
UML Interaction Diagrams:

Correct Translation of Sequence Diagrams
into Collaboration Diagrams�

Björn Cordes, Karsten Hölscher, and Hans-Jörg Kreowski

University of Bremen, Department of Computer Science
P.O. Box 330440, D-28334 Bremen, Germany

{bjoernc,hoelsch,kreo}@informatik.uni-bremen.de

Abstract. In this paper, the two types of UML interaction diagrams
are considered. A translation of sequence diagrams into collaboration
diagrams is constructed by means of graph transformation and shown
correct.

1 Introduction

The Unified Modeling Language (UML) is a graphical object-oriented modeling
language used for the visualization, specification, construction, and documen-
tation of software systems. It has been adopted by the Object Management
Group (OMG) and is widely accepted as a standard in industry and research
(cf., e.g., [2],[17]). The UML provides nine types of diagrams for different pur-
poses. This paper focuses on sequence and collaboration diagrams collectively
known as interaction diagrams. Both diagram forms concentrate on the pre-
sentation of dynamic aspects of a software system, each from a different per-
spective. Sequence diagrams stress time ordering while collaboration diagrams
focus on organization. Despite their different emphases they share a common set
of features. Booch, Rumbaugh, and Jacobson claim that they are semantically
equivalent since they are both derived from the same submodel of the UML
metamodel, which gives a systematic description of the syntax and semantics of
the UML.

In this paper we provide some justification of this statement by presenting
a correct translation of sequence diagrams into collaboration diagrams by means
of graph transformation. As illustrated in Figure 1, the translation consists of two
steps, each modeled as a graph transformation unit. In the first step a sequence
diagram is translated into a metamodel object diagram. The metamodel object
diagram is then translated into a corresponding collaboration diagram. In order
to accomplish these tasks, the diagrams involved are considered and represented
as labeled and directed graphs in a straightforward way where we use additional
node and edge attributes during the translation. In this way, the two translations
� Research partially supported by the EC Research Training Network SegraVis and

the DFG project UML-AID.

J.L. Pfaltz, M. Nagl, and B. Böhlen (Eds.): AGTIVE 2003, LNCS 3062, pp. 275–291, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

276 Björn Cordes et al.

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � " � $ % � & � () � � " � � � � � � � $ & & � ($ � � " � $ � � � � � � �

, . / 1 3 / 5 7 9 : 3 9 ; 9 < = / = . > <

� � � � � � � � � � � ? @ � � " � $ % � & � () � � " � � � ? @ � $ & & � ($ � � " � $ � � � � ? @

B 3 / : D 7 9 : 3 9 ; 9 < = / = . > <

Fig. 1. Overview of the translation

on the level of diagrams are obtained by the two translations on the graph level
and going back and forth between diagrams and corresponding graphs. The
translation focuses on sequence diagrams on instance level with synchronous
and nonconcurrent communication restricted to procedure calls. The diagrams
may contain conditions, iteration conditions for procedure calls, and conditional
branchings. A complete coverage of all features described in the UML is beyond
the scope of this paper.

Our translation contributes to the on-going attempt to develop a formal
semantics of UML based on graph transformation (cf. [6], [7], [8], [12], [13], [15],
[16], [18]).

The paper is organized in the following way. In the next section, the basic
notions of graph transformation are recalled as far as needed. Section 3 pro-
vides the translation of sequence graphs while in Section 4 sequence graphs are
specified. A short example translation is presented in Section 5. In Section 6 we
discuss how the translation can be proved correct, which is followed by some
concluding remarks.

2 Graph Transformation

In this section, the basic notions and notations of graph transformation are
recalled as far as they are needed in this paper.

In general, graphs consist of nodes and edges, where each edge has a source
and a target node. Two different kinds of labels are assigned to the parts
(i.e. nodes and edges) of a graph. The first kind of labels are fixed ones over
a given alphabet, providing a basic type concept. The second kind are mutable
labels, that are used as attributes. An attribute is regarded as a triple comprising

UML Interaction Diagrams 277

the name of the attribute, its type and its current value. While the assignment of
fixed labels to the parts is unique, there can be more than one attribute assigned
to them.

The concept of graph transformation has been introduced about thirty years
ago as a generalization of Chomsky grammars to graphs. Local changes in a graph
are achieved by applying transformation rules. The graph transformation ap-
proach used in the context of this paper is based on the single pushout ap-
proach (cf., e.g., [5]). A formal embedding of the attribute concept into the
single pushout approach can be found in [14]. A transformation rule consists of
a left-hand side and a right-hand side, both of which are graphs. They share
a common subgraph, which is called application context. In examples, the let-
ter L indicates left-hand sides and R right-hand sides. The application context
consists of all nodes of L and R with the same numbers. A rule can be applied
to a given host graph if a match of the left-hand side of the rule in the host
graph can be found. A match is a graph morphism which respects the structure
of the involved graphs and the labels of their parts. The application of the rule
to a host graph is achieved by adding those parts of the right-hand side that are
not part of the application context to the host graph. Afterwards the parts of
the left-hand side that are not part of the application context are deleted. The
resulting structure is then made a graph by removing possible dangling edges.
In this approach a rule can always be applied if a match is found, and in case of
conflicting definitions deletion is stronger than preservation.

