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a b s t r a c t

Modern technologies, such as RFID, offer never-before seen learning abilities to parts
moving in supply chains. Logistics systems may be understood as complex adaptive
logistics systems (CALS). They also may be conceived as electronic auction markets as
‘smart parts’ bid for the best routing and pricing from transportation firms. To ensure
the world-wide functionality and efficiency of CALS transportation markets, we suggest
the utility of an agent-based computational market design based on Blake LeBaron’s
stock-market model. Given that parts may be more or less smart, markets more or less
complex, and self-organizing CALS systems probabilistically subject to the bullwhip
effect, we suggest nine different computational CALS market-design options, offering
more adaptivity to unexpected environmental contingencies.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Modern technologies, such as RFIDs, GPS; sensor
networks, and low-power microcontrollers, make it
possible for logistics networks to automate and optimize
their function (Bollinger, 1998). Logistics goods, such as
cars and containers containing transponder technologies
like RFIDs, are enabled to self-organize their transporta-
tion routing across oceans and continents to their
destination point. They become what we term ‘smart
parts’. The vision of complex adaptive logistics systems
(CALS) (Choi et al., 2001; Surana et al., 2005; Pathak et al.,
2007; Wycisk et al., 2008) is partially realized in that
smart parts become agents in a worldwide computer-

based logistics network and then self-manage the plan-
ning and routing process of their transportation via
different shipping companies—the sellers of transporta-
tion space.

But transportation is not for free. Car and container
shippers have to buy space on trucks, trains, and ships. For
smart parts, then, to self-organize their routing, they must
play the role of individual entities trading in a world-wide
transportation-space market. Depending on their technical
capabilities logistics goods, as agents, may be guided by
humans or they may become intelligent, learning ‘smart
parts’ that self-organize their transportation in a ‘complex
adaptive system’ (CAS) (Holland, 1995, 2002) within
electronic auction markets (Anandalingam et al., 2005).
Moyaux et al. (2007) talk about supply chains as a
network of auctions.

Facing these trends in supply chain management, the
question arises: How may CALS be appropriately designed
as markets to assure the most efficient transportation?
The efficient functioning of a specific logistic system
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depends on supporting and sustaining timely responses to
changing environmental demands (Hicks and Gullet,
1975). Efficient processing within a CALS means the
constant reduction of frictions at interfaces within the
multi-dimensional structure of CALS processes by con-
stantly reducing resource usage to a minimum (Krystek,
1987; Hülsmann and Grapp, 2007b).

Due to the inherent complexity of CALS network
dynamics, model design requires as many details as
possible about the real-world logistics application
(Pedahzur and Schmelkin, 1991). Because CALS are
characterized by their ability to adapt a system’s profiles
to changing environmental demands (Wycisk et al., 2008),
the designing of a CALS also has to cope with its dynamic
learning features (i.e., those based on transponders,
sensors, micro-controllers, etc.). Thus, engineers planning
the design of a CALS have to worry about not only the
complexity of CALS, but also its agents’ learning ability
pertaining to required adaptive responses. The planning
and design of CALS then, like international supply net-
works (Hülsmann et al., 2008) or global service supply
chains (Hülsmann and Grapp, 2007a) calls for modelling a
market-based CALS comprised of agents having varying
amounts of ‘smartness’.

Crainic and Gendreau (2004) state that intelligent
transportation systems have been up to now largely
hardware driven and have led to the introduction of many
sophisticated technologies in the transportation area.
However, the development of the software component of
intelligent transportation systems, models and decision
support systems in particular, is dramatically lagging
behind. Agreeing with this opinion, the primary objective
of our paper is to outline an agent-based computational
approach for modelling CALS logistic markets to con-
tribute to this lack of software-based solutions for
realizing CALS. In doing so, we experimentally design an
expeditiously adaptive smart-part logistics supply net-
work. We draw on LeBaron’s (2001a–c) agent-based
computational model to deduce and describe alternative
design possibilities for CALS markets differing in their
learning capabilities.

LeBaron’s stock-market model is already operational;
its baseline simulation is well validated against the S&P
stock market over the past 50 years. From this stock-
market-based calibration, we can redesign it to support a
smart-parts computational logistics market. LeBaron’s
model allows us to design an agent-based logistics market
in which the agents have varying amounts of decentra-
lized sensing, intelligence, and learning ability that self-
organize so as to give the entire CALS an adaptive learning
capability. This feature is not yet seen in any but a very
few world-wide logistics systems.

We begin by defining and presenting the current vision
of CALS, which includes reviewing current applications of
complexity theory to further the understanding of the
properties and learning outcomes of complex logistics
networks (Section 2). Next, in Section 3, we first introduce
and define the essential features of electronic auction
markets. Then, we show that CALS possess a structure not
unlike that of a stock market; they can then be understood
as ‘international ‘‘smart parts’’ logistics markets’. Third,

we describe the essentials of a world-wide smart-parts
‘bid/offer’ electronic auction market as part of our logistics
market model. Fourth, basic features of LeBaron’s
stock-market model as a basic scheme for modelling
smart-parts choices embedded within electronic logistics
auction markets are described in detail. In Section 4 we
outline nine logistics market choices in addition to the
baseline simulation of a market operated only by humans.
Section 5 discusses contributions of these design options
to the logistics goals to reduce cost and to gain adaptivity.
Finally, a short conclusion suggests further learning
implications for the ongoing developing process of CALS.

2. Characteristics of complex adaptive logistics systems

We set the stage by reviewing the current state of CALS
theory and the development of complexity science,
complex adaptive systems and emergence theory. Then
we define key elements of CALS, their emergent proper-
ties, and emergent outcomes.

2.1. Defining complex adaptive logistics systems

As noted at the outset, logistics scholars appear to be
shifting from linear to complex views of supply chains
(Warnecke, 1993; Tharumarajah et al., 1996; Choi et al.,
2001; Surana et al., 2005; Mason, 2007; Wycisk et al.,
2008). This leads to the question, are there additional
contributions from complexity science for understanding
supply systems and networks? To answer this questionwe
primarily follow Kauffman (1993) and Holland (2002).

2.1.1. Defining complex adaptive systems (CAS)
The concept of CAS comes from biology—and pertains

mostly to living entities (Gell-Mann, 2002). Holland
(1995) describes CAS as systems that emerge over time
into a coherent form, adapting without any singular entity
deliberately managing or controlling them. Examples of
CAS phenomena include all levels of biological analysis
from base-pairs, DNA words and protean–protean inter-
action networks, to species in ecologies, memes, lan-
guages, networks, cities, organizations, cultures, social
and political systems, and so on. CAS are composed of
agents. Agents are autonomously acting, coevolving units
within a system, trying to reach individual and/or system
goals over time. Through coevolving agent interactions,
CAS adapt to changing environments via changing net-
works, subunits, hierarchy and causal influences (Holland,
1995, 2002; Arthur et al., 1997; Lichtenstein and McKel-
vey, 2004). This leads to an understanding of supply
networks as CALS (Choi et al., 2001).

2.1.2. Defining CALS
This tendency to a more complexity-based perspective

in logistics is forced by the usage of new communication
and information technologies as well as agent-based
computational models, with researchers aiming for more
robustness, flexibility, autonomy, and emergence in
logistics systems (Roy, 1998; Terzi and Cavalieri, 2004).
Approaches to establish new logistics concepts are bionic
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(Okino, 1993), genetic (Ueda, 1993), holonic (Winkler and
Mey, 1994), random (Iwata and Onosato, 1994), and virtual
manufacturing in concept (Gunasekaran and Ngai, 2004).
In the context of production and logistics, one example is
the concept of the fractal factory1 (Warnecke, 1993); it is
one example how to plan and organize a CALS. In
distribution logistics, current research deals with the
development of autonomous cooperating processes that
integrate new forms of communication and information
technologies (like RFID and smart tags) and methods of
agent-based modelling to develop a comprehensive new
form and design of logistics processes (Scholz-Reiter et al.,
2004).

There are four characteristics all of these complexity-
based logistics concepts have in common: First, they are
all based on adaptive processes; this means that the
logistics systems may adopt the larger system’s profiles
(e.g., the structure, resources, business processes char-
acterizing the firm). Second, a there is a topology of
interconnectivity among multiple supply chains. Third,
these processes may run autonomously. This means that
without any external means and/or instructions, logistics
systems may alter their structure and actions as a function
of their own resources, considerations, decisions, etc.
Fourth, these processes are initiated by changing environ-
mental constraints; they embody reactions to changing
external requirements. Each of these constitutive attri-
butes within a CALS can maintain several properties
regarding the entity, the topology, the system and the
environment that describe the state of a CALS at a point
in time or over a finite span of time: capacity, service
level (entity), path length, redundancy, and clustering
(topology); efficiency and flexibility (system); and
demand, dynamism, and risk (environment) (Pathak
et al., 2007).

2.2. The vision of complex adaptive logistics systems

In logistics research an ongoing paradigm shift can be
observed, going from centralized control of non-intelligent
elements in hierarchical structures towards decentralized
control of intelligent elements in heterarchical structures.
The understanding of logistics systems has evolved over
time from ‘linear structures’ to ‘complex systems’ (Lam-
bert et al., 1998; Bowersox et al., 2002) to CALSs most
recently (Choi et al., 2001; Surana et al., 2005; Pathak et
al., 2007; Wycisk et al., 2008). CALS comprise various
logistic entities from raw materials, components or
products to transit equipment (e.g., pallets, packages)
or transportation systems (e.g., conveyors, trucks)
(Scholz-Reiter et al., 2004). A key feature of CALS is that
they consist of smart parts. The term ‘smart parts’
describes logistics entities, which possess the capabilities

of interaction and autonomous decision-making through
the usage of modern communication and information
technologies, such as RFID, GPS, sensor networks and
electronic markets (EMs). Smart parts can be all kinds of
the before-listed logistic entities. Their ‘smartness’ lies in
the ability of the parts to autonomously decide about their
optimum behaviour regarding their given individual goals
(e.g., time, quality, costs).

