
Main Concepts of Networks of

Transformation Units with

Interlinking Semantics?

Dirk Janssens1, Hans-Jörg Kreowski2, and Grzegorz Rozenberg3

1 University of Antwerp
Department of Mathematics and Computer Science

Antwerp, Belgium
Dirk.Janssens@ua.ac.be

2 University of Bremen
Department of Mathematics and Computer Science

Bremen, Germany
kreo@tzi.de

3 Leiden University
Leiden Institute of Advanced Computer Science

Leiden, The Netherlands
rozenber@liacs.nl

Abstract. The aim of this paper is to introduce a modelling concept
and structuring principle for rule-based systems the semantics of which
is not restricted to a sequential behavior, but can be applied to various
types of parallelism and concurrency. The central syntactic notion is that
of a transformation unit that encapsulates a set of rules, imports other
transformation units, and regulates the use and interaction of both by
means of a control condition. The semantics is given by interlinking the
applications of rules with the semantics of the imported units using a
given collection of semantic operations. As the main result, the inter-
linking semantics turns out to be the least fixed point of the interlinking
operator. The interlinking semantics generalizes the earlier introduced
interleaving semantics of rule-based transformation units, which is ob-
tained by the sequential composition of binary relations as only semantic
operation.

1 Introduction

In this paper, we introduce networks of transformation units with interlinking se-
mantics as a modelling concept and structuring principle for rule-based systems
the semantics of which may be non-sequential. The key concept is a transforma-
tion unit encapsulating a set of local rules and importing other transformation

? Research partially supported by the EC Research Training Network SegraVis (Syn-
tactic and Semantic Integration of Visual Modeling Techniques) and by the German
Research Foundation (DFG) as part of the Collaborative Research Centre 637 Au-
tonomous Cooperating Logistic Processes — A Paradigm Shift and its Limitations.

published in:
Kreowski, H.-J.; Montanari, U.; Orejas, F.; Rozenberg, G.; Taentzer, G. (eds):
Formal Methods in Software and Systems Modeling
Vol. 3393 of Lecture Notes in Computer Science, Springer, 2005, pp. 325-342.

units. Moreover, each transformation unit has a control condition that regulates
the application of the local rules and the interaction with the imported compo-
nents. If a set of transformation units is closed under import, its import structure
forms a network. In this way, large sets of rules can be organized and structured
in such a way that each local unit may contain only a small set of rules while
the effects of other units can be used by importing them.

In [4–7] transformation units have been introduced for graphs as well as for
more general configurations as underlying data structures and provided with a
purely sequential semantics. It is obtained by interleaving rule applications and
the semantics of the imported components in such a way that the control con-
dition is obeyed. In this paper, we generalize the framework of transformation
units such that also non-sequential systems can be specified. For this purpose,
we replace the underlying domain of binary relations on configurations by a do-
main of more general semantic entities and the sequential composition of binary
relations by a set of arbitrary operations on semantic entities. But to be able to
use set-theoretic operations and their properties, we assume that the domain of
semantic entities is the power set of a set of semantics items.

The operations on semantic entities may be chosen as sequential, parallel or
concurrent compositions or as any other operations one wants to use to model
the type of semantics one is interested in. We show that the new framework
covers nicely elementary net systems with their non-sequential processes as well
as rule-based systems with sequential and parallel derivations, covering Chom-
sky grammars and various types of graph grammars in particular. This means
that not only these approaches can be seen in a unified framework, but are also
provided with a common structuring principle as a novel feature.

The paper is organized in the following way. In the next section, the ba-
sic notions and notations of transformation units with interlinking semantics
are introduced. Networks of transformation units and their iterated interlinking
semantics are studied in Section 3. Finally, the main result of this paper is for-
mulated in Section 4. It states that the iterated interlinking semantics is the least
fixed point of the interlinking operator if the used semantic operations and the
control conditions are continuous. As running examples, we discuss elementary
net systems and binary relations as semantic entities of grammatical systems of
various kinds. Because of lack of space, the proofs are omitted.