Note that it is possible to demand a concrete value of an attribute in the left-
hand side of a rule. If the application of a rule is meant to change an attribute
depending on its current value (e.g. increase a value by one), that value has to be
identified as a variable in the left-hand side. The operation that is specified in the
right-hand side of the rule then has to be performed on the value represented by
that variable. If attributes are omitted in a rule, their values are of no interest.
Thus attributes are only specified if one wants a concrete value to be present
for the rule application or if that value has to be changed, either by calculating
a new value or by simply overwriting the current value with a new one.

The left-hand side of a rule describes a positive application condition in the
sense that its structure has to be found in the host graph. Sometimes it may
be necessary to define a situation that is not wanted in the host graph. As
proposed in [5], a situation that is not wanted in the host graph can be depicted
as an additional graph called constraint. It shares a common subgraph with the
left-hand side of the rule. If a match of the left-hand side into the host graph is
found, and this match can be extended to map the constraint totally into the
host graph, the rule must not be applied. If no such extension of the match can be
found, the match satisfies the constraint and the rule can be applied. A rule can
have a finite set of constraints, which is called negative application condition. In
examples, the letter N indicates constraints (where indices distinguish different
ones of the same rule). Nodes that are common in left-hand sides and constraints
are numbered equally. A match satisfies a negative application condition if it
satisfies all its constraints. Thus a rule with a negative application condition

278 Björn Cordes et al.

NAC may only be applied if the match satisfies NAC. In [5], the left-hand side
of a rule is required to be a subgraph of each constraint. This can always be met
in our case by adding the missing parts to the constraints.

As a structuring principle, the notion of a graph transformation unit is
employed (cf., e.g. [10],[11]). Such a transformation unit is a system tu =
(I, U, P, C, T) where I and T are graph class expressions specifying sets of initial
and terminal graphs respectively, U is a set of (names of) imported transfor-
mation units, P is a set of local rules, and C is a control condition to regulate
the use of the import and the application of the rules. In examples, we specify
the five components after the respective keywords init, uses, rules, cond, and
term. A keyword is omitted in case of a default component where all (graphs)
is the default graph class expression, the empty set the default import and the
default rule set, and true (allowing everything) the default control condition.
The further graph class expressions and control conditions we use are explained
when they occur the first time.

3 Translation

In this section, the translation of sequence graphs into collaboration graphs is
modeled in a structured and top-down fashion by means of graph transformation
units. It is beyond the scope of this paper to present the translation in all details.
We introduce explicitly the structure of the translation and some significant
transformation units, but we omit units which are defined analogously to given
ones. Readers who want to see the complete specification are referred to [3].

The main unit splits the translation into two steps translating sequence
graphs into metamodel object graphs first and then the latter ones into col-
laboration graphs. Moreover, it states that the translation is initially applied to
sequence graphs generated by the transformation unit GenerateSG, which is
specified in the next section.

SG2CG
init: GenerateSG
uses: SG2MOG, MOG2CG
cond: SG2MOG; MOG2CG

The control condition is a regular expression requiring that the two imported
units are applied only once each in the given order.

Both the imported units enjoy essentially the same basic structure each ex-
cept that all graphs are accepted as initial. In both cases, the collaboration parts
and the interaction parts are handled separately followed by deleting graph com-
ponents that are no longer needed. In the first unit, there is also an additional
initial step.

SG2MOG
uses: initMOG, SG2MOG-Collaboration, SG2MOG-Interaction, DeleteSG
cond: initMOG; SG2MOG Collaboration; SG2MOG Interaction; DeleteSG

UML Interaction Diagrams 279

� � � � � � � � � � 	 �

� � � � � � � � � � �

� � � � � � � � � � 	 �

 � � � � � � � � �

R
� � 	 � � � � 	 � � � � 	 �

� � � � � � � � � � �

� � � � � � � � � � � �

� � 	 � � � � 	 � � � � 	 �

� � � � � � � � � � � � � � � !
" � # � � � � �

 � � � � � � � � �� � � � � �

L

Fig. 2. Rule initMOG-1: Generating the initial metamodel object graph

MOG2CG
uses: MOG2CG-Collaboration, MOG2CG Interaction, DeleteMOG
cond: MOG2CG-Collaboration; MOG2CG Interaction; DeleteMOG

Altogether, the translation consists of seven sequential steps which are quite
similarly structured to each other. None of them imports other units, but each
consists of local rules only which are applied in a certain order given by the re-
spective control conditions. Whenever we refer to UML features in the following
units, their initial letters are printed in capitals as in the UML documents.

