. If a message is the activator of one or more
messages, the nesting level of the activated messages is increased, e.g., 1.1 is
a message that has been activated by message 1. An operation is specified
by a collaboration diagram if there is a message calling the operation and
a sequence of messages activated by this message. Thus, the collaboration
diagram shows which suboperations the specified operation calls.

The presence of letters in sequence numbers indicate a parallel sending
of messages, e.g., the messages 1.3.1a and 1.3.1b are sent in parallel. It is
possible to provide an expression in squared brackets depicted behind the
sequence number. This expression is called a guard, i.e., a boolean expression
that has to be evaluated to true for the corresponding message to be actually
sent. If the guard evaluates to false, the message will not be sent.

The example collaboration diagram specifies the process of establishing
a chat between two chat partners. The situation here is that a number of
clients is already connected to the server. At first the user who wants to chat
with another user calls the connect operation of the ICQServer (message with
sequence number 1). The parameters are the ICQClient caller (representing
the user end of the chat communication), and an Integer calleeID containing
the unique id (as explained above) of the user with whom the caller wants to

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280 267

establish a chat session. The server then identifies the ICQClient representing
the callee by selecting the client of its internal list that has the same id as
the one requested by the caller (1.1). It then creates a local session (1.2)
and calls the establish operation of that session (1.3), providing the caller and
callee clients as parameters. This leads to the call of link operations (1.3.1a
and 1.3.1b), linking the two objects representing the clients to that session,
thus instantiating the association Chat. These operations are specified to be
executed in parallel. Next the session calls its own operation receive (1.3.2)
with a constant string “established!” as parameter. This is a message to inform
the users represented by the two clients that a connection has successfully
been established. This is achieved by a parallel call of the print operation
(1.3.2.1a and 1.3.2.1b) of the two clients with the constant string “established!”
as parameter. In our example the guard “line.length <= 512” is meant to
make sure that only lines containing 512 characters or less may be printed to
the clients. The fact that longer lines would not be printed in our model is
meant to resemble some kind of protection against molesting and is used to
demonstrate the handling of guards in collaboration diagrams.

In the example collaboration diagram the operations connect, establish, and
receive are specified. The other called operations (e.g. print) are not specified
because it is not shown which suboperations are invoked by them. Note that
the operation establish is called with actual parameters (caller and callee) in
the context of the connect operation, but the messages activated by establish
only refer to the formal parameters of establish (c1 and c2).

Session

pending ready
establish(c1:ICQClient, c2:ICQClient)

receive(line:String)

Figure 3. Example statechart diagram

The model is completed by the statechart diagram in Fig. 3. A statechart
diagram belongs to a class and comprises states connected by transitions.
Transitions are labeled with operation signatures and optional boolean OCL
expressions (guards) in square brackets. The shown statechart diagram be-
longs to the class ICQSession, since this is the only class that actually has
relevant states. Initially the state of the session is pending. After the execu-
tion of the establish operation, the state changes to ready (the corresponding
transition fires). It is now allowed to execute the receive operation on the
session, and the statechart does not change its state further on. While col-
laboration diagrams specify the calling of operations by sending messages, the
statechart diagram is meant to visualize restrictions of operation executions,
i.e, in which order the actual operation calls may be handled. If no statechart

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280268

diagram exists for a class, then any operation belonging to it can be called at
any time. But in the case of a present statechart diagram, an operation on an
object is only allowed if the object is in a state with an outgoing transition
labeled with this operation. In our example, it is not allowed to execute the
receive operation if the state of the session is pending. It is also not allowed
to execute the establish operation if the state is ready. However, an operation
that is not depicted in the statechart diagram of its class may still be executed
at any time. If a transition is labeled with a guard, it has to be evaluated
to true for the transition to fire. Our graphically simulated system run never
violates the restrictions specified in the statechart diagrams.

3 System States

As the name may suggest, the system state represents the internal state of the
software system specified by a UML model. We define the abstract syntax of a
system state by a class diagram that resembles a part of the UML metamodel.
It is shown in Fig. 4.