While there is no validated proof that logistics systems,
as yet, will act as natural CAS, this possibility does not
seem far away. Researchers are working on the develop-
ment of de-centralized adaptive logistic processes that
possess the ability of autonomous local cooperation
(Scholz-Reiter et al., 2004; Wycisk et al., 2008). Autono-
mous cooperation describes processes of decentralized
decision-making in heterarchical structures. It requires
that interacting elements in non-predictable systems
possess the capability and the possibility of making
decisions independently. The implementation of autono-
mous cooperation aims at increased robustness and
positive emergence of the complete system through
distributed and flexible coping with dynamics as well as
complexity (Windt and Hülsmann, 2007).

The objective of our research is the self-producing self-
delivering product. This intelligent product can initiate its
own production according to customers’ requirements,
autonomously plan and find its most efficient way to the
customer, and flexibly react to changes or hurdles
affecting its progress. Imagine containers from Hong Kong
or cars from Japan, each of which has a vastly improved
version of the ‘OnStar’ chip now in Cadillacs. This chip
knows where it is supposed to end up, can contact the GPS
satellite, can contact truck, train, and ship companies, can
locate itself in giant storage yards in LA or Amsterdam via
RFID tags, etc. With this new technology, containers or
cars become ‘smart parts’, each capable of planning their
own best path (quick/expensive; slow/cheap) from the
factory, to the dealer, and then to the final customer.
Imagine a million of these doing this every month world-
wide.

The literature on complexity theory makes it very clear
that CAS result in nonlinear behaviour with some
probability of butterfly-events2 spiralling into positive
and negative extremes (Bak, 1996; Brock, 2000; Gell-
Mann, 2002; Holland, 2002). It follows that CALS
comprised of smart parts will also show butterfly-events
and extremes (Wycisk et al., 2008). An exact or even
heuristics-based solution for global optimization in the
logistics system becomes impossible. Holland’s (2002)
butterfly-levers become the tools by which managers
can enable positive extremes or turn off the negative
ones. CALS, thus, become two-edged swords. On the one
hand, they are capable of more quickly and efficiently
responding to adaptive tensions from nonlinear events in
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of a factory is decentralized and consists of autonomous subsystems,
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showing similar causal dynamics at multiple levels. They participate in
processes of their own development, mutation and disintegration while
orienting to the general company goals.

2 We will use ‘butterfly-events’ to refer to the ‘tiny initiating events’
(Lorenz, 1963) that may spiral up into extreme events and frozen
accidents (Gell-Mann, 2002); we use ‘butterfly-levers’ (Holland, 2002) to
refer to the use of small events to ‘lever’ a system up toward a positive
extreme or stop a negative extreme from happening. The term ‘butterfly’
comes from Lorenz’s (1972) paper.
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changing CALS environments. On the other, they are prone
to Pareto distributions, long tails, and extreme events
(Wycisk et al., 2008).

2.3. Properties of complex adaptive logistics systems

Besides the four overarching common characteristics
mentioned just above, there are several characteristics
that reflect a more detailed description of CALS—on an
individual, intra-systemic, and inter-systemic level.

2.3.1. Individual level
Natural CAS consist of a number of constituent entities

that are called agents. Agents may be distinguished by
different attributes such as goals, patterns of actions, rules
of actions, etc. Due to their individual idiosyncratic
features, most agents of a CAS are in general heterogeneous
(Holland, 1988). In complex logistics systems such as
global supply networks, higher-level agents may represent
firms, such as suppliers, manufacturers, distributors,
retailers, customers, and other firms constituting the
entire supply chain (Choi et al., 2001; Surana et al.,
2005). Due to their different functions within the supply
chain, agents may follow individual goals, under different
constraints, and with different action patterns. This both
creates, and results from, their heterogeneity (Wycisk et
al., 2008). According to Holland (2002) agents in a CAS
also may be highly interactive. Within supply networks,
individual objectives of agents provide motives to interact
in order to match timely, qualitative, quantitative, cost-
oriented or flexible logistics goals (Hülsmann et al., 2006).
Interaction takes place within the whole supply network
in the form of flows of information, resources and/or
finances (Sun and Wu, 2005; Göpfert, 2005). Due to their
ability to learn, agents are able to adapt by modifying their
rules of action and improve their performance as
experience accumulates (Holland, 2002). Furthermore,
where agents represent higher-level organizational enti-
ties within a supply chain, organizational learning may be
present. In contrast, at lower levels, where agents
represent physical entities, we cannot ascertain a general
ability of learning yet in existing logistics systems (Wycisk
et al., 2008).

2.3.2. Intra-systemic level
From a complexity perspective, agent actions may be

self-initiated without any external influence steering or
controlling them—they are autonomous (Holland, 1988,
2002; Kauffman, 1993). Surana et al. (2005) state, that
autonomous behaviour or autonomy can also be related to
logistics agents. Firms, subunits, and also physical entities
(if enabled) are empowered to a certain degree, via
delegation and decentralization, to plan, decide and act
without direct supervision (Kappler, 1992). Self-organization
results from the autonomous interaction of single agents
within a CAS (Mainzer, 1994). It gives rise to bottom-up
(new) order creation by a system itself, as opposed to
structure and process imposed on the system by outside
(or higher-level) entities. From an intra-systemic perspec-
tive, self-organizing processes result from the interaction

of individual agents (e.g., employees, physical entities)
within a logistics system, e.g., a company. What Kauffman
(1993) calls the ‘melting’ zone is a region between the
‘edge of order’ defined by the first critical value of energy
imposing on a system and the ‘edge of chaos’ defined by
the second; these ‘edges’ define the ‘region of emergent
complexity’ where self-organization and emergent system
behaviours arise (McKelvey, 1999, 2008). If processes of
self-organization take place in a logistics system, Wycisk
et al. (2008) also assume the existence of a melting zone.
According to Simon (1962), the adaptation of a system is
enhanced if subunits are ‘nearly decomposable’—meaning
nearly autonomous with only the most essential connec-
tions and interactions with other units remaining. In this
way a system can use less adaptive energy for intra-
system connections, thereby saving more energy to adapt
to a changing technological or market environment or
competitors. Agents in a logistics system connect via
interaction and interdependency. Conceptualized verti-
cally, a supply chain is by definition multi-level: supplier,
manufacturer, distributor, retailer, and customer.

2.3.3. Inter-systemic level
Self-organization takes place on the next higher

aggregation level of organizational interaction between
independent systems, e.g., between supply network firms.
Considering the structure of an entire supply chain, there
is no single firm steering it. Through the autonomous
decisions by any participating firm, an autonomously
created structure keeps evolving the supply chain (Choi
et al., 2001; Surana et al., 2005). Kauffman (1993)
emphasizes coevolution, in which positive feedback loops
may emerge as agents sequentially respond to each other’s
actions. Due to a competition for limited resources among
subsystems within a CAS, feedback loops emerge that, in
turn, force coevolving adaptive responses by agents within
a CAS or between a CAS and its environment. According to
Choi et al. (2001) coevolutionary processes within logistics
systems are initiated and influenced by nonlinear state
changes, and path dependences in the development of
supply networks. Emergent CAS behaviour is nonlinear;
agents interact in non-additive ways (Holland, 1988, 2002).
Since subsequent actions are not necessarily predeter-
mined, the behaviour of a CAS is unpredictable (Prigogine
and Stengers, 1984). Choi et al. (2001) as well as Surana et
al. (2005) point to nonlinear interactions among autono-
mous agents comprising a complex supply network. Each
agent experiences the supply network as self-organizing.
Though details of the entire system may be unknown,
agents at multiple levels participate by making decisions
about selecting suppliers and striving for timely deliveries
to customers, which reflect the process of adaptation.

2.4. Outcomes of complex adaptive logistics systems

Adaptive processes of interaction and self-organization
give rise to new system attributes—i.e., new kinds of
order (Kauffman, 1993; McKelvey, 2004)—referred to as
emergence (Holland, 1988). Emergence is a phenomenon
where the behaviour of the whole is greater than the sum
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of its parts. This means the emergent structure and
process outcomes are not related to individual system
components, but result from complex, nonlinear agent
interactions. Emergent phenomena are now seen by
logistics observers of supply chains. Choi et al. state:
‘Although it is true that individual firms may obey the
deterministic selection process (i.e., Choi and Hartley,
1996), the organization of the overall supply network
emerges through the natural process of order and
spontaneity’ (2001, p. 358). Surana et al. also describe
supply networks as emergent: ‘In most circumstances,
order and control in the network are emergent, as
opposed to predetermined. Control is generated through
nonlinear though simple behavioural rules that operate
based on local information’ (2005, p. 4239).

Within CAS, butterfly-effects already have been ob-
served in forecast-driven distribution channels and
named the ‘bullwhip effect’; this finding dates back to
Forrester’s (1961) Industrial Dynamics. Like butterfly-
effects, bullwhip effects in CALS occur when insignificant
initiating events—e.g., shifts in customer demand in order
quantity—grow by compounding positive feedback effects
to produce extreme events along the supply chain. These
are especially likely as systems become more complex and
self-organizing, with resulting dynamical (nonlinear)
processes. Due to strong interdependencies among the
actors of a supply chain trying to adapt to each others
demands, each decision and action by an individual agent
will affect the others. Consequences of the bullwhip effect
are overfilled warehouses alternating with periods of
resource and product shortages (Lee et al., 1997).

Hülsmann and Grapp (2005) assume that self-organizing
networks (like international supply networks have a
certain capability to learn. Within a network structure,
the intelligence of a system may be located in its smart
parts (RFID transponders, smart tags etc.)—and their
connectivity. This ‘distributed intelligence’3 manages, for
example, the disposition of material flow, instead of
traditional centralized planning and control units. This
learning feature of CALS is a necessary basis for increasing
a logistic system’s robustness and the adaptively effica-
cious coevolutionary processes within its supply network
as well as amongst its connections to the environment
(Wycisk et al., 2008).