Let us start with the unit initMOG.
initMOG
rules: initMOG-1
cond: initMOG-1

It consists of a single rule which is applied only once. It adds an initial
metamodel object graph disjointly to the given graph (see Figure 2).

Let us consider now the unit SG2MOG-Collaboration. It has got six rules,
named sg2mog-C1a, -C1b, -C2a, -C2b, -C2c, and -C3. The rules are explicitly
given in Figures 3 and 4. The control condition requires that either sg2mog-C1a
or sg2mog-C1b is applied first, then either sg2mog-C2a or sg2mog-C2b is applied
as long as possible, and afterwards sg2mog-C2c is applied once. This sequence
is then repeated as long as possible, and finally sg2mog-C3 is applied once.

SG2MOG-Collaboration
rules: sg2mog-C1a, sg2mog-C1b, sg2mog-C2a, sg2mog-C2b, sg2mog-C2c, sg2mog-C3
cond:((sg2mog-C1a|sg2mog-C1b);(sg2mog-C2a|sg2mog-C2b)!;sg2mog-C2c)!;sg2mog-C3

The rules sg2mog-C1a and sg2mog-C1b add a new ClassifierRole, where sg2-
mog-C1b adds a new confirming Object in addition. The regarded object is also
marked with a writeClassifiers loop inidicating that all of its classifiers will be
added next. The negative application conditions ensure, that neither the Clas-
sifierRole nor the Object to be added already exists in the metamodel object
graph. The rules sg2mog-C2a, sg2mog-C2b, and sg2mog-C2c concern base Clas-
sifiers. While sg2mog-C2a adds a new one, sg2mog-C2b links a role to an existing
one. And sg2mog-C2c ends the addition. Finally, sg2mog-C3 inserts a first Mes-
sage of the Interaction, with the ClassifierRole of the SGObject identified by the
Current loop as both sender and receiver.

280 Björn Cordes et al.

L Rob:SGObject

role = r

(1)

ob:SGObject

role = r

(1)

ob:Object

N1 N2
r:ClassifierRole

:Collaboration
(3)

collaboration

:Collaboration-

InstanceSet

(2)

:Collaboration
(3)

collaboration

:Collaboration-

InstanceSet

(2)

owned-

Element

participating-
Instance

writeClassifiers

ob:Objectr:ClassifierRole

L R
ob:SGObject

role = r

(1)

ob:SGObject

role = r

(1)
ob:Object

(3)

r:ClassifierRole

:Collaboration
(2)

:Collaboration
(2)

owned-

Element

writeClassifiers

sg2mog-C1a

sg2mog-C1b

N1 r:ClassifierRole

conforming-
Instance

playedRole

ob:Object
(3)

conforming-
Instance

playedRole

Fig. 3. Rules sg2mog-C1a and sg2mog-C1b

The control condition is formally described by a generalized regular expres-
sion. The symbol ‘;’ denotes the sequential composition and the symbol ‘|’ the
alternative choice. The symbol ‘!’ is similar to the regular Kleene star ‘*’. But
while the latter one allows the repetition of the preceding expression as long as
one likes, the exclamation mark requests repetition as long as possible. There-
fore, the condition above allows to add as many ClassifierRoles and Objects as
needed where each role is connected to all its base Classifiers and a first Mes-
sage of the Interaction is inserted (which closes the role addition). The further
transformation units used by SG2MOG are only sketched without the explicit
rules.

The transformation unit SG2MOG-Interaction translates the interaction.
The rules are designed to process the sequence graph in a certain order, thus
a control condition is not necessary. The ordered translation is achieved by using
a loop of type Current, that is moved from one node to the next node during
the process. Terminal graphs contain a node that is incident with both an End
and a Current loop. The class of all these graphs is denoted by Current&End.