LinkEnd Link

AttributeLink

value : Value

*
2..* 1

Process

(from processes)

AssociationEnd

role : String

multiplicity : String

Attribute

name : String

type : Type

Class

name : String Association

name : String

*

* *

1 1
1

State

name : String

NextStateState

Operation

sig: String

concurrency : CallConcurrencyKind

*

*

SystemStates

1

superclass

subclass

*

*

1 * 2..* 1

initial0..1

1

state nextState0..1 0..1

*

* stateOf

nextStateOf

1
1

1 *

Object

{xor}

*

Figure 4. Abstract syntax of system states

A concrete system state is then represented by an object diagram that
instantiates this class diagram. A formal basis for class diagrams and their

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280 269

instantiation by object diagrams can be found in [11]. A system state can of
course be visualized in a more readable way, as long as the contained inform-
ation is equivalent to the defined abstract syntax.

Before the evolution of the system starts, the system state resembles the
initial object diagram provided by the modeler. It contains nodes of type
Object representing the objects that initially exist, connected to nodes of type
Class, representing their class. However, it is possible, that the model com-
prises statechart diagrams specifying initial object states. In this case these
states are added to the system state by depicting them as nodes of type State
and connecting them to the corresponding object nodes via a State link. The
corresponding classes are also connected to their initial states for internal reas-
ons concerning certain graph transformation rules. Further information from
the statechart diagrams are not reflected in the system state but rather in the
derived graph transformation rules.

Operations that belong to classes are depicted by Operation nodes that are
connected to their Class nodes. To be more precise, an Operation node rep-
resenting an operation of a class is connected to the class and its subclasses.
Moreover, an overriding operation is connected to the class the overriden op-
eration is defined for. Operation nodes that are not connected to a Class node
represent use cases.

Objects are linked via Link and LinkEnd nodes, that are in turn connected
to Association and AssociationEnd nodes. Attributes of objects are represented
by AttributeLink nodes that are connected to an Attribute node that declares
the attribute in the context of a class.

The system state of the modeled system is changed by processes. There is a
number of different process types that are depicted in Fig. 5 and Fig. 6. There
are atomic processes and so-called OpCall processes, the latter representing
user-defined operations in execution. Processes can have local variables when
executed, so they may be connected to LocalVar nodes storing these values.
Some process types are connected to an owner object, i.e., the Object node
representing the object the operation is called on. Note that the attribute
value present in several classes is of type Value, which subsumes all available
value types. However integrity constraints that are not covered here ensure
that the actual value type corresponds to the type given by the type attribute.

The atomic processes are not connected to Operation nodes, which exclus-
ively represent operations of classes or use cases. Atomic processes represent
predefined operations in execution. They comprise Create, Destroy, Link, Un-
link, SetAttribute, SetLocalVar and Return processes. A Create process is used
to create an object. A Destroy process dispels a given object and is thus con-
nected to the Object node representing the instance to be destroyed. Link and

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280270

Process

status : enum{waiting,active,finished}

seqNo : SequenceNumber

ComplexProcess

resultVarName : String

AtomicProcess

(from atomic processes)

Parameter
(from system states)

1

*

*

1

activator 0..1

*

LocalVar

name : String

type : Type

value : Value

*

Object
(from system states)

owner1

*

Operation
(from system states)

Processes

0..1

Figure 5. Processes

AtomicProcess

DestroyProcess

CreateProcess

className : String

resultVarName : String

SetAttributeProcess

attributeName : String

value : Value

SetLocalVarProcess

localVarName : String

type : Type

value : Value

LocalVar

name : String

type : Type

value : Value

ReturnProcess

type : Type

value : Value

LinkProcess

assocName : String

UnlinkProcess

assocName : String

Object
(from system states)

*

2..*

2..*

*

0..1

0..1

Atomic Processes

ownerowner 11

Figure 6. Atomic processes

Unlink processes create and destroy links between object nodes. The SetLoc-
alVar and SetAttribute processes change values of local process variables and
object attributes, respectively. A Return process finishes its activator process
and handles a potential return value.