Well-working CAS have a high degree of robustness—
i.e., they are relatively insensitive to perturbations or
errors, and have a strong capacity to restore themselves
(Heylighen, 2003; Sun and Wu, 2005). Carlson and Doyle
(2000, p. 2529) define robust systems as ‘ysystems
designed for high performance in an uncertain environ-
ment and operated at densities well above a standard
critical point’. A robust (resilient) system has an ability
to cope with external dynamics without either
being unstable nor becoming a ‘locked’ organization
(Hülsmann et al., 2007)—what Arthur (1989) terms ‘lock-
in’. Heylighen (2003) discusses three main reasons for

robustness in CAS: redundancy, randomness, and feedback
loops. First, the redundant, distributed-organizing form of
these systems allows non-damaged regions to overcome
the loss of the damaged ones. Thus, in CALS there is
typically more than one company fulfilling the same or a
similar task. If one supplier is out of stock for example, the
producing company can easily ask another one. Transac-
tion costs may be higher in this case, but the supply
network is not interrupted. Second, self-organization
thrives on randomness, fluctuations or ‘noise’. CAS have
initial random movements that can lead to newly ordered
structure. A certain amount of random perturbations
facilitates rather than hinders self-organization. Within
CALS these random perturbations can take the form of
changing companies involved in the supply network—e.g.,
a production company can change or add new supply or
retail firms. This action cannot be predicted and may
appear random. Third, robustness also results from the
stabilizing effect of feedback loops in CAS. From building
up and changing the supply network, new connections
will appear that may result in completely new system
dynamics or a new kind of ordered structuring of the
supply chain.

Sun and Wu (2005) state that CAS causal dynamics
may often be self-similar (fractal) across levels; what
Mandelbrot (1982) terms fractal geometry—meaning that
the same kind of dynamics works at multiple levels
(Peitgen and Richter, 1986; Kaye, 1989; Schroeder, 1991;
Andriani and McKelvey, 2009). Scalability occurs in
physical, biological, social and organizational systems
(Mandelbrot, 1982; Gell-Mann, 2002). The presumption
of supply networks as CALS, then, strongly implies that
scale-free causes and consequent dynamics may occur at
multiple levels of supply networks—the individual, the
intra-systemic and the inter-systemic level. If today’s
supply networks are, in fact, truly CALS, we should see
scale-free emergent behaviour at multiple levels. Once
smart parts are added in at the bottom levels of logistics
networks, there is the possibility that fractal structures
will emerge because of scale-free causes at the smart-
parts levels of an automated supply chain. Sun and Wu
(2005) successfully analyse the growth of supply distribu-
tion networks on the basis of scale-free theories. This
means that in well functioning CALS, fractal dynamics
among smart-parts supply networks at the bottom can
very well affect the behaviour of the logistics systems at
various higher levels as well (McKelvey et al., 2009).

3. Toward an electronic auction market based on
LeBaron’s stock-market model

This section moves from our use of complexity
science to better understand supply networks as CALS
towards how to design them. In a logistic market sellers
offer transportation space and manufacturers (buyers)
buy space to ship goods (e.g., containers or cars) from
the place of manufacture to dealers and ultimately
to customers. We begin with a short review of electro-
nic auction markets and the management science em-
phasis on agent intermediation based on computationally
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complex optimization algorithms. Then we progress
toward smart-parts electronic auction markets.

3.1. Some basic elements of electronic auction markets

3.1.1. History
While financial electronic marketplaces date back to

the founding of NASDAQ in 1971, supply-chain EMs did
not materialize until later (e.g., Peer, 1976; Sporleder,
1980; Bell et al., 1983; Henderson, 1984; Malone et al.,
1987). Only after 1990 do we see research and commen-
tary on electronic supply-chain auction markets begin-
ning to emerge (Schmid et al., 1991; Neo, 1992; Borman
et al., 1993; Schmid, 1993; Lee, 1996; Gudmundsson and
Walczuck, 1999; Wenninger, 1999; Kaplan and Sawhney,
2000; Van Hoek, 2001). Even so, in his review of electronic
supply-chain research, Grieger (2003, p. 280) says: ‘The
supply chain dimension of an EM is largely neglected and
poorly managedy’. Now we see evidence of a more
pervasive interest in managing supply-chain EMs (Goldsby
and Eckert, 2003; Anandalingam et al., 2005; Nair, 2005;
Nault and Dexter, 2006; Agrali et al., 2008).

3.1.2. Bundling
EMs range from simple ones such as the eBay C2C

(consumer to consumer) market (one seller, one item,
simple bid rules), to those that are what Anandalingam et
al. (2005) call computationally complex—i.e., ‘NP-Hard’.4

What produces NP-Hard? Typically, these are B2B (busi-
ness to business) EMs in which products are:

! Substitutable: the trade items are exchangeable—e.g., it
does not matter to the carrier which ones are put on a
truck going from one city to another;

! Complementary: the trade items are worth more as a
package—e.g., one truck can deliver them sequentially
on one trip; and

! Bundled: when items are worth more as a package,
the ‘bundle’ presents a much more complex auction
problem that leads to ‘combinatorial auctions’
(Anandalingam et al., 2005).

Most of the attention in management science is put
into the creation of sophisticated ‘combinatorial optimiza-
tion methodologies’ for bundled shipments (Crainic and
Gendreau, 2004). These are the subject of most of the
articles in the special issue of Management Science edited
by Anandalingam et al. (2005). Bundling is what produces
NP-Hard integer programming (IP) challenges. Examples
are auctions concerning shipping lanes (Ledyard et al.,
2002), airport take-off and landing slots (Ball et al., 2006),
electricity markets (O’Neill et al., 2005), goods and services
(Wu and Kleindorfer, 2005), and supply-chain auctions in
general (Chen et al., 2005). Besides complexity, a problem
mentioned in the EM literature pertains to the likelihood
that EMs are subject to the typical human perversions that

lead to collusive bidding (Goldsby and Eckert, 2003;
Anandalingam et al., 2005; Nair, 2005).

3.1.3. NP-Hard
Central to management science approaches to solving

the NP-Hard challenges is the emergence of an indepen-
dent ‘agent’ that serves as the intermediary in ‘agent-
intermediated’ markets (Nault and Dexter, 2006). The
management science approach generally presumes
agent-intermediated auctions with the agents using the
most sophisticated IP methods available (e.g., Anandalin-
gam et al., 2005, and all the other articles in their special
issue). The state-of-the-art in current EM research focuses
exclusively on human agent-intermediated auctions and
combinatorial optimization methods. These are all well
and good, but they are also vulnerable to unexpected
changes—an obvious example being the disruption of IP
solutions because of snow-storms at Chicago’s O’Hare
International Airport. When this happens the FAA
switches to an agent-based computational program to
decide which flights are cancelled, told to circle before
landing, or told to wait on ground.5

3.1.4. Smart-part EMs
Ten years ago, Roy (1998, p. 31) set forth the argument

for ‘replacing central, global optimization with a distrib-
uted, self-organizing market approach’. He notes that:

! centralized IP methods should be replaced with true
market behaviour;

! the idea ‘yis to break up the sophisticated logic in [IP]
algorithms and distribute it in agents across the supply
weby’;

! decentralized agent-based self-organization ‘yadjusts
in real time to breakdowns, supply shortages, or
fluctuating customer demand;

! in changing circumstances IP methods cannot produce
optimal arrivals of the six million parts going into a
747, for example;

! even though Malone and Rockart (1991) argued early
on for a free electronic market, the academic response
in management science has largely been to substitute
‘free’ with centralized IP optimization methods; and

! Dick Morley, who invented a bidding system at General
Motors, says:

The job changes from building trucks to allowing
parts to ‘flock’ together to form one’; GM lets paint
booths bid on which truck to paint next.

In Wycisk et al. (2008) we pick up on the idea of a truly
‘free’ agent-based electronic market based on ‘parts’ like
cars and containers being smart enough to ‘freely’ decide
and then bid on what their optimal routing from source to
destination should be.
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4 For a definition of NP-Hard, see http://en.wikipedia.org/wiki/
NP-hard.

5 Based on statements by FAA computational modellers at the New
England Complexity Science Institute Conference, Boston, MA, March 1999.
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3.1.5. Risk
We are well aware, however, as discussed in Wycisk

et al. (2008), that ‘free’ markets can have a downside.
Despite Mandelbrot’s 45 years devoted to how to better
analyse stock market volatility (Mandelbrot and Hudson,
2004) risk management in free markets is invariably
subject to fractal dynamics, Pareto distributions, and
scale-free causes (Peters, 1994; Sornette, 2003; Baldovin
and Stella, 2007). Wycisk et al. observe that truly ‘free’
agent-based supply-chain markets are equally vulnerable
to Pareto-distribution dynamics that may be accompanied
by significant down-side risk.

3.1.6. Summary
In light of the foregoing discussion about EMs, we

stress the following:

! a ‘free-market’ agent-based self-organization approach
based on ideas from complexity science;

! the soon-to-be availability of ‘smart parts’ with RFID
chips capable of bidding and planning optimal routing
strategies in real-time, real-world, and around-the-
world circumstances;

! use of LeBaron’s stock-market model as the platform
from which we develop our ‘free-agent’ electronic
auction market;

! LeBaron’s model reflects both equilibrium and volati-
lity dynamics of the S&P stock market;

! the vulnerability of ‘free’ smart-parts electronic mar-
kets to be subject to volatility events, fractal dynamics,
Pareto distributions of a negative nature; and

! the use of a neural network (NN) programming
approach that introduces the idea of an electronic
agent-based agent-intermediated EM.