UML Interaction Diagrams 281

L R

:SGObject

role = r
classifiers = cs

(1)

writeClassifiers

:SGObject

role = r
classifiers = cs:c

(1)

writeClassifiers

c:Class

base

L R

:SGObject

role = r
classifiers = cs

(1)

writeClassifiers

c:Class
(3)

base

L R

:SGObject

classifiers = []

(1)

writeClassifiers

:SGObject

classifiers = []

(1)

:Interaction
(2)

L Current

index = n
activatorStack = as

R

:SGObject

role = r1

(1)

r1:ClassifierRole
(3)

0:Message

:UninterpretedAction

isAsynchronous = false
recurrence = null

:Interaction
(2)

Current

index = n
activatorStack = as

:SGObject

role = r1

(1)

sg2mog-C2a

sg2mog-C2b

sg2mog-C2c

sg2mog-C3

N1 c:Class

:SGObject

role = r
classifiers = cs:c

(1)

writeClassifiers

c:Class
(3)

r:ClassifierRole
(2)

r:ClassifierRole
(2)

r:ClassifierRole
(2)

r:ClassifierRole
(2)

r1:ClassifierRole
(3)

action
message

sender receiver

Fig. 4. Rules sg2mog-C2a, sg2mog-C2b, sg2mog-C2c, and sg2mog-C3

SG2MOG-Interaction
rules: sg2mog-I1a, sg2mog-I1b, sg2mog-I2a, sg2mog-I2b, sg2mog-I3a, sg2mog-I3b,

sg2mog-I4a, sg2mog-I4b, sg2mog-I5a, sg2mog-I5b
term: Current&End

282 Björn Cordes et al.

The rules sg2mog-I1a and -I1b add a stimulus to the metamodel object graph,
where sg2mog-I1a translates a stimulus with a predecessor and sg2mog-I1b one
without a predecessor. Returns are translated in a similar way by the rules
sg2mog-I2a and -I2b. The rule sg2mog-I3a prepares the translation of a con-
ditional branching while sg2mog-I3b simply moves the Current edge along the
Activation edge to the next Object node. The rules sg2mog-I4a and -I4b translate
a branch of a conditional branching with or without predecessor. Rule sg2mog-
I5a completes the translation of one branch, while rule sg2mog-I5b completes
the whole conditional branching.

Applying the transformation units SG2MOG-Collaboration and
SG2MOG-Interaction yields the desired metamodel object graph. The
sequence graph is no longer needed, so it is deleted using the transformation
unit DeleteSG. This unit simply removes all the nodes of the sequence graph
(and all of its edges with them).

Because of lack of space, we omit the specification of MOG2CG, which
looks similar to SG2MOG anyway.

4 Generation of Sequence Graphs

The sequence graphs that can be translated into collaboration graphs by the
transformation unit SG2CG are generated by GenerateSG.

GenerateSG
init: SG0

rules: gsg1, gsg2, gsg3

The initial graph and the rules are explicitly given in the Figures 5 and 6.
The initial graph SG0 consists of two nodes of type SGObject that are connected
by an Activation edge. The source node of this edge is marked as Current with
index 1, and 0 the only element on the activatorStack. The target node is marked
with an End edge. The values of the name, role and classifier attributes of the
nodes can be freely chosen. Since both nodes are on the activation path they
represent the same Instance. Thus the attribute values of both nodes must be
equal.

Rule gsg1 is used to insert an SGStimulus with a matching Return in an
activation path. In the left-hand side of the rule the two nodes of that activation
path are identified. In order to ensure synchronous communication, the negative
application graph N1 secures that node 2 cannot be the target node of a Return
edge. This means that the Instance represented by the identified nodes cannot
send another procedure call while the current one is not yet completed.

The negative application graph N2 prohibits node 1 from being the target
node of a Return edge. This condition enforces that sequences are built from
back to front.

The right-hand side of the rule adds two SGObject nodes to the activation
path of the two identified nodes. These determine the attribute values of the
newly added nodes. The first node (concerning the order in the activation path)

UML Interaction Diagrams 283

L Rob1:SGObject

role = r1
classifiers = cs1

(1)

N1

:SGObject

N2

ob1:SGObject

role = r1
classifiers = cs1

(2)

Activation

ob1:SGObject

role = r1
classifiers = cs1

(1)

ob1:SGObject

role = r1
classifiers = cs1

(2)

ob1:SGObject

role = r1
classifiers = cs1

Activation

ob1:SGObject

role = r1
classifiers = cs1

Activation

Activation

ob2:SGObject

role = r2
classifiers = cs2

ob2:SGObject

role = r2
classifiers = cs2

Activation

 SGStimulus

 signature = op
 recurrence = c

Return

ob1:SGObject

role = r1
classifiers = cs1

(1)

SGReturn

:SGObject

ob1:SGObject

role = r1
classifiers = cs1

(2)

SGReturn

gsg1

ob1:SGObject

role = r1
classifiers = cs1

(1)

ob1:SGObject

role = r1
classifiers = cs1

(2)

Activation

Current

index = 1
activatorStack = [0]

End

SG0

Fig. 5. Initial sequence graph and rule gsg1

is the source node of an SGStimulus edge and the second one is the target node
of the matching Return edge. The attribute values of the SGStimulus edge can
be freely chosen. The target node of the SGStimulus and the source node of
the Return are added to the host graph as well. They form an activation path
of their own. Their attribute values can be freely chosen and they might even
equal those of the nodes of any other activation path. Note that the Instance
they represent must possess the operation defined by the signature attribute
of the SGStimulus edge. This rule enables one to model sequential and nested
communication including recursive procedure calls of the same Instance.