2 Transformation units with interlinking semantics

In this section, we introduce the notion of transformation units with interlinking
semantics, which generalizes the formerly defined interleaving semantics.

The basis is the notion of a semantic domain (2.1) consisting of a set of se-
mantic items together with operations on semantic entities being sets of seman-
tic items. Typical semantic items are derivations, computations, and processes;

typical operations are sequential and parallel compositions of derivations, com-
putations, and processes or their embedding into larger context. To be able to
deal with semantic entities, a semantic domain is first equipped with rules yield-
ing a rule base (2.2) where a rule is some abstract syntactic feature that specifies
a semantic entity. In many examples, rules rewrite some kind of configurations
defining direct derivations and computation steps or rules are actions and events
that describe elementary processes. Therefore, a set of rules provides a set of
semantic entities the union of which may be closed under the operations of
the semantic domain. For example, if one applies the sequential composition to
direct derivations and computation steps, one gets all derivations and computa-
tions resp. Or if one applies certain kinds of parallel composition to elementary
processes, one obtains all parallel processes of a set of actions or events. Often
this is not enough to describe the behavior of a system. In addition, one may
like to choose certain initial and terminal configurations or to regulate the rule
applications by imposing a certain order or in some other way. For this purpose,
a rule base is additionally equipped with control conditions (2.3) that allow one
to restrict semantic effects. Formally, a control condition specifies a semantic
entity depending on some environment which associates semantic entities to a
given set of identifiers. The idea of this is the following. A control condition as a
syntactic feature may use the identifiers to demand or forbid the applications of
certain operations to the semantic entities associated to the identifiers and may
restrict the free operational closure of these entities in this way.

2.1 Semantic domains

While interleaving semantics is based on the sequential composition of binary
relations, the generalization employs an arbitrary set of operations on arbitrary
semantic entities. But to keep the technicalities simple, we assume that the se-
mantic entities are the subsets of a set of semantic items such that we have
union, intersection, inclusion and all other set-theoretic operations and all their
properties for free.

A semantic domain D = (X,OP) consists of a set X of semantic items and
a set OP of (partial) operations on the power set 2X of X.

The arities of the operations can vary. The set of operations with arity k ∈ N

is denoted by OPk. The elements of 2X are called semantic entities.

Such a semantic domain provides the operational closure for every set of
semantic entities, which can be defined in the usual recursive way.

Let M ⊆ 2X . Then the operational closure of M, OP∗(M) ⊆ 2X , is recur-
sively defined by

(i) M ∪ OP0 ⊆ OP∗(M), and
(ii) op(t1, . . . , tk) ∈ OP∗(M) for op ∈ OPk and t1, . . . , tk ∈ OP∗(M).

Starting from the nullary operations and the given semantic entities, the oper-
ations are applied repeatedly to all semantic entities that are obtained in this
way ad infinitum. The operational closure yields a set of subsets. If one wants
to consider the union of them, this may be denoted by

⋃
OP∗(M).

Examples

As running examples, we discuss elementary net systems with processes as se-
mantic items (see, e.g., [3, 8, 13]) and binary relations on configurations like words
and graphs as the semantic entities of grammatical rules (see, e.g., [12, 9]).

Elementary net systems. Let N = (B, E, F) be some contact-free elementary
net where B is a set of conditions, E is a set of events, and F ⊆ (B×E)∪(E×B)
is a flow relation. Then one may consider all processes on N as semantic items.
More formally, PROC (N) is the set of all pairs proc = (N, p) where N =
(B, E, F) is an occurrence net, i.e. an acyclic and conflict-free net, and p : N → N
is a net morphism which is injective on cuts.