3.2. First steps toward a ‘free’ smart-parts auction market

Our preliminary concept of a truly free ‘market-
making’ electronic auction process draws on the descrip-
tion of a smart-parts auction market that was experimen-
tally put in place in a Daimler–Chrysler factory a few years
ago (‘P2000’) (Schild and Bussmann, 2007). An auction
can be generally defined as ‘y a mechanism of informa-
tion submission, together with rules for assigning items
and payments to participants based on this submitted
information’ (Anandalingam et al., 2005, p. 317). Building
from this, our proposed smart-parts (e.g., cars, containers)
buyers/sellers-of-space auction market looks roughly as
follows:

1. To begin, a smart-part ‘buyer of transportation space’
chip has to get information from its destination
customer (perhaps via a dealer), thereby gaining
‘knowledge’ about the customer’s timing and cost
preferences (e.g., fast/expensive vs. slow/cheap); for
illustrative purposes, we select a part preferring a
slow/cheap routing.

2. This part creates a shipping scenario and asks for bids
from trucking, rail, shipping, and storage lot compa-
nies. It expects bids from competing companies for

each shipping stage. A quick Google search shows that
smart parts can easily find local within-city/country
bids and cross-oceanic bids. Electronic bid-processing
agents are already readily available on the Internet for
all sorts of shipping needs.6 We assume special sites
would emerge for smart parts and that some initial
pricing would be set between large parts shippers and
space sellers.

3. The computers of the sellers of shipping space (we
assume humans only for drastic interventions) that
have available space respond with bids; these compu-
ters keep track of their bids and the amount of
available space; if they have no transportation or
storage space they do not bid.

4. The part could have access to hi-volume prices
already contracted for in advance by its manufacturer
or it could delay its decisions so as to take advantage
of low-cost space coming available just before a
ship leaves the harbour, for example—just as
some people wait to buy really cheap unsold airplane
seats the day before departure (and same with hotel
rooms).

5. To avoid paying for interim storage space, the part
accepts a bid to get itself transported from manufac-
turer’s storage space to the storage space at the
ultimate destination; it is possible, however, that
sometimes the part may find that paying for some
interim storage space lowers the cost of the entire trip
because it can wait for last-minute space-available
auctions—as noted just above.

6. It is also possible that sellers of transportation space
will include interim storage space in their bid price.
Parts could then take this into account in their bid-
acceptance decisions.

7. Once buyer/seller contracts are agreed to, parts signal
their manufacturers to pay whatever up-front portion
of the total price that is contracted for. And then the
trip beginsy.

The foregoing bullets illustrate the essence of the kind of
basic buyer/seller-of-space electronic auction market we
are proposing. But it is quite an electronic stretch to go
from parts making bids on a closed assembly line to a
world-wide electronic market with many buyers and
sellers ranging from giant firms to individual cars and
containers. In Section 3.3, we complexify the foregoing
auction market by drawing on LeBaron’s agent-based
computational stock-market model. In doing so we find
that there are a number of design options firms could buy
into in designing a smart-parts electronic auction market;
these are outlined in Section 3.4.
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6 For example click on for a URL listing after clicking into Google
‘automobile shipping Europe prices’ and you get: http://www.google.
com/search?hl=en&q=automobile+shipping+europe+prices&btnG=
Search. For example ‘agent’ go to: http://www.m3carshipping.com/
?s=g1&p=s&g=1. It is easy to see that we are very close to a fully
electronic auction market for smart parts since any ‘electronic agent’
available via Google could easily become available to smart part
bidding and/or bidding by the LeBaron process we detail later on.
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3.3. Basic features of Le Baron’s stock-market model

We justify our use of LeBaron’s (2001a–c, 2003, 2006)
agent-based computational model as follows. While smart
parts are real things like containers and cars that exist in
the real world, their smartness is embodied as sensors in
electronic chips. The containers, cars, and chips—the
smart parts—are, in turn, embedded in a world-wide
electronic network of local chip sensors, GPS connections,
and computer connections. This network, then, is em-
bedded within two additional entities: (1) the one or more
computers to which all of the chips are electronically
connected and (2) the real-world electronic auction
market created by product buyers who need to buy
transportation space to get their products to market and
space sellers who make money by selling transportation
space to the buyers of space. The ability of smart parts to
move from manufacturer to final destination is a function
of (1) how well the parts function within the computa-
tional EM and (2) how well the computational EM itself
behaves.

We choose LeBaron’s model because, right now, it is
the best agent-based computational model of a stock
market available. We draw on its design in two ways:

1. Since it replicates 50+ years of the S&P stock market
index very well (LeBaron, 2003), we use it to frame our
design of the various smart-parts market options.

2. Given the various options, we then propose to use a
variant of LeBaron’s model to create an artificial
computational-market platformwith which to conduct
experiments so as to determine which of the various
design alternatives may be the best and under which
circumstances.

In what follows, we take LeBaron’s well-validated market
model and then elaborate it into various options available
to manufacturers shipping parts around the globe.
LeBaron’s agent-based computational model of the stock
market consists of three parts:

1. His model creates an operating electronic market
which is well validated against real stock-market
behaviour.

2. It consists of traders who learn via a genetic algorithm
(GA) (Holland, 1975).

3. A neural network (NN) model (Mehrotra et al., 1997)
that ‘watches’ the market and keeps updating six
investment strategies based on standard criteria used
by market investors.

We briefly describe these elements next.

3.3.1. Electronic market
LeBaron’s stock-market model is what he calls a ‘partial

equilibrium model’. This means that it contains some
pressures toward equilibrium; but it also mirrors the
volatility features of the S&P as well. Investors can buy
from an infinite supply of risk-free assets (bonds) that pay
a constant interest rate, or they can buy from a fixed

supply of risky securities paying a random dividend. The
risky dividend is calibrated so as to correspond to actual
dividend properties in the US. Traders, thus, have two
kinds of income: that from risk-free bonds and from
purchases and sales of stocks (equities). When traders buy
from the stock market (which is of fixed size) the price
goes up and when they sell it goes down. A trader’s
objective is to maximize Et as according to the following
function:

MaxEt log½1þ ajrtþ1 þ rf ð1% ajÞ'

where Et is expected return at time t; aj is one of the 250
rules; rt the return on a risky security at time t; and rf the
risk-free rate of return.

A trader’s investment is relatively ‘myopic’, as LeBaron
puts it, for two reasons: (1) traders cannot invest on the
basis of presumed long-run expectations about the future;
they are only interested in finding an investment rule that
maximizes returns in the next time period—i.e., they see
one time-period ahead and (2) since, for any given time
period, traders are myopic because they can never know
what all of the other traders have done or will do in this
particular time period. For further market performance
details, please consult LeBaron’s articles; we avoid
presenting most of formulas he describes.

His model contains 1000 traders whose buy/sell
decisions are based on a portfolio of up to 250 investment
rules. In his ‘calibration’ paper, LeBaron (2003) provides
results showing how two versions of his model
(‘all memory’ and ‘long memory’) compare with the S&P
stock market index across three databases (1947–2000;
1928–2000; and sometimes 1871–2001). After conducting
many kinds of comparative analyses, LeBaron concludes:

‘The agent-based model is capable of quantitatively
replicating many features of actual financial markets.
Comparisons show favourable results for returns and
volatility and their persistence. The data also replicates
the well known feature of excess kurtosis in the returns
series’ (2003, p. 18).

There are some comparative tests that are not so
strong. The model, needless to say, is a much simplified
replication of a real market. Even so, the fact that it shows
partial equilibrium along with replications of skew,
kurtosis, ARCH, and the effects of long- and short-memory
trader-knowledge effects is impressive.

3.3.2. Adaptive traders
Traders have a pool of up to 250 investment rules they

can use to decide how to take advantage of the six sources
of relevant investment information (supplied by the
neural network model which we discuss next). Each rule
has several elements that may be weighted differently by
a particular trader. LeBaron (2001b, c) uses a genetic
algorithm as a means for traders to learn about and keep
updating across time periods to create their best possible
investment strategy. In GA terms, the 250 rules play the
role of genes in one or more chromosome strings and the
weights define the genes. In any given time-period 50% of
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the traders may update their investment strategy. Invest-
ment rules not used over the last ten periods are deleted.

In any given time period several of a trader’s rules may
be replaced or altered. In LeBaron’s GA this happens in
three ways (each has equal probability):

1. Mutation: a randomly selected rule has one of its
existing weights randomly altered by adding an incre-
ment drawn from a uniform distribution ranging from
%0.25 to +0.25.

2. New weight: a new weight is added to a randomly
selected rule; the new weight is randomly assigned a
new value using the same uniform distribution as is
used in the initial start-up; this distribution ranges
from %1 to +1.

3. Crossover: randomly select two traders who have
shown success in improving their investment portfolio
via trading; replace all the weights connected to a
specific ‘information input’ in a selected rule used by
one trader with the comparable weights used by the
other trader. As LeBaron says, ‘this is equivalent to
chopping off a branch of the network from [trader] one,
and replacing it with a branch from [trader] two’
(2001b, p. 445).

Once a new rule emerges, it is right away given an
initializing investment record by evaluating its perfor-
mance based on past market behaviour. This way traders
know right away whether to use it or not. Note than in a
computational GA there is no ‘sex’ nor ‘offspring’. Instead
a computational trader morphs from a trader using old
rules to a partially altered trader using newer rules as time
periods progress—the trader keeps going forward in time
but its genetic rule-base keeps changing.

By the foregoing methods a given trader’s learning and
use of investment rules is continuously updated as the
market progresses. Traders can, and do, eventually learn

the same investment strategy—the same buy/sell rules—
such that LeBaron’s computational market can crash as do
real-world markets (the market crash related to the failure
of LTCM being a good recent example of traders evolving
toward the same buy/sell rule (Lowenstein, 2000).
The investment rule ‘chromosome string’ is provided by
the NN, as follows.

3.3.3. Neural net model
The best way to understand LeBaron’s use of the NN is

to think of it ‘as being separate from the actual agents
[traders]. The best analogy is to that of an investment
advisor or mutual fund’—as he puts it (2001, p. 443). The
NN sits off to the side, so to speak, updating its six sources
of investment information; traders may create up to 250
trading rules by weighting information elements from the
NN (and/or other traders) differently. We illustrate this in
Fig. 1.