284 Björn Cordes et al.

R ob1:SGObject

role = r1
classifiers = cs1

(1)

ob1:SGObject

role = r1
classifiers = cs1

Activation

ob1:SGObject

role = r1
classifiers = cs1

Activation

Activation

Activation

 SGStimulus

 signature = op1
 recurrence = c1

SGReturn

ob3:SGObject

role = r3
classifiers = cs3

SGReturn

 SGStimulus

 signature = op2
 recurrence = c2

ob3:SGObject

role = r3
classifiers = cs3

Activation

c1 implies not c2

gsg2

L ob1:SGObject

role = r1
classifiers = cs1

(1)

ob1:SGObject

role = r1
classifiers = cs1

(2)

Activation

N1

:SGObject

N2

ob1:SGObject

role = r1
classifiers = cs1

(1)

SGReturn

:SGObject

ob1:SGObject

role = r1
classifiers = cs1

(2)

SGReturn

L R

ob1:SGObject

role = r1
classifiers = cs1

(1)

Activation

ob2:SGObject

role = r2
classifiers = cs2

Activation

SGReturn

:SGObject
(3)

(5) SGStimulus

 signature = op1
 recurrence = c1

:SGObject
(4)(6) SGStimulus

 signature = op2
 recurrence = c2

ob1:SGObject

role = r1
classifiers = cs1

(1)

Activation

:SGObject
(3)

(5) SGStimulus

 signature = op1
 recurrence = c1

:SGObject
(4)

(6) SGStimulus

 signature = op2
 recurrence = c2

ob2:SGObject

role = r2
classifiers = cs2

 SGStimulus

 signature = op3
 recurrence = c3

c1 implies not c2

c1 implies not c2

c2 implies not c3

c1 implies not c3

gsg3

ob2:SGObject

role = r2
classifiers = cs2

ob2:SGObject

role = r2
classifiers = cs2

ob1:SGObject

role = r1
classifiers = cs1

(2)

ob1:SGObject

role = r1
classifiers = cs1

(2)
ob1:SGObject

role = r1
classifiers = cs1

(2)

Fig. 6. Rules gsg2 and gsg3

Rule gsg2 is used to insert a conditional branching with two branches in an
activation path. The left-hand side and the two negative application graphs N1

and N2 are identical to those of rule gsg1.
The right-hand side of this rule contains that of rule gsg1, i.e. the same

changes are made. Additionally a second branch is inserted in the host graph
starting at the source node of the newly added SGStimulus edge. It ends at the
target node of the newly added Return. Note that both SGStimulus edges must

UML Interaction Diagrams 285

have recurrence clauses and these must be mutually exclusive. This is necessary
to ensure that the branching is not concurrent.

Rule gsg3 adds a new branch to an already existing conditional branching.
Since an existing branching must always contain at least two branches and in
order to avoid that a branching is created where none was before, the left-hand
side must identify two different SGStimulus edges leaving the same source node.
The end node of the conditional branching is also determined. It is the node
directly succeeding the start node of the branching in the activation path. The
application of the rule adds a new SGStimulus edge with a target node starting
a new activation path to the host graph. A Return edge is also added which leaves
the end of this activation path and points to the end node of the conditional
branching. The recurrence clause of the newly added SGStimulus edge must be
mutually exclusive with the ones of all the SGStimulus edges of the branching
(which could in fact contain more than the ones identified by the left-hand side).

If a graph transformation unit is used as graph class expression, its semantics
is the graph language consisting of all terminal graphs that are related to some
initial graph. To make this notion feasible, we assume that there is only a single
initial graph as in the case of GenerateSG. Formally, a graph is a graph class
expression that specifies itself, i.e. SEM(G) = {G} for all graphs G. Note that
GenerateSG has no import, the rules are not regulated and all graphs are
terminal. Therefore the language consists of all graphs that can be derived from
the initial graph by the three rules. This is the set of sequence graphs that serve
as inputs of the translation into collaboration graphs. Note that these graphs
resemble sequence diagrams, they are not meant as abstract syntax description.

5 Example

The short example presented in this section is taken from the model of a com-
puter chess game. In the considered situation player Amy moves the white queen
to a target field. If this is a diagonal move it is validated as the move of a bishop,
otherwise as the move of a rook.

Figure 7 shows the sequence diagram of this situation, which contains nested
communication and a conditional branching.

The collaboration part of the metamodel object graph generated by the ap-
plication of SG2MOG Collaboration is depicted in Figure 8.