In particular, each acyclic and conflict-free subnet N of N together with
the inclusion inclN : N → N yields a process. As a case C ⊆ B can be seen
as a subnet sub(C) = (C, ∅, ∅) with the empty set of events and the empty
flow relation, C induces a particular process proc(C) = (sub(C), inclsub(C)).
In this way, the set of cases can be seen as a subset of the set of processes.
Moreover, an event e ∈ E (together with its pre- and post conditions) induces a
subnet sub(e) = (•e∪ e•, {e}, (•e×{e})∪ ({e}× e•)) which is acyclic due to the
contact-freeness of N and conflict-free by definition. Hence each event provides
an elementary process proc(e) = (sub(e), inclsub(e)).

There are two natural binary operations on processes: parallel and sequential
compositions. Given two processes proc = (N, p) and proc′ = (N ′, p′) with
p(N) ∩ p(N ′) = ∅, then the parallel process is given by proc + proc′ = (N +
N ′, <p, p′>) where N + N ′ is the disjoint union of N and N ′ and <p, p′> is the
induced net morphism defined as p on N and as p′ on N ′.

To define the sequential composition, we need the notion of input and output
conditions of an occurrence net N. The set of conditions with indegree 0 is de-
noted by in(N) and the set of conditions of outdegree 0 by out(N). Then the se-
quential composition of two processes proc = (N, p) and proc′ = (N ′, p′) requires
that p(out(N)) = p′(in(N ′)) and that there is no further overlap between p(N)
and p′(N ′). The result is given proc◦proc′ = (N+N ′/out(N) = (in(N ′), <p, p′>)
where the occurrence net is the disjoint union of N and N ′ which is merged in
each condition c of N and c′ of N ′ with p(c) = p′(c′). The net morphism <p, p′>
is defined as in the parallel case by p on elements of N and by p′ on elements
on N ′. It is a mapping as p and p′ coincide on the merged conditions. Note that
the sequential composition of processes proc and proc′ is only partially defined
by proc ◦ proc′ if this is a process again.

Based on these preliminaries, we can consider sets of processes on N as
semantic entities and extend the binary operations elementwise to such sets.

Moreover, each condition c ∈ B provides a nullary operation ĉ = {(proc({c})} =
{(sub({c}), inclsub({c}))} containing as only semantic item the process induced

by {c}. Altogether we get the semantic domain D(N) = (PROC (N),OP(N))
with OP(N) = {+, ◦}∪ {ĉ | c ∈ B}, which is associated to the given elementary
net N.

It should be noted that the set of processes corresponding to cases C ⊆ B is
just the closure of the nullary operations under parallel compositions. Moreover,
this set is trivially closed under sequential composition because we have obviously
in(sub(C)) = C = out(sub(C)) such that the only defined sequential composition
is proc(C) ◦ proc(C) and yields proc(C). Another significant operational closure
is considered in the next subsection.

Binary relations. Let K be a set of configurations like strings, trees, or graphs.
Then the subsets of K × K can be considered as semantic entities describing,
for example, input/output relations.

There is always the sequential composition R◦R′ of relations R, R′ ⊆ K×K
given by R ◦ R′ = {(x, z) | (x, y) ∈ R, (y, z) ∈ R′ for some y ∈ K}.

If K has got some binary operation · : K×K → K, this gives rise to a parallel
composition R ‖ R′ given by R ‖ R′ = {(x · x′, z · z′) | (x, z) ∈ R, (x′, z′) ∈ R′}.

A typical example is the concatenation of strings if K is the set A∗ of all
strings over an alphabet A. In this case, we also get an interesting unary op-
eration context that embeds a given relation R into all possible contexts, i.e.
context(R) = {(xuy, xvy) | (u, v) ∈ R, x, y ∈ A∗}.

2.2 Rule bases

A rule base equips a semantic domain with rules as a first syntactic feature. A
rule provides a semantic entity describing basic computations.

A rule base DR = (X,OP ;R, =⇒) consists of a semantic domain (X,OP),
a class of rules R, and a rule application operator =⇒ being a mapping =⇒:
R→2X which assigns a semantic entity =⇒

r
∈ 2X to each r ∈ R.