Fig. 1 shows six sources of information on the left;
shows a hidden layer in the middle comprised of six
weights, one for each source; and on the right-hand side
shows a few of the rules plus weights on being connected
to the hidden layer. The sources of information are
‘predictors that are commonly used in real markets’
(2001, p. 444) that are continuously updated: information
about current returns, past returns, price-dividend ratios,
and technical trading rules based on exponential moving
averages. For any given time period, then, a trader can
select from a large range of different weightings of the
basic information set.

In Table 1 (and later in Tables 3 and 4) we summarize
key elements of LeBaron’s ‘stock trading’ formalizations to
show how we alter them to fit our ‘shipping-space’ model.

In the following, we consider four categories: our
baseline simulation of human space trading with nine
possible alternatives in addition to the existing—human
only—logistics market system. This is a way to properly
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Fig. 1. Neural net schematic: from six information sources to 250 rules plus weights. Each information source gets a weight o in the hidden layer. Each
rule aj has additional weightings of the six rules. In principle, each rule aj could have 6! weight combinations. Clearly, LeBaron’s model does not use all of
these. Note that the NN keeps updating the investment information and the rules and their weights. Traders, then, keep trying to find the best investment
rule at the time of their investment in the risky security.
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represent the interaction among the several transporta-
tion design options and their costs, profits, and speed of
delivery. The starting point—what we call the ‘baseline’
model—is the current system of human manufacturers
(shippers) and human transportation companies (sellers)
negotiating the price and speed at which cars, containers,
and whatever other goods needing transport are routed to
customers.

Our Category One represents the typical existing
logistics approach—i.e., without any modern information
and communication technology. In modelling it we
suggest a baseline simulation of human space trading
activities, along with Option 1, which builds space
speculation into the baseline simulation. Category Two
describes design options of a supply consisting an
optimized decision-making capability via the usage of a
neural network model. Category Three contains the most
advanced options, which give electronic agents [(materi-
als, components, products) or (packages, pallets, contain-
ers) or (trucks, trains, ships)]—our ‘smart parts’—many of
the learning abilities of humans trading on a stock market.
We discuss each in turn, the level of realizing a completely
autonomous CALS rises with each option. An overview of
our nine options appears in Table 2.

3.4. Category I: traditional logistics

Our baseline simulation is based on the existing view
of a logistics system, that is, the traditional concept of

supply-chain management. From a systems perspective, a
logistics system consists of a set of nodes and a collection
of links that connect pairs of nodes through transfers of
goods, capital or information (Daganzo, 2005). In this
graph-theoretic perspective, our nodes are agents—i.e.,
raw materials, components, products, transit equipment
(e.g., pallets, packages) or transportation systems (e.g.,
conveyors, trucks)—that are directed and steered by
employees—there is no communication between non-
human elements nor artificial intelligence. In this case,
information about orders is the only data firms exchange
within the supply chain; for example, when suppliers only
observe their retailers’ orders (Cachon and Fisher, 2000).
Daganzo (2005, p. 1) describes traditional logistics
problem solving as ‘ygathering as much detailed in-
formation as possible about the problem, formulating a
mathematical program including as input data all the
information that might possibly be relevant, identifying
solutions in detail by means of numerous decision
variables, and then using the computer to sort through
this numerical maze’.

Our first task, then, is to see if we can design a model
more or less like LeBaron’s model that simulates an
existing real-world logistics system of human buyers
and sellers of transportation space. In this ‘baseline’
system the smartness is all in the people; parts are totally
dumb. Obviously a transportation-space market is not
exactly like the S&P or any other stock market. But it is a
market, just not as risky or uncertain at stock markets.
Instead of 1000 traders, the model could have, perhaps,
less than 100. Some space buyers could appear like
institutional investors on the stock market—they buy
large amounts of space, say, space for 50,000 containers or
cars per year. Other buyers, especially in the container
market may be buying one container at a time, sort of like
‘odd-lot’ players on the stock market. This aspect of the
market will behave more like the market for last-minute
space on airplanes or in hotels—people wait and then get
low prices but not much choice at the last minute.
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Table 1
Human stock trading formula translated to human space buying/sellinga.

Stock formula Space formula

T ¼
PI

i¼0
sj 1 ¼

PI

i¼0
sj

si ¼ total share holdings of
trader i

s ¼ set of all i buyers and sellers of
space on trucks, trains, and ships.

I ¼ total number of traders Fixed supply of space, s, at any
given timeT ¼ total # of shares times #

of traders; this number does
not change
Market has two securities,
bond with fixed interest rate
and risky stocks

Market is electronic, like Nasdaq.
Agents buy and sell transportation
space on trucks, trains, ships. Large
agents (car makers, transporters)
buy/sell large amounts of space
max

aj
Et log½1þ ajrtþ1 þ ð1% ajÞrf '

min
aj

Et log½ajrtþ1'

aj ¼ set of all trading rules aj ¼ set of all rules for buying/
selling all kinds of transportation
space available

rt ¼ total risky asset return at
time t

rt ¼ total cost of all spaces at t

rf ¼ is the risk-free rate of
return on bonds

Buyers/sellers try to find rules that
minimize the cost of transporting a
car from factory to dealer at the
specified rate of transportation
time preferred by the customer

Traders try to find trading
rules maximizing returns
LeBaron’s equation includes
returns from risk-free bonds
as well as risky stocks

a Other stock trading details from LeBaron’s model (2001) are
omitted for relevance and space reasons.

Table 2
Design alternatives for CALS.

Level of
realization

Design alternative for CALS

Category I:
! Baseline model
1. Speculative reserve space

Category II:
2. Neural net
3. Neural net auction based
4. Neural net and less-dump parts

Category III:
5. Smart parts learning from the neural net
6. Smart parts learning from the neural net and from
each other
7. Smart parts with grouping capability
8. Smart parts having full choice
9. Speculating
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3.4.1. Human speculative reserve space
After the baseline simulation of human buying/selling,

the first option is to simulate a beginning level of human
space-cost speculation. When a ship is empty sellers sell
space more cheaply. As the ship fills up they raise the
price. But as departure time gets closer, sellers lower the
price to make sure the ship fills up before departing. To
begin, then, sellers sell considerable, but not all space to
larger shippers. But, they can choose to keep some space
in reserve to sell later at a hoped-for higher price. This
space could be sold to large firms or to individual smart
parts. It could also be made available to the NN acting as
an eBay-style auction house (discussed next). Knowing
this, buyers could buy less space up front with the
expectation of fire-sales by shippers as the time ap-
proaches for their truck, train, or ship to depart.

3.5. Category II: neural net involved

3.5.1. Neural net
In LeBaron’s model, the NN is simply used to keep

updating the six investment strategies. It is a very simple
design; it views the changing market in terms of the
typical means by which traders estimate whether the
market is going to move up or down—using current
returns, past returns, price-dividend ratios, and technical
trading rules. These are the inputs to the NN. It has only
one hidden layer (our brains have many). It has six
outcomes in the form of investment strategies based on a
few just mentioned investment information variables.
As noted earlier, the NN behaves like an investment
advisory firm that traders can turn to get the best current
investment strategies, given what the market is doing at
the time. Our first two NN options presume ‘dumb’ and
‘slightly less dumb’ parts.

In this, first, NN involved option, the NN is installed
to watch the shipper/seller market on a timely basi-
s—possibly minute-by-minute at some times for some
parts. LeBaron’s market model does weekly updates. Thus,
when parts are in the middle of a three-week trip across a
body of water NN check-in can be sporadic. As the parts
get to a transition point from truck to train or from storage
yard to truck on its way to a dealer, NN check-in would
have to be much faster.

The ‘dumb’ parts are constantly connected to the NN.
They have no choice. It simply ‘tells’ parts the best
available transportation strategy at any given time—in
the manner of LeBaron’s NN—quickest, cheapest, safest
routes, etc., according to chip designation; the best route
for different kinds of perishable goods depending on their
rate of ripening, and so on. In this option, parts do not
have choices. The NN keeps track of their progress and, as
needed, routes them to the next most relevant transporta-
tion space seller. They are always connected with the NN
and it organizes them so as to move according to the best
strategy available.

This may, in fact, be the best option given the possibility
that smart parts have some susceptibility to an extreme
event where too many of them would simultaneously aim
at the same truck, train, or ship, with the result that many

of them would be left behind. In actually running a model
of the electronic smart-parts transportation-decision
system, a key question is whether learning smart parts
can arrange their transportation more effectively than the
NN can. In this option the NN simply substitutes for
human decision making about routes.

An additional question is how many different choices
does the NN give to dumb parts. For example, the NN
could have an overall package from manufacturer to
dealer, or it could sequentially (1) offer a trucking route;
then, (2) based on updates it would offer the best rail
routing; and then when the time comes, (3) the best ship
and ship route, and so on. For cars going from Japan to
NYC, the NN could develop (1) fast and slow ship
strategies, (2) straight to LA and then by train to NYC
(fast and expensive), or (3) via the Panama Canal, or (4)
around Cape Horn and then up to NYC (slowest but
cheapest)—all based on routing designations in the chip.

As you can see, in this design option the NN plays the
role of the agent intermediary that is essential to the
management science approach to electronic auction
markets. The NN could be given all of the best IP-based
optimization models that management scientists advo-
cate. It could be given choices about which IP models to
use. It could also be closely monitored by human
operators who could offer advice to the NN as to
which IP model to use at one time or another. This
option essentially mirrors current management science
thinking about EMs, except that the NN acts as the
primary—electronic—agent.