Applying SG2MOG Interaction yields the intermediate graph, which is
omitted due to its complexity. Figure 9 shows only the activator tree, which is
the most important part with respect to the translation.

Finally, Figure 10 shows the resulting collaboration graph after applying
MOG2CG and the corresponding collaboration diagram.

286 Björn Cordes et al.

� � � � � � � � � 	
 � � � � � � � � � � � � � � � � � �� � � � � � � � � � � 	 � � � � � � � � � � � � 	 � � � � �

� � � � � " # $ % & � # () * , $ & � . $ / 0 � � � 2 � $ / , * $ # � " 5 , 6 7 � 8 9 6 � : % ; � 9 # $ % & � # (
) � % # 7 � & � . $ / 0 � � � 2 � $ / , * $ # � " ? � � A 9 6 � : % ; � 9 # $ % & � # (

Fig. 7. Sequence diagram

:Interaction-
InstanceSet

:Interaction

playedRoleinteraction

conforming-
Instance

Amy:Object

White:ClassifierRole

:Collaboration-
InstanceSet

:Collaboration

interaction

context

context

interaction-
Instance

interaction

owned-
Element

participating-
Instance

Player:Class

base

playedRole

conforming-
Instance

LightWoodQueen:Object

WhiteQueen:ClassifierRole

owned-
Element

participating-
Instance

base

playedRole

conforming-
Instance

G1:Object

Game:ClassifierRole

Chess:Class

base
owned-
Element

participating-
Instance

0:Message

message

sender

receiver

:UninterpretedAction

isAsynchronous = false

recurrence = null

action

Queen:Class

Fig. 8. Collaboration part of the metamodel object graph

6 Correctness

A translation can be called correct if the meaning of each input coincides with
the meaning of the resulting output in a reasonable way. If both meanings are
not equal, they should differ only in insignificant aspects (cf. [9]).

To consider the correctness of SG2CG, we must fix a meaning of sequential
and collaboration diagrams. According to [2], the meaning of UML diagrams is
given by their metamodel description besides the description in natural language.
In other words, we may consider the translation SG2MOG of sequence graphs
into metamodel object graphs (together with the one-to-one correspondence of
these graphs with the respective types of diagrams) as the meaning of sequence

UML Interaction Diagrams 287

0:Message

3:Message

2:Message

1:Message

4:Message

activator

activator

activator

predecessor

successor
6:Message 7:Message

predecessor

successor

successor

activator

activator

activator activatorpredecessor

5:Message

Fig. 9. Activator tree of the metamodel object graph

LightWoodQueen:CGObject

role = WhiteQueen

classifiers = [Queen]

G1:CGObject

role = Game

classifiers = [Chess]

Amy:CGObject

role = White

classifiers = [Player]

 CGReturn
 seqExpr = [(1, _), (2, _)]

 CGStimulus

 signature = moveTo(target)

 recurrence = null
 seqExpr = [(1, _)]

 CGStimulus

 signature = validate(Bishop, sorce, target)

 recurrence = [diagonalMove]
 seqExpr = [(1, _), (1, a)]

 CGReturn
 seqExpr = [(1, _), (1, b), (1, _)]

G1

/ Game:Chess

Amy

/ White:Player

LightWoodQueen

 / WhiteQueen:Queen

1: moveTo(target)

1.1a [diagonalMove] : validate(Bishop, source, target)

 CGStimulus

 signature = validate(Rook, sorce, target)

 recurrence = [orthogonalMove]
 seqExpr = [(1,_), (1, b)]

 CGReturn
 seqExpr = [(1, _), (1, a), (1, _)]

1.1b [orthogonalMove] : validate(Rook, source, target)

Fig. 10. Resulting collaboration graph and collaboration diagram

diagrams. Analogously, we consider a translation CG2MOG of collaboration
diagrams onto the metamodel level to establish the meaning of collaboration
diagrams.

288 Björn Cordes et al.

� � � � � � �

	 � � �

� � � � �

	 �

� � � � � ! � � � � " � � � � � � � �

	 � � � �

� � � � � ! � � � � " � � � � � � � �

Fig. 11. Semantic relator discarding insignificant differences

This translation is given explicitly in the appendix of [3] and works analo-
gously to translations presented in Section 3. As a consequence the correctness
of our translation SG2CG requires to show that SG2MOG equals the com-
position of SG2CG and CG2MOG up to certain insignificant differences as
illustrated in Figure 11.