As a rule specifies a semantic entity, a set of rules, P ⊆ R, provides a set of
semantic entities, {=⇒

r
| r ∈ P}, which can be closed under the operations of the

semantic domain. Accordingly, we denote OP ∗({=⇒
r

| r ∈ P}) by OP∗(P) for

short. In this way, a set of rules P specifies a semantic entity
⋃

OP∗(P), which
contains all semantic items that are obtained by the operational closure of all
applications of rules in P.

Examples

Elementary net systems. The events of N may be considered as rules. Each
event e ∈ E induces a basic process proc(e) such that the singleton set {proc(e)}

is a suitable semantic interpretation of an event as a rule. In other words, there

is a rule base DR(N) = (PROC (N),OP(N); E, Proc : E → 2PROC (N)) with
Proc(e) = {proc(e)} for all e ∈ E.

As proc(e) ∈ PROC (N) for all e ∈ E and as the processes on N are closed
under the operations in OP(N), we get

⋃
OP(N)∗(Proc(E)) ⊆ PROC (N)

for Proc(E) = {Proc(e) | e ∈ E}.
Conversely, let proc = (N, p) with N = (B, E, F) be a process on N. If

E = ∅, then proc equals proc(B) which is the parallel composition of all ĉ for
c ∈ p(B).

For E 6= ∅, we show by induction on the number of elements in E that
proc ∈

⋃
OP(N)∗(Proc(E)).

If E = {e}, then proc is the parallel composition of proc(p(e)) with all ĉ for
c ∈ p(B) − in(sub(p(e)). This case can be used as induction base.

If E has more than one element, then it is well-known that proc is the sequen-
tial composition of two subnet processes proci = (Ni, pi) with Ni = (Bi, Ei, Fi)
for i = 1, 2 and E1 6= ∅ 6= E2. In particular, E1 and E2 are smaller sets than E
such that we may assume by induction that proc1 and proc2 are in the opera-
tional closure of Proc(E). Because of proc = proc1 ◦ proc2, proc is also in the
closure.

Altogether, we have proved

⋃
OP(N)∗(Proc(E)) = PROC (N).

Binary relations. Grammatical rules and all rules like these can be applied
to some kind of configurations and derive configurations from them. Such a rule
provides one with a binary relation of configurations the elements of which are
often called direct derivations or computation steps.

A well-known explicit example of this type is the rule of a semi-Thue system
or Chomsky grammar p = (u, v) for u, v ∈ A∗ and some alphabet A. This rule
specifies a binary relation −→

p
⊆ A∗ × A∗ which is defined in infix notation by

xuy−→
p

xvy for all x, y ∈ A∗.

Similarly, all kinds of graph transformation rules define a binary relation on
the proper kinds of graphs by means of direct derivations.

If a rule r is composed of a pair (L, R) of configurations as in the case of the
rules (u, v) with u, v ∈ A∗, then there is a simple alternative to the relation of
direct derivations. This is the singleton set simple(r) = {(L, R)}.

Let us first consider the rule bases DR1(A) = (A∗ ×A∗,OP1; A
∗ ×A∗,−→)

with OP1 = {◦} and DRi(A) = (A∗ × A∗,OP i; A
∗ × A∗, simple) for i = 2, 3

with OP2 = OP1 ∪ {context} and OP3 = OP2 ∪ {‖}.
Then the following holds for a set of rules, P ⊆ A∗ × A∗ :

⋃
OP∗

1(P) =
⋃

OP∗
2(P) =

⋃
OP∗

3(P).

Note that the first operational closure is done for the direct derivations of
P while the other two start from the simple relations simple(p) for p ∈ P.
The first equality follows from the obvious fact that context(simple(p)) = −→

p

for all p = (u, v) ∈ P. The second follows from the well-known fact that the
parallel composition can be expressed by context embeddings and sequential
composition, i.e.

(xx′, zz′) = (xx′, zx′) ◦ (zx′, zz′.)