A subprocess, i.e., a process that has been called by another process (the
activator), is connected to the calling process. This activator structure rep-

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280 271

resents the activator tree in the UML metamodel for interaction diagrams.

All process types have a sequence number and a status as common attrib-
utes. The sequence number is taken from the specifying collaboration diagram
of the model. The status can be #waiting, #active or #finished. This will be
explained in more detail in Sect. 4.

4 Rules for Sending Messages

In this section we describe how to construct rules originating in collabora-
tion and statechart diagrams. The description is general but we will also
often refer to the chat example introduced earlier. A collaboration diagram
specifies operations of classes by showing messages that are sent by the oper-
ations in a specific order. The collaboration diagram in Fig. 2 specifies three
operations: connect(caller:ICQClient, calleeID:Integer) of class ICQServer, estab-
lish(c1:ICQClient, c2:ICQClient) and receive(line:String) of class ICQSession.

A message invokes a user-defined operation or a predefined operation like
setting an attribute value, setting a local variable or creating an object. A
user-defined operation is an operation that is declared in the class diagram
for a specific class. For example, the message 1.2 calls a predefined operation
while the message 1.3 calls a user-defined operation.

4.1 Graph Transformation

A graph transformation system consists of a working graph and a set of rules
which rewrite parts of this graph when applied. We use the algebraic graph
model for attributed, directed and labeled graphs and their transformations
(cf. [7], [12]). A graph transformation rule consists of a left-hand and a right-
hand side, both being system states as explained earlier. Usually the rules
are notated in the following way. Nodes that should be preserved during the
rewriting occur in both sides of the rule. They are identified by identifiers in
the upper compartment, in front of the colon. Nodes that only occur in the
left-hand side are deleted while nodes that only occur in the right-hand side
are added to the working graph. Negative Application Conditions (NAC) are
specified as graphs that extend the left-hand side in order to specify a situation
that is not wanted in the working graph, i.e., if such a situation can be found,
the rule cannot be applied. Application conditions in the form of boolean
OCL expressions (including invocations of side effect-free operations) may be
used as well to restrict the application of a rule in certain situations. These
expressions are evaluated in an analogous way to OCL expressions in [11],
since the system state graph represents a special object diagram, which in
turn corresponds to a formal system state as explained in [11]. Naturally,

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280272

the evaluation takes place in the context of this system state rather than the
system state graph. Variables representing attribute values in the usual way
can also be used in both sides of a rule. These variables can also be employed
in OCL expressions in the right-hand side of a rule in order to calculate new
attribute values. Thus the right-hand side of a rule actually differs from
the system state defined earlier in that attributes may hold general OCL
expressions and not only constants.

4.2 The Basics

In our system state, the sending of a message corresponds to the creation of a
process node with status #waiting. When a waiting process is activated by a
rule, its status changes to #active. An active process represents an operation
in execution. In the following, we simply say that a rule sends a message (or
invokes an operation) if it creates a process node.

The set of rules handling the invocation of the suboperations of a user-
defined operation is said to execute the operation. We concentrate on these
rules here. So, let us assume that there is (among many other nodes) a waiting
process of a user-defined operation in the system state (technically, there is a
ComplexProcess node with status = #waiting that is connected to a node).

We then need rules for sending the messages as specified in the collabora-
tion diagram for the operation. In each rule, we have to decide under which
circumstances the rule shall be applicable and to which target the message
shall be sent.

In the simplest case (if there is no statechart diagram for the class of the
sending classifier role) we only need one single rule for sending a message.
The framework of the rule differs depending on the kind of message. In the
following let us consider a message that calls a user-defined operation.