3.5.2. Neural net auction-based
As sellers and shippers get used to living in a virtual

world of parts transportation planning, they will come to
realize that they can set up their own electronic, eBay-
style ‘auction house’. Sellers of space make it available to
the NN auction house at various prices, depending on
volume, cost of transportation, speed of transportation,
and so on. Shippers then go to the NN auction house to
buy space as desired. Later on, we show that smart parts
can also take advantage of the auction house. Like humans
buying last-minute space on airplanes and in hotels, smart
parts may play the same game. Shippers may do this as
well.

The following sections introduce various levels of
smarter-part options.

3.5.3. Neural net and less dumb parts
In this option the NN does not just ‘tell’ parts what to

do. Rather, they check in to the NN as appropriate to find
the best transportation strategies available. They are just
smart enough to check in with the NN, but not with other
parts. They use only space already bought by their
manufacturer. Shippers can buy or re-sell space as desired.
Sellers make space available as desired. It is sort of a one-
stop-shop. Parts check in; the NN tells them the best
choices available at the time. Parts can keep checking in
and can update their strategy, but only according to what
the NN tells them at the time. This allows parts to monitor
the transportation situation; become aware of weather,
equipment, labour, and other possible disruptions calling
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for different routing. The NN would always be up-to-date
on this.

With Option 2, the parts are totally dumb and passive;
the NN does all of the watching of the market and keeps
track of when it needs to change a part’s strategy, shift if
from truck to train or to ship, and so on. The NN speeds up
its check-in rate depending on whether the part is in the
middle of an ocean or about to switch from truck to train.
In Option 4, however, the parts are in contact with GPS,
know where they are and then know when they are
reaching a transition point and, then, parts check in to the
NN. Here, the parts are smart enough to know where they
are and when to check in with the NN, but, they have no
learning ability.

In this option parts can check with the NN at every
routing choice-point so as to get the NN’s latest IP
optimization about the best routing strategy. Instead of
being given one optimal strategy by a human agent at the
outset, parts check in frequently and, thus, have con-
stantly updated optimization algorithms to take advan-
tage of. This appears as an ideal compromise between the
IP advantages offered by management scientists while at
the same time taking advantage of the NN’s ability to keep
up with changing conditions.

3.6. Category III: neural net and computational agents

In the options below, parts become fully ‘smart’
computational agents. They can learn from humans, the
NN, and from other parts. The autonomous cooperation of
every single logistic object—our smart parts—may be
represented by a computational agent. These agents can
either be raw materials, components or products as well
as transit equipment (e.g., packages, pallets, containers) or
transportation systems (e.g., trucks, trains, ships). They
are able to act together as a loosely coupled network via
the exchange and storage of information, autonomous
decision-making, and learning capacities (Scholz-Reiter
et al., 2004).

A key characteristic of an intelligent computational
agent is its capability to control itself, which means that
these agents act autonomously in their planning and
production processes. Probst (1987) describes autonomy
in general as the capability of a system, process or an
agent to design its input-, throughput- and output-profiles
as an anticipative or reactive response to changing
constraints of environmental parameters. A second spe-
cific criterion of autonomous processes and smart part-
s—as computational agents—is that they make decisions
by themselves on the basis of parameters that can lead to
different but, in principal, predetermined process or order
fulfilment steps (Windt and Hülsmann, 2007).

In order to fulfil their individual orders in an informa-
tion-rich environment, agents are able to communicate
with the environment and learn from its offered data. For
example, this could be information about suppliers,
prices, ways of transportation, etc. Depending on the
technology used, and the desired manifestation of auton-
omous cooperating logistics agents, there could be several
choices of communication-learning structures, such as

single-loop, or double loop learning (Argyris and Schön,
1996). And, as we note earlier, they can get IP updates
about the EM from the NN anytime they choose.

3.6.1. Smart parts learning from the neural net
In this option, parts can take advantage of various

transportation choices made available by the NN. They
begin acting like traders in LeBaron’s market model. But,
they only have choices of what and when to learn from the
NN, which is constantly watching the market. As we note
in our earlier paper (Wycisk et al., 2008), smart parts face
some possibility of extreme events in the form of too
many parts buying space on a ship, then arriving at the
dock to find the ship full and, thus, are left stranded on the
dock.

The difference here, in comparison with dumb parts
checking in with the NN is that, as in LeBaron’s model, the
NN supplies various transportation strategies and parts,
like LeBaron’s stock traders, can, then, choose their
preferred one. For example, the NN could offer truck and
train strategies in Japan, ship options across the Pacific to
LA, and then train options cross-country to the Midwest
and East Coast of the US, or via ship through Panama
Canal, or around Cape Horn, or even the Northwest
Passage. All of these choices would be constantly updated
by the NN as to speed and cost; smart parts could check
with the NN in timely fashion as much as necessary—the
NN (with or without human help) would be offering
constantly updated IP optimizations about routing op-
tions. In short, smart parts could choose from various IP
options at any given time as their circumstances change.
Each part could develop its own ‘IP-updated’ routing
package of how it gets itself, say, from Japan to the US
West and East Coasts or Europe, and then, finally to its
originating dealer—and change it as needed.

At this stage, the parts know where they are; they
check in with the NN in timely fashion to get the best IP
routing options available. But, they are not yet ‘learning’
smart parts.

3.6.2. Smart parts learning from the neural net and from
each other

Take all of the strategies offered by the prior option and
now let smart parts also learn from other smart parts in
addition to learning from the NN. Again, following
LeBaron’s model, smart-part agents, like LeBaron’s traders,
can take elements of strategies that appear to be working
from other smart-part agents, and also take advantage of
strategies offered by the NN. For example, they could take
(1) a trucking strategy from some other smart part, (2) a
train strategy from another, and then (3) a ship strategy
to LA. Or, learning from the NN, a smart part could (1) land
in LA and then take a train across the US to New York, or
(2) take get to NYC via the Panama Canal or (3) by Cape
Horn, or (4) via the Northwest Passage. A learning smart
part could take IP-based routing strategies from other
smart parts who have apparently benefited from them, or
directly from the NN. Smart parts could, thus, compare
choice preferences learned by other smart parts with
those offered by the NN. Each part could then create its
own unique transportation strategy.
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Since it is an electronic market, space availability at a
given price could change minute by minute; the market
could be in constant flux. Some parts could gain
advantage by locking in good strategies found earlier by
other smart parts. Other parts could wait for last-minute
space choices available at very cheap rates. Parts could
start by wanting a cheap route strategy, but if possible
delay is too much of an issue, they could change toward a
faster, more expensive, and more guaranteed routing
strategy. Parts might have to check in with their
manufacturer and final destination parties before deciding
on a final strategy. Needless to say, all of this is going on in
‘electronic’ time in the computer and via its connections
to the various other relevant parties.

As you can see, what is optimal for a smart part may
not be optimal for IP-based ‘bundling’ strategies of
transportation space sellers. In fact, a part may want to
opt out of its manufacturer’s bundling strategy to jump
into a quick or cheap option coming available to it
unexpectedly—e.g., it is waiting in some storage yard for
a ‘bundling’ strategy to materialize when a last-minute
spot on a just-about-to-depart ship opens up. Here is
where what is good from an overall bundling perspective
jostles with what works best for a choiceful smart part.

3.6.3. Smart parts with grouping capability
In general, shipping firms have the advantage of buying

in advance and in volume, and thereby getting cut-rates.
They also have EM bundling options. Parts trying to buy
space individually have no such advantage. Yes, parts do
have the advantage of taking the ‘long tail’ approach
(Anderson, 2006) of looking for micro-niche (idiosyn-
cratic) advantage. This is what people do when they
search for cheap airplane seats and hotel rooms at the last
moment—because the space is about to go unused and
the particular individual has the flexibility to make unique
last-minute schedule changes. Smart parts can also try to
take advantage of this.

But, they could also have the option of self-organizing
into emergent groups by checking preferred transporta-
tion strategies with each other. They could ‘bundle’ and
play the bundling game just as the buyers and sellers do.
Those with the same strategy could group together to
generate increased bargaining power and thereby get a
cheaper shipping rate and perhaps even on a faster
transportation route. The NN could be brought into play
here for both grouping and bundling advantage-seeking. It
could constantly search for similar strategy preferences by
parts and then suggest group packaging and bundling
strategies, identify shippers, suggest possible price objec-
tives, and so forth.

3.6.4. Smart parts with full choice
Smart parts now have choices to learn from the

environment, from each other, and to check in with the
NN and/or with people. This is the fully-designed smart
parts model—all choices are available to them to use or
not use. Both parts and NN may benefit by human
guidance at various times. It is possible that humans can
offer better IP-based optimization choices than can the

NN. But note that the full-choice option is a two-edged
sword.

While we do not wish to discount the role of human
intervention at various stages, human monitoring of
millions of parts at any given time is not possible. In the
event of a major typhoon, earthquake, political upheaval,
or whatever, some human advice into the system may be
relevant. With smart parts learning from each other and
running the risk of a negative extreme (see Wycisk et al.,
2008), it may take human intervention now and then to
watch and learn from these and then re-work the
programming of parts and NN.

Furthermore, at this point, no one in the literature has
suggested that smart parts can read newspapers. For some
time to come, then, it seems likely that people will have to
read the newspapers and then inform the NN and smart
parts of announced strikes, reported effects of floods and
storms, political upheavals, possible typhoons and hurri-
canes, and so on. Quite possibly this could take the form of
humans coding newspaper information in to forms usable
via the NN.7 Human intervention offers the best means to
prevent smart parts running afoul of expected transporta-
tion stoppages.

3.6.5. Speculation
In LeBaron’s model there are only traders who use

weightings of six kinds of market information to make
their investments. There is no allowance for ‘anticipating’
or ‘guessing’ or ‘hoping’ in a more speculative nature about
whether the market will go up or down. Suppose we allow
speculation. According to Pagh and Cooper, (1998) the so-
called ‘full speculation strategy’ is traditionally the one
most often used by firms. In logistics, full speculation of
all manufacturing and logistics operations is based on
inventory forecasts. This view of speculation holds that
decisions pertaining to the form and movement of goods
should be made at the earliest possible time to reduce
supply-chain costs. The order-point of retailers or custo-
mers is positioned at the lowest level downstream in the
supply chain. All manufacturing operations are performed
prior to the product and are differentiated by location.
Through a decentralized distribution system, the product
is stocked close to customers, and distributed. Speculation
makes it possible to gain economies of scale in manu-
facturing and logistics operations, and limit the number of
stock outs.