Given a set P of rules, the derivability relation
∗

−→
p

is the sequential closure

of all applications of rules in P, i.e. {◦}∗(−→
P

) with −→
P

=
⋃

p∈P

−→
p

which equals
⋃

OP∗
1(P). In other words, all three rules bases DRi(A) for i = 1, 2, 3 describe

sequential derivability through sets of rules.

2.3 Rule bases with control conditions

A rule base may be additionally equipped with control conditions that allow to
regulate computations. For this purpose, its semantics depends on the environ-
ment given by semantic entities for a set of identifiers.

A rule base with control conditions DRC = (X,OP ;R, =⇒; ID , C,SEM) con-
sists of a rule base (X,OP ;R, =⇒), a set ID of identifiers, a class of control con-
ditions C, and a semantic interpretation SEM which associates each condition
C ∈ C and each semantic mapping Env : ID → 2X , called environment, with a
semantic entity SEM (C, Env) ∈ 2X .

Depending on the environment Env, a control condition C can be used to
restrict the operational closure of a set M of semantic entities by means of the
intersection

⋃
OP∗(M) ∩ SEM (C, Env).

Examples

Elementary net systems. An elementary net becomes an elementary net
system if an initial case is added. The idea of an initial case is that semanti-
cally only processes starting in this case are considered. Initial cases are typ-
ical examples of control conditions. Let Cin ⊆ B be some initial case. Then
its semantics SEM (Cin) consists of all processes (N, p) with p(in(N)) = Cin.
Therefore, the process semantics PROC ((B, E, F , Cin)) of the elementary net
system (B, E, F , Cin) coincides with the intersection of the operational closure⋃

OP(N)∗(Proc(E)) and SEM (Cin), i.e.

PROC ((B, E, F , Cin)) = (
⋃

OP(N)∗(Proc(E))) ∩ SEM (Cin).

Let ID be a set of identifiers and Env : ID → 2X some semantic mapping.
Then the semantics of an initial case can be extended to the environment Env
in a trivial way as a case does not refer to any identifier:

SEM (Cin, Env) = SEM (Cin).

Each elementary net N = (B, E, F) induces a rule base with cases as control

conditions DRC(N) = (PROC (N),OP(N); E, Proc; ID , 2B ,SEM) where SEM
is defined as above. We have shown that this rule base describes elementary net
systems with their processes starting in the initial case as semantics by using the
events as rules and the initial cases as control conditions. In 2.4 the notion of
a basic transformation unit is introduced as a syntactic modelling concept that
allows one the use of rules and control conditions explicitly.

Binary relations. In grammatical systems, the most frequently used kind of
control condition is the choice of start symbols or some other configurations as
axioms to begin derivations and the choice of terminal alphabets to describe
the configurations at which derivations may end. For example, given an alpha-
bet A, each pair (S, T) with T ⊆ A and S ∈ A \ T specifies a binary rela-
tion SEM ((S, T)) = {S} × T ∗ ⊆ A∗ × A∗. The intersection of this relation
with the derivability relation of a set of rules, P ⊆ A∗ × A∗, contains pairs
(S, w) where S derives w and w is terminal. In other words, the intersection

(
⋃

OP∗
1(P)) ∩ SEM ((S, T)) =

∗
−→

P
∩({S} × T ∗) represents the generated lan-

guage of the Chomsky grammars G = (N, T, P, S) with N = A \ T in a unique
way. This type of control condition is independent of any environment in the
same way as initial cases above:

SEM ((S, T), Env) = SEM ((S, T))

for all Env : ID → 2A∗×A∗

where ID is some set of identifiers. The same remains
true if S is replaced by an arbitrary start word or axiom z ∈ A∗.

In other words, we may extend the rule bases DRi(A) for i = 1, 2, 3 into rule
bases with control conditions:

DRCi(A) = (DRi(A); ID , A∗ × 2A,SEM).

As shown above, they allow one to describe Chomsky grammars and their gen-
erated languages within our framework.