We will describe the construction of a rule in a general way. For this
purpose, consider Fig. 7 that shows a class diagram scheme. There could be
more classes, associations, attributes and operations but we need only the
shown features here. Figure 8 shows a collaboration diagram scheme that
specifies the operation opname a of class Classname a. This scheme again
shows only the features we need to explain the rule construction; the message
1.x (where x is a natural number) is only one message among many others
that are not shown here. The scheme for the general framework of the rule
sending this message is depicted in Fig. 9. For space reasons, left-hand and
right-hand side of the rule are displayed in a single graph: The bold edges and
nodes are only present in the right-hand side. Crossed out elements are only
present in the left-hand side.

In the left-hand side we have a ComplexProcess node representing the

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280 273

Classname_a

opname_a(parname_a_1:Type_a_1,

 ..., parname_a_k:Type_a_k)

Classname_b

opname_b(parname_b_1:Type_b_1,

 ..., parname_b_n:Type_b_n)

Assocname

Figure 7. Class diagram scheme

Actor

: Classname_a

: Classname_b

1: opname_a(parname_a_1:Type_a_1,...,parname_a_k:Type_a_k)

1.x: opname_b(parname_b_1:Type_b_1=argexpr_b_1,...,parname_b_n:Type_b_n=argexpr_b_n)

roleName

Figure 8. Collaboration diagram scheme that specifies opname a of class Classname a

c_b : Class

name = "Classname_b"

op_b : Operation

sig = "opname_b(...)"

v_b_1 : LocalVar

name = "parname_b_1"

type = "Type_b_1"

value = argexpr_b_1

v_b_n : LocalVar

name = "parname_b_n"

type = "Type_b_n"

value = argexpr_b_n

p_b : ComplexProcess

status = #waiting

seqNo = "1.x"

resultVarName= "r"

v_a_1 : LocalVar

name = "var_1"

value = var_1

v_a_m : LocalVar

name = "var_m"

value = var_m

o : Object

activator

p_a : ComplexProcess

Figure 9. Scheme of the rule that sends the message 1.x.

activator process. We assume that in the preceding rule application a proper
process node has been marked with a loop. Thus, it is not necessary to connect
this node to an Operation node now. This allows for recursive operation calls
in spite of injective matching. A proper activator process is connected to the
operation op a of class c a and has the status #waiting if the message we want
to send by this rule has no predecessors in the collaboration diagram, and
#active otherwise.

In addition, we have an Operation node op b connected to a Class node c b.
This represents the operation to be executed and its class, so the name attrib-

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280274

ute of op b and c b are set accordingly (e.g., to establish resp. ICQSession).
An NAC not shown here ensures that dynamic dispatching works correctly.
Finally, there is an Object node o connected to c b. That is the object the
operation will be invoked on.

In the right-hand side, all the mentioned nodes are present as well,
because corresponding nodes in the system state graph are not supposed to
be deleted when applying the rule. The rule is supposed to create a new
ComplexProcess node, so we add a ComplexProcess node p b that is connected
to o and to op b. The activator edge connects p b with p a, identifying p a as
the activator of p b. Its status is set to #waiting, indicating that the message
is sent and the operation waits to be executed. The seqNo and (if present) the
resultVarName is set according to the collaboration diagram (sequence number
in front of the first “:”, result variable name in front of the assignment symbol
“:=”). In our example, the message 1.1, which calls a predefined operation
for setting a local variable, has a result variable named callee.

For each parameter par b i of op b we add a LocalVar node v b i with the
same name and type. Each v b i is connected to p b. So the newly created
process has a local variable for each parameter. The value attributes of the
v b i,. . . ,v b n are set according to the arguments of the message as given in
the collaboration diagram.

4.3 Special Considerations

Variables in OCL Argument Expressions.

If a called operation has parameters, they are given as OCL argument
expressions in the collaboration diagram. These expressions can be used un-
changed in the rules as described above. However, such an OCL expression
can contain variables that have to be bound when applying the rule and eval-
uating the expression. The message can contain only variables that are known
in the context of the activator process.

Let var 1,. . . ,var m be the free variables contained in the argument ex-
pressions. Then for each var i we add a LocalVar node v a i in both sides of
the rule, where the name attribute of v a i is set to the constant var i and the
value attribute is set to a variable that is also named var i. All these Local-
Var nodes are connected to p a. When applying the rule with any match, the
match binds each var i to a concrete value, so the expressions can be evaluated
and the result is inserted into the system state graph.