Indeed, the metamodel object graph that is regarded as formal semantics of
a sequence diagram is not necessarily unique. This is due to the fact, that in the
case of conditional branchings the derivation process is not deterministic. The
order in which the respective branches are translated is not fixed. So two trans-
lations of the same sequence graph may result in two different metamodel object
graphs due to the numbering of the Messages during the translation process.
Thus a different order in translating the branches of a conditional branching
may yield different numbers for the involved Messages. This can be regarded
as a minor aspect, since the decisive activator tree structure together with the
predecessor-successor relationships is identical in both graphs. So in our case it
makes sense to demand equality except for the numbering that is naming of the
Messages. The numbering of the Messages has been established by us to aid in
the translation. They are not demanded by the UML metamodel and must be
omitted in the comparison of the metamodel object graphs. This can be realized
by introducing a further transformation unit used as a semantic relator (cf. [9]),
the purpose of which is to make the compared objects semantically equivalent
by removing the insignificant differences. After applying this semantic relator to
the regarded metamodel object graphs they must be equal.

This can be proved by complete induction on the lengths of derivations of
the transformation unit GenerateSG that start with the initial sequence graph
because, according to the construction in Section 4, the graphs derived in this
way are the inputs of the translation.

The induction basis is a derivation length of zero. In this case, the transfor-
mation unit GenerateSG yields its initial graph as depicted in Figure 5. Now
all the transformation units are applied, yielding the corresponding collabora-
tion graph. This collaboration graph and the original sequence graph are then
translated to their respective metamodel object graph by means of CG2MOG
and SG2MOG. In this case the two resulting metamodel object graphs are al-

UML Interaction Diagrams 289

ready equal, since they both contain only one Message numbered 0. So the basis
of the induction is proved.

The inductive step is set up by the statement, that we assume a correct
translation for a derivation length of n and that we want to prove the correctness
for a derivation length of n + 1. Since the transformation unit GenerateSG
has three local rules, there are three cases that have to be distinguished in the
inductive step. Each of these cases then has a number of subcases, depending on
the concrete application situation. For example rule gsg1 can be used to either
add a procedure call to a sequential communication or to insert it into a nested
communication. For every case it has to be checked how the metamodel object
graphs have to be changed during the translation of the generated sequence
graphs in n + 1 derivation steps compared to the one generated in the first n
identical derivation steps. So basically it suffices to compare the changes in the
metamodel object graphs for every case after applying the semantic relators.
This would prove that our approach yields a correct translation. But the explicit
and detailed presentation of the various cases is beyond the scope of this paper.

7 Conclusion

We have presented a translation of UML sequence diagrams into UML collab-
oration diagrams in a structured way and sketched how the correctness can be
proved. Due to Booch, Jacobson and Rumbaugh [2], the semantics of both types
of diagrams is given in terms of metamodel object diagrams such that the cor-
rectness proof must involve this intermediate level.

We have constructed the translator in the framework of graph transformation
units (cf. [10],[11]) because their interleaving semantics establishes translations
between initial and terminal graphs by definition, supports correctness proofs
by an underlying induction schema, and provides structuring concepts.

The translation of sequence diagrams into collaboration diagrams may also
be seen as an example of the more recently introduced notion of a model transfor-
mation (see, e.g., [1], [4], [19]). But these approaches do not yet seem to support
structuring and correctness proofs explicitly in the way they are used in this
paper.

References

[1] D. Akehurst and S. Kent. A Relational Approach to Defining Transformations in
a Metamodel. In J.-M. Jézéquel, H. Hussmann, and S. Cook, editors, Proc. 5th
Int. Conference on UML 2002—The Unified Modeling Language, volume 2460 of
Lecture Notes in Computer Science, pages 243–258. Springer, 2002. 289

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1998. 275, 286, 289

[3] B. Cordes and K. Hölscher. UML Interaction Diagrams: Correct Translation of
Sequence Diagrams into Collaboration Diagrams. Diploma thesis, Department of
Computer Science, University of Bremen, Bremen, Germany, 2003. 278, 288

290 Björn Cordes et al.

[4] J. de Lara and H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-
modelling. In R.-D. Kutsche and H. Weber, editors, Proc. 5th Int. Conference on
Fundamental Approaches to Software Engineering, volume 2306 of Lecture Notes
in Computer Science, pages 174–188. Springer, 2002. 289

[5] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic Approaches to Graph Transformation II: Single Pushout Approach and
Comparison with Double Pushout Approach. In G. Rozenberg, editor, The Hand-
book of Graph Grammars and Computing by Graph Transformation, Volume 1:
Foundations. World Scientific, 1997. 277, 278

[6] M. Gogolla. Graph Transformations on the UML Metamodel. In J. D.P. Rolim,
A.Z. Broder, A. Corradini, R. Gorrieri, R. Heckel, J. Hromkovic, U. Vaccaro, and
J.B. Wells, editors, Proc. ICALP Workshop Graph Transformations and Visual
Modeling Techniques (GVMT’2000), pages 359–371. Carleton Scientific, Waterloo,
Ontario, Canada, 2000. 276