Using a more sophisticated type of control conditions, one can also specify
Lindenmayer systems (see, e.g., [10, 11]) as grammatical systems with a mas-
sively parallel mode of rewriting. We introduce this mode in a general way to
demonstrate the role of identifiers and environments.

Let M ⊆ 2A∗×A∗

be a set of binary relations on A∗, which may be some
kind of basic computations. Then the sequential closure of the parallel closure of
M, {◦}∗({‖}∗(M)), describes massive parallelism on the semantic level as each
step of a sequence consists just of parallel computations. To express this on the

syntactic level of control conditions, one needs access to the members of M for
which we offer two ways. The first possibility is given by a set P ⊆ R of rules
and the second one by a set U ⊆ ID of identifiers together with an environment.
Formally, we introduce the control condition mp(P, U) with

SEM (mp(P, U), Env) = {◦}∗({‖}∗({simple(p) | p ∈ P} ∪ {Env(id) | id ∈ U})),

where mp refers to the term massive parallelism. If P is a set of context-free
rules, i.e. P ⊆ A × A∗, and U is empty, mp(P, ∅) describes the derivation mode
of 0L systems.

In order to combine massive parallelism explicitly with the rule based features
for binary relations, one may consider the rule bases with control conditions
DRCi(A, mp) for i = 1, 2, 3 which are obtained from DRC i(A) by adding the
control conditions {mp(P, U) | P ⊆ R, U ⊆ ID} with SEM (mp(P, U), Env) as
defined above and the combined control conditions A∗ × 2A × {mp(P, U) | P ⊆
R, U ⊆ ID} with SEM ((z, T, mp(P, U)), Env) = SEM (z, T) ∩ SEM (mp(P, U),
Env).

Instead of massive parallelism, there are other derivation modes that allow
one to control the application of grammatical rules. Further typical examples are
≤ k (= k,≥ k) for some k ∈ N requiring that the number of rule applications
for a given set of rules is not greater than k (equals k, is not less than k) and t
(for terminating) requiring that the given rules are applied as long as possible
(see, e.g., [1] for more details).

2.4 Transformation units

A rule base provides the computational framework in which rule-based speci-
fications can be defined. The most elementary kind of such a specification in
our framework is a transformation unit that comprises a local set of rules, a
set of identifiers, and a control condition. The identifiers refer to used or im-
ported components. The control condition regulates the interaction of rules and
imported components.

Let DRC = (X,OP ;R, =⇒; ID , C,SEM) be an arbitrary, but fixed rule base
with control conditions. Then a transformation unit (over DRC) is a system
tu = (P, U, C) where P ⊆ R is a finite set of rules, U ⊆ ID is a finite set of
identifiers, which is called the use or import interface, and C ∈ C is a control
condition.

The unit is called basic if U is empty.

Examples are discussed together with the interlinking semantics at the end
of the next subsection.

2.5 Interlinking semantics of transformation units

Given a semantic entity for each import identifier, i.e. a mapping Imp : U → 2X ,
the transformation unit tu specifies a semantic entity which is constructed as the

operational closure of the semantic entities given by the local rules and the im-
port as far as it meets the control condition. Because the rules and the import
are interlinked with each other through the semantic operations, the resulting
semantic entity is called interlinking semantics which is formally defined as fol-
lows:

INTERImp(tu) = (
⋃

OP∗(P, Imp)) ∩ SEM (C, Imp+)

where OP∗(P, Imp) is the operational closure of the semantic entities given by
the rules and the import mapping, i.e.

OP∗(P, Imp) = OP∗({=⇒
r

| r ∈ P} ∪ {Imp(id) | id ∈ U}),

and where the environment Imp+ : ID→2X is the trivial extension of Imp to
ID , i.e. Imp+(id) = Imp(id) for id ∈ U and Imp+(id) = ∅ otherwise.