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280 275

Synchronous and Asynchronous Predecessors.

If the rule sends a message that has one or more predecessors in the collab-
oration diagram, the rule has to be applicable only after (1) the predecessor
messages are sent and (2) the operations invoked by the synchronous prede-
cessors have been finished. We achieve this by adding a process node for each
predecessor and connecting it to the activator process p a with the activator
edge in the left-hand side of the rule. The seqNo attribute is set according
to the collaboration diagram to identify the predecessor. If the predecessor
is synchronous, status is set to #finished. On the other hand, if it is asyn-
chronous the attribute status is not set because the existence of the process is
enough then (i.e., the fact that the message has been sent). Finished processes
that are not longer needed as predecessors are removed by a special garbage
collection rule that is not presented here.

Sending via Local or Self Association Roles.

If the message under consideration is sent via an association role with the
stereotype �local�, it means that the receiver of the message is referred to in
a local variable of the activator process. The name of this variable is given
as the role name of the receiving classifier role. So we add a LocalVar node in
both sides of the rule and connect it to p a. Its name is set to the role name
from the collaboration diagram and its value is set to the receiving object o.
In this way we ensure that by applying the rule the process is attached to the
object that is stored in the specified local variable.

If the message is sent via an association role with the stereotype �self�,
it is sent to the object the activator process is currently running on. That
means that we additionally insert an owner edge from the receiving object o
to p a.

Sending via an Ordinary Association Role.

When a message is sent via an ordinary association role, i.e., an associ-
ation role without any stereotype, the modeller has not yet specified how to
determine a concrete receiver object. The only demand is that it is linked
with the sender object with a link compliant to the association role. This is
ensured in the rule by additional nodes and connections.

It often happens that in a collaboration diagram a classifier role receives
more than one message during the execution of the operation specified by the
collaboration. However, if two or more messages are sent via an ordinary asso-
ciation, we so far do not ensure that the messages are sent to the same object
because the receiving Object nodes in the different rules can be matched to
different objects in the system state graph. We ensure this in the following

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280276

way: The rule that sends the first of several messages via an ordinary asso-
ciation rule stores the chosen receiver in a new local variable of the activator
process. Rules that send messages via the same association role later in the
interaction do this in the same way in which messages are sent via a local
association role.

Sending Parallel Messages.

So far, a rule created only one process, i.e., sent one message. When several
messages are specified to be sent in parallel in the collaboration diagram, all
those messages are sent by one single rule. For each classifier that receives
one of these messages, there is an Object node in both sides of the rule. Two
messages sent to the same classifier role result in two processes attached to
the same Object node. The procedure for the single messages is as described
above.

Guards.

A guard is a boolean OCL expression that can be written in front of a
message in the collaboration diagram (the messages 1.3.2.1a and 1.3.2.1b have
a guard in our example). If it evaluates to false, the message shall not be
sent. However, in our system state graph we need the information that this
message is handled in case there are other messages waiting for this message
to be handled. For this reason, we always allow the corresponding rule for
sending the message to be applied. But if the guard evaluates to false the
status of the created process is set to #finished. Thus, the corresponding
operation is not executed but the following messages can proceed. This is
done by setting the status of the process to be created in the right-hand side
to the OCL expression “if G then #waiting else #finished” where G is the guard
expression given in the collaboration diagram in front of the message. And
again, to be able to evaluate the OCL expression when applying the rule, we
have to add LocalVar nodes to the rule as described in subsection 4.3.

States.

A statechart diagram can be given for a UML class to specify in which order
operations on an object of the class may be executed. In our chat example,
the establish operation is allowed to execute only when the session is in the
state pending. We assume that operations of a class that do not occur in the
statechart for the class are allowed to be executed at any time. The statechart
also specifies in which state the object is after an operation has been finished.
In our example, the state of a session changes to ready as soon as the establish
operation has been finished.