[7] M. Gogolla and F. Parisi-Presicce. State Diagrams in UML: A Formal Semantics
using Graph Transformations. In M. Broy, D. Coleman, T. S. E. Maibaum, and
B. Rumpe, editors, Proc. ICSE’98 Workshop on Precise Semantics for Modeling
Techniques, pages 55–72. Technical Report TUM-I9803, 1998. 276

[8] M. Gogolla, P. Ziemann, and S. Kuske. Towards an Integrated Graph Based
Semantics for UML. In P. Bottoni and M. Minas, editors, Proc. ICGT Workshop
Graph Transformation and Visual Modeling Techniques (GT-VMT’2002), volume
72(3) of Electronic Notes in Theoretical Computer Science. Springer, 2002. 276

[9] H.-J. Kreowski. Translations into the Graph Grammar Machine. In R. Sleep,
R. Plasmeijer, and M. van Eekelen, editors, Term Graph Rewriting: Theory and
Practice, pages 171–183. John Wiley, New York, 1993. 286, 288

[10] H.-J. Kreowski and S. Kuske. On the Interleaving Semantics of Transformation
Units—A Step into GRACE. In J. E. Cuny, H. Ehrig, G. Engels, and G. Rozen-
berg, editors, Proc. 5th Int. Workshop on Graph Grammars and their Application
to Computer Science, volume 1073 of Lecture Notes in Computer Science, pages
89–106. Springer, 1996. 278, 289

[11] H.-J. Kreowski and S. Kuske. Graph Transformation Units and Modules. In
H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, The Handbook
of Graph Grammars and Computing by Graph Transformation, Volume 2: Appli-
cations, Languages and Tools. World Scientific, 1999. 278, 289

[12] S. Kuske. A Formal Semantics of UML State Machines Based on Structured
Graph Transformation. In M. Gogolla and C. Kobryn, editors, UML 2001 - The
Unified Modeling Language. Modeling Languages, Concepts, and Tools, volume
2185 of Lecture Notes in Computer Science, pages 241–256. Springer, 2001. 276

[13] S. Kuske, M. Gogolla, R. Kollmann, and H.-J. Kreowski. An Integrated Seman-
tics for UML Class, Object and State Diagrams Based on Graph Transforma-
tion. In M. Butler and K. Sere, editors, 3rd Int. Conf. Integrated Formal Methods
(IFM’02), volume 2335 of Lecture Notes in Computer Science. Springer, 2002.
276

[14] M. Löwe, M. Korff, and A. Wagner. An Algebraic Framework for the Transfor-
mation of Attributed Graphs. In R. Sleep, R. Plasmeijer, and M. van Eekelen,
editors, Term Graph Rewriting: Theory and Practice, pages 185–199. John Wiley,
New York, 1993. 277

[15] A. Maggiolo-Schettini and A. Peron. Semantics of Full Statecharts Based on
Graph Rewriting. In H.-J. Schneider and H. Ehrig, editors, Proc. Graph Transfor-
mation in Computer Science, volume 776 of Lecture Notes in Computer Science,
pages 265–279. Springer, 1994. 276

UML Interaction Diagrams 291

[16] A. Maggiolo-Schettini and A. Peron. A Graph Rewriting Framework for State-
charts Semantics. In J. E. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors,
Proc. 5th Int. Workshop on Graph Grammars and their Application to Com-
puter Science, volume 1073 of Lecture Notes in Computer Science, pages 107–121.
Springer, 1996. 276

[17] OMG, editor. OMG Unified Modeling Language Specification, Version 1.4,
September 2001. Technical report, Object Management Group, Inc., Framing-
ham, MA, 2001. 275

[18] A. Tsiolakis and H. Ehrig. Consistency Analysis of UML Class and Sequence Di-
agrams using Attributed Graph Grammars. In H. Ehrig and G. Taentzer, editors,
Proc. of Joint APPLIGRAPH/GETGRATS Workshop on Graph Transformation
Systems, pages 77–86, 2000. Technical Report no. 2000/2, Technical University
of Berlin. 276

[19] D. Varró. A Formal Semantics of UML Statecharts by Model Transition Systems.
In A. Corradini, H. Ehrig, H. J. Kreowski, and G. Rozenberg, editors, Proc. First
Int. Conference on Graph Transformation, volume 2505 of Lecture Notes in Com-
puter Science, pages 378–392. Springer, 2002. 289

	UML Interaction Diagrams: Correct Translation of Sequence Diagramsinto Collaboration Diagrams
	Introduction
	Graph Transformation
	Translation
	Generation of Sequence Graphs
	Example
	Correctness
	Conclusion