In the case of CALS, it is a question of just how ‘human’
smart parts are going to be allowed (i.e., programmed) to
get. Shippers can speculate in the form of reserving more
space than they need and then re-selling it at a higher
price. Obviously there is risk in this. Shippers could also
speculate by withholding space in the hope that it would
drive the price up. We actually start with this in Option 1.

We pretty much have to assume that if there is not an
explicit means of preventing speculation, shippers, sellers
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and smart parts could get into the speculation game. The
use of an eBay-type NN auction house by shippers and
sellers could easily have a speculative component em-
bedded. However, smart parts—no matter how smart they
are—are not smart enough to beat humans at the
speculation game.

The Federal Reserve Bank in the US is generally averse
to attempts at ‘managing’ stock markets—though the Fed
did intervene during the LTCM crash (Lowenstein, 2000)
and there is considerable discussion about the advisability
of Fed intervention during the subprime meltdown of
Summer of 2007 (e.g., see Elder, 2007; Gray, 2008;
Landler, 2008; Grynbaum and Stout, 2008). The smart-
parts market more likely would be more of a ‘contrived’
market that key users could collaborate in designing.
Presumably, the primary design feature is to improve
efficiency in parts transportation as opposed to the
money-making feature of stock markets. Whether ship-
pers benefit by fostering smart part speculation could be
tested by computational modelling before the ‘real’ parts
market is put in play. While smart parts could be smart
enough to speculate, designing this out of the smart-parts
market seems like a desirable design objective. But of
course, this may be impossible!

In Table 3 we summarize LeBaron’s use of the NN
model in terms of his formalizations. It serves as the basic
source of information for the traders. We then show a
comparison set that represents how we would apply the
NN model. In the Table we make no changes from
LeBaron’s usage. But, as you can see from the foregoing
discussion, we offer some options that enlarge the role of
the NN model.

Finally, in Table 4, we first show (left side) LeBaron’s
equations defining the total wealth of a particular trader
as it accumulates. On the right-hand side we show our
simplifications as we translate the ‘wealth’ formalizations
into ‘space costs’ as buyers and sellers of space buy and
sell it. The focus here is on how LeBaron uses a GA to allow
traders to adapt to changing circumstances as they
continually seek to accumulate wealth. We also compare
LeBaron’s use of the GA with how we propose to use it for
space traders.

4. Contributions of the design options to logistics goals

Central goals of logistics can be traditionally described
integrated into two main goals: reducing costs, raising
adaptivity of the logistics system (Bowersox et al., 2002).
In the following, we are going to discuss the concept of
CALS regarding its contribution to each logistics goal.

4.1. Reducing costs

4.1.1. Technology-based reductions
From a financial point of view, investing in, and

implementing, modern technologies has to be connected
with a positive cost-benefit analysis. This gains even more
relevance, given that logistics managers have to face the
reality that their decisions are always made in the context
of the key data and management ratios upon which their

firm places most value (Bowersox et al., 2000, 2002). Since
the main anticipated benefit from creating a CALS lies in
its adaptivity, a simple cost-benefit analysis might miss
important strategic value aspects of CALS like flexibility to

ARTICLE IN PRESS

Table 3
Neural net model usage translated from stock trading to space buying/
selling.

Stock formula Space formula

aðzt ;wjÞ aðzt ;wjÞ
z consists of all available
information at time t; (not shown
are the six kinds of market
information LeBaron has the NN
updating at each time period)

z consists of all available
information at time, t, about the
cost and availability of truck,
train, and ship space, + travel-
time from beginning to end of
each leg of a truck/train/ship
journey

w represents the number of
weighting parameters preferred
by a trader with respect to
elements of each specific buy/sell
rule, j

w represents some number of
weighting parameters preferred
by a space buyer/seller with
respect to elements of each rule, j

Each rule, j, in the set, aj, is kept
up to date by the NN with respect
to the best information about the
market:

Each space-buying rule, j, in the
set, aj, is kept up to date by the
NN with respect to the best
information available about the
‘space market’

hk ¼ g1ðw1;kzt;k þw0;kÞ hk ¼ g1ðw1;kzt;k þw0;kÞ
hk ¼ represents one hidden layer,
with k connections to the
equations in information-set zt;

To begin, we keep the NN model
simple, as does LeBaron; we
specify only one hidden layer, hk

While NN models may have
multiple hidden layers, LeBaron
uses only 1 hidden layer
consisting of 6 elements; each
information equation updated by
the NN model is made available
to all traders, but may be
differentially weighted by each
trader

Our information set, zt,k would
include information equations
for:
a) Choice, timing, speed of trucks
b) Choice, timing, speed of trains
c) Choice, timing, speed of ships

With NN, w represents weights
attached to NN network
connections any given trader
may use to create a rule

With NN, w represents weights
attached to NN network
connections comprising the
rule(s) any given trader may use
to create a rule; w fully describes
the rules (and weights of
elements of rules) comprising the
dynamic trading strategy of each
buyer or seller of space.
While Table 1 mirrors the
situation where human buyers/
sellers of transportation space
buy/sell large amounts, starting
with Option 4.2, we add
individual cars (or containers) as
buy/sell agents in addition to the
human buyer/sellers of large
chunks of space

! In Option 2, the NN watches the space market and ‘tells’ ‘dumb’
smart-part space buyers where the best seller prices and timings
are–parts are dumb and passive

! In Option 3, we allow for the possibility that buyers/sellers will enter
into an eBay-style auction market

! In Option 4, smart parts, like human traders can chose to check with
the NNmodel at times they select, rather than being ‘told’ what to do
by the NN

! As noted in the text, smart parts learn as they progress across time
periods in the manner of agents in a genetic algorithm
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respond to changing competitive conditions and/or chan-
ging corporate strategies. Therefore, beside the examina-
tion of strategic electronic auction-market options
resulting for CALS, one major task for future research lies
in defining their relative economic value for a particular
company involved in a smart-part CALS.

On the one hand, we have the hardware costs of
implementing smart parts into logistics systems, such as
costs of:

! RFID tags; chips with more or less memory and
intelligence capabilities; one-time-only or reusable
chips;

! servers located in various places; centralized (super)
computers; owned or rented; software development;

! associated with one-time equipment implementation;
employee training; and

! communication between chips and computers; costs of
private transmission stations (e.g., like private cell-
phone towers).

Hardware costs have sunk dramatically within the past
few years. Especially the costs for RFID tags as a substitute
for the traditional bar code are nowadays more and more
established in logistics. The realization of CALS in any
fashion seems not far away.

On the other hand, we have many kinds of cost savings
through implementing the idea of CALS, as for example,
reduced costs of:

! salaries, coordination, interaction time among human
traders; human scheduling, observation, management;

! being too slow, or not being not able to, adapt to
unexpected changes in transportation environments;
reduction of delays; reduced costs of customer com-
plaints, loss of customers;

! more timely and improved routing; better optimiza-
tion of micro-costs (see below); and

! herding behaviour; the bullwhip effect (see below).

There are additional possibilities of cost savings via the
implementation of CALS. These result from different kinds
of strategic flexibility, such as the flexibility to switch
routes or transportation carriers, or the higher likelihood
to stick to arranged delivery periods. The bottom line
within this discussion should be: does joining a smart-parts
self-organizing computational auction market, as we
suggest, actually offer cost, speed-of-transportation, and
adaptation-to-environmental-contingencies advantages,
as compared to existing management science IP-based
methods?

4.1.2. Micro-pricing
In real stock markets and in LeBaron’s model, trading

comes at a cost—traders always sell below and buy above
the current market price; there are also broker fees.
Should smart-part routing choices have fees attached?
Should parts be allowed to make changes at no cost?

The inherent market characteristics of CALS offer the
chance to combine the exchange of information between
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Table 4
Translating the ‘wealth’ formalizations into ‘space costs’ for CALS.

ŵi;t ¼ ðpt þ dtÞsi;t%1 þ ð1þ rf Þ bi;t%1 ci;t ¼ ðpt þ dtÞ si;t%1

si;t ðptÞ ¼ ajðpt ; ItÞbŵi;t si;tðptÞ ¼ ajðpt ; It Þĉi;t
where ŵt;i is total wealth of a

trader; b ¼ time discount rate;
pt ¼ market clearing price of a
stock and dt ¼ dividend price

ĉi;t is total cost of space (including
time considerations) purchases by
buyers. For buying/selling
transportation space, we delete b
(time discount rate) and b (risk-free
bond) from LeBaron’s equations

Dðpt Þ ¼
PI

i¼1
si;tpt DðptÞ ¼

PI

i¼1
si;tpt

LeBaron’s aggregate demand
function is presented above.

si,t ¼ clearing price in the buyer/
seller of space market

In LeBaron’s model, setting
D(pt) ¼ 1 finds the total market
equilibrium price pt

D remains as the aggregate space-
demand function; pt is the total
market equilibrium price

Since there is no analytical way
because of the many nonlinearities,
it is done computationally—this
because each trader can alter its
rules at any time
LeBaron’s traders: traders evolve via
a GA. As time periods progress, the
NN network weightings, wj,
comprising their rules are altered
in three ways:

Buyers/sellers of space: our time
periods are defined as decision
points: (a) in humans buying space
on a means of transportation; or (b)
smart parts changing from truck to
train to ship, as necessary. There is
no logic for mutation or new
weight. We have:

1. Mutation: a rule weighting is
randomly selected and altered
by an amount between [%.25,
.25]

2. New weight: a new rule weight
is randomly drawn to replace
one existing weight

1. Human learning processes:
learning based on current
industry methods

2. NN learning processes: which
can include insertion of
human-created optimization
algorithms

3. Smart part learning processes: as
our Options progress toward
‘learning’ smart parts, they
have options to learn from the
NN as needed, and/or learn
from each other (i.e.,
crossover), or learn from
humans

4. Smart part crossover: smart
parts can learn transportation
strategies by cost and/or time;
they can learn segment by
segment (e.g., truck, train, or
ship schedules and costs), or
comprehensive routings, and/
or decided priority given to NN
vs. other smart parts or
humans

Crossover: two traders randomly
selected; an NN branch of one
trader replaces the equivalent
branch in the other. LeBaron’s
crossover partners are chosen
randomly, but one could allow one
to choose the other based on the

latter’s fitness, i.e., total wealth, ŵ

! In Option 5, smart parts can check in with the NN to select routing
and cost strategies and choice points (changing transportation
modes), when and where, as necessary

! In Option 6, smart parts can learn from each other (our version of
crossover) or the NN

! In Option 7, smart parts can learn to group together to make volume
buys, lower cost, get special routing timings, etc

! In Options 8, 9 smart parts have full choice to apply the LeBaron
agent-based computational modeling approach to learn from
whatever sources prove valuable for minimizing ĉi;t .
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two or more smart-part ‘traders’ with a micro-pricing
strategy (Uckelmann et al., 2008). The infrastructure (e.g.,
RFID chips) as well as the processing (e.g., communica-
tion, computing) does cost time and money. It also costs to
run the smart-parts electronic auction market and to set
up, manage, and update the IP-based strategies supplied
by the NN. Today, the information handled between
agents in a CALS is for free. No charge is requested for
offered information (e.g., regarding status of the stock in a
fruit supply chain). The prospective benefit for all agents
(information-offering agents as well as information-
requesting agents) is based on the expectation of the
more profitable and more robust logistic processes that all
participants benefit from. But the profit-sharing model
lying behind these structures of CALS is asymmetric: For
example, food producing companies are forced by the
retailers to implement RFID-technology so as to reduce
the handling costs for the retailers and to gain more
information for managing their supply chains (e.g.,
decreasing the risk of being out of stock and/or reducing
the cost of capital). The food producing companies might
have benefits for their logistics management, but they also
have to bear the investments and maintenance of the
infrastructure without getting any compensation—be-
cause the fair share of costs and benefits for the retailers
cannot determined properly.

If one combines a smart parts CALS with micro-pricing,
then a cost-sharing model can be run, which allows a
precise market-based calculation of the costs and benefits
to all CALS participants. This micro-pricing is an informa-
tion-on-demand and pay-per-information driven model
guided by the idea that information requested by one
agent will be offered by another agent only for a certain
micro-price (e.g., 0.001 cent per information bit). There-
fore, the benefit resulting from information one agent is
demanding for a certain purpose can be shared and
induces a minimal cost compensation for the agent that
gained by offered this information. With this micro-
pricing feature of smart parts, CALS can become real
‘markets’ because, in addition to the core function of
‘logistic’ functions (i.e. supply, coordination, and distribu-
tion), better pricing is obtained: The agent offering
information can calculate its costs and its price for a
specific kind of information and the agent receiving the
information can also make a similar calculation. In doing
so, both agents reflect the market situation regarding the
value of information and its driving factors (e.g., competi-
tion). With this feature of micro-pricing, CALS would
become fully functioning electronic markets with equili-
brium micro-pricing.

4.2. Reducing the bullwhip effect

In our earlier review of the logistics literature, we
noted the reality of the bullwhip effect—typically leading
to unwanted oversupply or undersupply—this issue is also
discussed by Wycisk et al. (2008). The study by Moyaux et
al. (2006, 2007) proposes the mechanism of speculation to
reduce the bullwhip effect within supply chains. One of
the things we learn from LeBaron’s (2001c) stock-market

model is that crashes occur when agents lose their
heterogeneity—they all end up with the same ‘buy/sell’
rule and market inevitably crashes. This occurs because
they connect, communicate, and learn from each other.
And, we know that the cheaper and easier it is to connect
the more likely crashes, like plagues, will occur. Worse,
the digital age of free electronic communications readily
exacerbates connectivity.

Our penultimate option, then, is to constantly monitor
(via NN or humans) the heterogeneity of smart parts’
choices. As they lose their heterogeneity, at some point
they are reprogrammed to behave like new parts—that is,
the parts’ heterogeneity is increased. Specifically, model
agents (traders) die off at some rate and are replaced by
new agents having their attributes defined by random
draw—thereby assuring some re-creation of heterogene-
ity. There is clearly an issue here about what the ratio
between the two rates is:

1. On the one hand, we have a rate of creating agent
heterogeneity;

2. And on the other we have a rate at which smart parts
learn similar transportation strategies and thereby lose
their heterogeneity.

Starting with Option 6, as parts let go of the NN in favour
of learning from each other, they run the risk of running
into negative extremes. These are a problem; in the worst
case scenario, occurring when all the containers (smart
parts) wanting transportation aim for the same ship, most
could be left on the dock looking for another option.
Choices are to let the NN and/or people monitor, or let the
parts also take on the job of monitoring, so as to avoid
tipping points.

! Perhaps one can assume that self-organizing smart
parts can smooth the risk of the bullwhip effect
through their own self-regulating dynamics. Thus,
parts can keep checking for increased similarities in
their strategizing; probably they could do this best by
checking in with the NN, which would be better at the
overall market-monitoring job.

! Another choice is to give the NN more dominance in
using its monitoring system of the smart- parts logistic
dynamics so as uncover possible negative tipping
points, The NN could then inform parts as to how best
to change their routing strategies so as to forestall the
tipping point—unless of course it appears to be a
positive one.

! Bottom-line: a ‘tipping point monitoring system’ has to
be designed, whether it is used by parts, NN, or people.

One would have to do some serious computational
experimentation with our proposed ‘LeBaron-style’ model
‘in the lab’ so to speak, to see whether smart parts on their
own, or with the help of the NN can avoid tipping points.
Or, is human intervention the only solution?
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5. Conclusion

Modern technologies, such as RFID chips, GPS, sensor
networks, and microcontrollers, offer never-before seen
learning abilities to containers, cars, and other parts and
work-pieces requiring transportation via logistics net-
works. After reviewing the current vision of logistics
networks, we outline the elements of complex adaptive
systems, their self-organization processes, and outcomes.
We then argue that future international supply networks
are best understood as complex adaptive logistics systems
(CALS) markets between ‘smart parts’ and transportation
firms. One major characteristic of CALS is their ability to
adapt to changing environmental requirements. This
ability is based on learning features enabled through the
aforementioned technologies.

Interactions between smart parts and transportation
firms are best seen as an electronic auction market in which
buyers and sellers of transportation space move toward
their best price in a buyer/seller auction market. To assure
the world-wide functionality and efficiency of CALS, as a
smart-parts transportation market, we suggest an agent-
based computational market design based on LeBaron’s
(2003, 2006) stock-market model; it is a rich mixture of
genetic algorithm, neural network, and other agent-based
computational methods. After a short review of electronic
auction markets, agent intermediaries, and management
science approaches to integer programming-based opti-
mization approaches, we introduce and define the
essential features of LeBaron’s model as a basic scheme
for an agent-based modelling of a world-wide smart-parts
electronic auction market.

Given that parts may be more or less smart, markets
more or less complex, and self-organizing CALS probabil-
istically subject to the bullwhip effect, we then outline
nine logistics-market options in addition to the baseline
simulation of an electronic auction market operated only
by humans. Some options call for more smart-part
learning and adaptivity to unexpected environmental
contingencies than others.

Being aware of these different options of CALS is,
however, just the first step in the process of planning and
managing them. Questions regarding the inherent sys-
tems dynamics, economical costs, strategic advantages or
disadvantages, and organizational implications remain.
Referring to theories of complexity, Wycisk et al. (2008)
point out the downside risks of CALS; due to their
inherent complexity, some extreme outcomes of the
autonomous acting smart parts within CALS has to be
anticipated—both positive and especially, negative.

From a financial point of view, investing and imple-
menting modern technologies has to be connected with a
positive cost-benefit analysis. This gains even more
relevance, given that logistics managers have to face the
reality that their decisions are always made in the context
of the key data and management ratios upon which their
firm places most value (Bowersox et al., 2000, 2002). Since
the main anticipated benefit from creating a CALS lies in
its adaptivity, a simple cost-benefit analysis might miss
important strategic value aspects of CALS like flexibility
to respond to changing competitive conditions and/or

changing corporate strategies. Therefore, beside the
examination of strategic electronic auction-market op-
tions resulting for CALS, one major task for future research
lies in defining their relative economic value for a
particular company involved in a smart part CALS. Bottom
line: does joining a smart-parts self-organizing computa-
tional auction market, as we suggest, actually offer cost,
speed-of-transportation, and adaptation-to-environmen-
tal-contingencies advantages, as compared to existing
management science IP-based methods?

Another topic of concern lies in the location of smart
parts’ learning. Are chips in smart parts only sensors—like
nerve endings in our fingers? Or, do chips hold some
‘brain-like’ intelligence? Normally we think of learning as
within people, among people, within firms, and among
firms. Learning can be both a function of human capital
(at the nodes of a network) and social capital (learning in
and by the network). In brains, Fuster (1995) tells us that
intelligence is in the synaptic links. In firms, intelligence is
in both the nodes (people) and in the social capital
network (Burt, 1997). As we move to smart part CALS,
intelligence and learning can be at the RFID chip level in
parts, in the central computer with which they commu-
nicate, and in their linkages to other smart parts, the NN,
firms, and to humans. The optimal location of the various
kinds of learning becomes rather complicated as we move
toward the LeBaron style computational modelling of a
world-wide CALS with varying choices as to how smart
parts are. The strategic-option value of various options can
range considerably in cost and complexity.
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