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280 277

Because the statechart specifies whether an operation is allowed to execute,
we have to modify the rule that starts the operation by sending the first
message (or several parallel first messages). Let us assume we construct the
rules that send messages according to a collaboration diagram for an operation
of a class. Furthermore, let us assume that there is a statechart for this class
and there are n transitions labeled with the operation. Then we split the rule
that sends the first message(s) of the collaboration diagram into n versions
that differ from each other by the State nodes attached the Object node and by
an optional application condition. This application condition holds the OCL
expression given by the optional guard of the considered transition. For this
reason the rule is only applicable if the guard evaluates to true.

A State node is connected to an Object node either by a state edge or by
a nextState edge. Only one edge is allowed at a time. When an object is
connected to a state by a nextState edge, it is in no regular state but it is
“between” two states. The state node it is connected to denotes the state the
object will have soon.

Let one of the n mentioned transitions lead from a state A to a state B. In
the corresponding version of the rule, we add an Object node o a and connect
it to the activator process p a in both sides of the rule with an owner edge.
Then we add a State node to the left-hand side with name = A and connect
it to the Object node o a with a state edge. In the right-hand side, we add
another State node with name = B and connect it to o a with a nextState edge.

So, this rule cannot be applied if the object to which the o a node is
matched to in the system state graph is not in state A. On the other hand,
if the rule can be applied, the State node is deleted and the object is instead
connected to its next state. The “next state” becomes the “current state” by
replacing the nextState edge by a state edge. This is done by the Return rule
that is not described here.

5 Conclusion and Future Work

We have shown a translation from a UML model into a graph transformation
system in order to give a precise formal semantics for a large part of UML.
In this paper, we concentrated on the construction of graph transformation
rules that represent the sending of messages as specified in a collaboration
diagram. At the beginning, an example model has been introduced focusing
on a collaboration and a statechart diagram. Then, we have described the
concept of a system state being a graph representing the current state of the
modeled system and being transformed by graph transformation rules as the
system evolves. In the central section, we have described in a general way

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280278

how to construct a rule that corresponds to the sending of a message specified
in a collaboration diagram. This description has focused on messages that
invoke an operation of a class in contrast to messages that invoke a predefined
operation like setting an attribute value.

Currently a tool is developed that implements the approach discussed in
this paper. The purpose of this tool is to visualize the evolution of a system
specified in UML before the system is actually implemented. Loaded with a
UML model consisting of class, use case, object and collaboration diagrams,
it generates the initial system state and the graph transformation rules. The
user can then view the evolution of the system by applying rules step by step.
The rules are chosen by the application based on the user’s selection of use
cases (together with parameter values) or waiting processes. It is also possible
to evaluate OCL expressions in the current system state. Using our tool, the
user does not need to know the details of our approach. Only the usage of the
considered UML diagrams has to be known.

Future work comprises the completion of the tool, including a user-friendly
GUI. Then our approach can be evaluated in case studies that provide feedback
on its usefulness. Furthermore, we will investigate how the approach can be
extended with UML features not covered yet. This includes additional features
of already covered diagram types but also entire diagram types like activity
diagrams. Another important issue that has to be studied more extensively
is how our approach allows to assert properties of UML models by examining
the resulting graph transformation system.

References

[1] Engels, G., Heckel, R., Küster, J. M., and Groenewegen, L. (2002). Consistency-Preserving
Model Evolution through Transformations. In Jézéquel, J.-M., Hussmann, H., and Cook,
S., editors, UML 2002 - The Unified Modeling Language. Model Engineering, Languages,
Concepts, and Tools. 5th International Conference, Dresden, Germany, September/October 2002,
Proceedings, volume 2460 of LNCS, pages 212–226. Springer.

[2] Fischer, T., Niere, J., Torunski, L., and Zündorf, A. (1998). Story Diagrams: A new Graph
Transformation Language based on UML and Java. In Ehrig, H., Engels, G., Kreowski, H.-J.,
and Rozenberg, G., editors, Proc. Theory and Application to Graph Transformations (TAGT’98),
Paderborn, November, 1998, volume 1764 of LNCS. Springer.

[3] Gogolla, M., Ziemann, P., and Kuske, S. (2003). Towards an integrated graph based semantics
for UML. In Graph Transformation and Visual Modeling Techniques (GT-VMT 2002), volume 72
of ENTCS.

[4] Heckel, R. and Sauer, S. (2001). Strengthening UML Collaboration Diagrams by State
Transformations. In Hussmann, H., editor, Fundamental Approaches to Software Engineering,
4th International Conference, FASE 2001, held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2001, Genova, Italy, April 2-6, 2001, Proceedings,
volume 2029 of LNCS, pages 109–123. Springer.

[5] Kuske, S., Gogolla, M., Kollmann, R., and Kreowski, H.-J. (2002). An Integrated Semantics
for UML Class, Object, and State Diagrams based on Graph Transformation. In Butler, M. and

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280 279

Sere, K., editors, 3rd Int. Conf. Integrated Formal Methods (IFM’02), volume 2335 of LNCS,
pages 11–28. Springer.

[6] Kwon, G. (2000). Rewrite rules and Operational Semantics for Model Checking UML
Statecharts. In Evans, A., Kent, S., and Selic, B., editors, UML 2000 - The Unified Modeling
Language. Advancing the Standard. Third International Conference, York, UK, October 2000,
Proceedings, volume 1939 of LNCS, pages 528–540. Springer.

[7] Löwe, M., Korff, M., and Wagner, A. (1993). An Algebraic Framework for the Transformation
of Attributed Graphs. In Sleep, R., Plasmeijer, R., and van Eekelen, M., editors, Term Graph
Rewriting: Theory and Practice, pages 185–199. John Wiley, New York.

[8] Maggiolo-Schettini, A. and Peron, A. (1994). Semantics of full statecharts based on graph
rewriting. In Schneider, H. and Ehrig, H., editors, Proc. Graph Transformation in Computer
Science, volume 776 of LNCS, pages 265–279. Springer.

[9] OMG (2003). OMG Unified Modeling Language Specification, Version 1.5, March 2003. Object
Management Group, Inc., Framingham, Mass., Internet: http://www.omg.org.

[10] OMG (2004). UML 2.0 superstructure final adopted specification. Technical report, Object
Management Group. http://www.omg.org/cgi-bin/doc?ptc/2003-09-15.

[11] Richters, M. (2002). A Precise Approach to Validating UML Models and OCL Constraints.
PhD thesis, Universität Bremen, Logos Verlag, Berlin, BISS Monographs, No. 14.

[12] Rozenberg, G., editor (1997). Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations. World Scientific, Singapore.

[13] Tsiolakis, A. and Ehrig, H. (2000). Consistency Analysis of UML Class and Sequence Diagrams
using Attributed Graph Grammars. In Ehrig, H. and Taentzer, G., editors, Proc. of Joint
APPLIGRAPH/GETGRATS Workshop on Graph Transformation Systems, Berlin, March 2000.
Technical Report no. 2000/2, Technical University of Berlin.

[14] Varró, D. (2002). A formal semantics of UML statecharts by model transition systems. In
Corradini, A., Ehrig, H., Kreowski, H.-J., and Rozenberg, G., editors, Graph Transformation.
First International Conference, ICGT 2002, Barcelona, Spain, October 2002, Proceedings, volume
2505 of LNCS, pages 378–392. Springer.

[15] Ziemann, P., Hölscher, K., and Gogolla, M. (2004). From UML models to graph transformation
systems. In Minas, M., editor, Preliminary Proceedings: Workshop on Visual Languages and
Formal Methods.

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 263–280280

http://www.omg.org
http://www.omg.org/cgi-bin/doc?ptc/2003-09-15

	Introduction
	Integrated Specification with USE
	System States
	Rules for Sending Messages
	Graph Transformation
	The Basics
	Special Considerations

	Conclusion and Future Work
	References