Altogether, the interlinking semantics interlinks the semantic effects of the
local rules of the transformation unit with the imported semantic entities accord-
ing to the control condition. It should be noted that the notion of interlinking
semantics of transformation units generalizes the interleaving semantics intro-
duced in [5, 6]. The interleaving semantics concerns binary relations on graphs
or configurations resp. as semantic entities and the sequential composition of
binary relations as only semantic operator.

Examples

In this subsection, only examples of basic transformation units are presented.
Examples of units with import can be found in 3.2 and 3.3.

Elementary net systems. Consider the rule base with control conditions

DRC(N) = (PROC (N),OP(N); E, Proc; ID , 2B ,SEM) for a given elementary
net N = (B, E, F). Then an elementary net system (N, Cin) with a subnet
N = (B, E, F) of N and an initial case Cin can be interpreted as a basic transfor-
mation unit tu(N, Cin) = (E, ∅, Cin) such that the process semantics of (N, Cin)
coincides with the interlinking semantics of tu(N, Cin) using the empty mapping
Empty : ∅ → 2X as the only import mapping.

PROC (N, Cin) = INTEREmpty(tu(N, Cin)).

This follows directly from the definition of the interlinking semantics and the
considerations in 2.3.

Conversely, a basic transformation unit tu = (E, ∅, Cin) induces an elemen-
tary net system N(tu) = (B, E, F (tu), Cin) with F (tu) = F ∩((B×E)∪(E×B))
where the underlying net is the subnet of N induced by E.

Binary relations. Consider the rule base with control condition DRC1(A) as

given in 2.3. It is shown there that the language L(G) = {w ∈ T ∗ | S
∗

−→
P

w} gen-

erated by the Chomsky grammar G = (N, T, P, S) corresponds one-to-one to the

binary relation (
⋃

OP∗
1(P)) ∩ SEM ((S, T)) =

∗
−→

P
∩({S}× T ∗). In other words,

the grammar G gives rise to the basic transformation unit tu(G) = (P, ∅, (S, T))
over DRC1(A) such that its interlinking semantics coincides with the gener-
ated language L(G) up to representation. According to 2.2, this remains true if
DRC1(A) is replaced by DRC2(A) or DRC3(A).

Similarly, many other kinds of grammars, like for example tree and graph
grammars, can be seen as basic transformation units such that the generated
languages correspond to the interlinking semantics if one chooses the set of con-
figurations, the set of rules, the rule application operator, single configurations
as axioms and terminal configurations properly.

As a Chomsky grammar, an 0L system G′=(A, P, z) with P⊆A×A∗ and
z ∈ A∗ can be modelled as the basic transformation unit tu(G′) = (P, ∅, (z, A,
mp(P, ∅))) over one of the rule bases with control conditions DRC i(A, mp) for
i = 1, 2, 3 such that the generated language L(G′) corresponds again to the
interlinking semantics of tu(G′).

2.6 Monotony of the interlinking semantics

The interlinking semantics depends on the imported semantic entities. If they
are replaced by larger sets, the environment of a transformation unit increases
automatically. The interlinking semantics and the operational closure are also
increasing if the control condition and the operations are monotone. This helps
to show in the following sections that the interlinking semantics is a fixed-point
semantics.

An operation op ∈ OPk for some k is monotone if op(t1, . . . , tk)⊆op(t′1, . . . , t
′
k)

for all ti, t
′
i ∈ 2X with ti ⊆ t′i and i = 1, . . . , k. Accordingly, a set of oper-

ations is monotone if each of its elements is monotone. A control condition
C ∈ C is monotone if SEM (C, Env) ⊆ SEM (C, Env′) for all environments
Env, Env′ : ID → 2X with Env(id) ⊆ Env′(id) for all id ∈ ID .

Observation 1 Let tu = (P, U, C) be a transformation unit over a rule base
with control conditions DRC = (X,OP ;R, =⇒; ID , C,SEM), and let Imp, Imp ′ :
U → 2X be import mappings with Imp ⊆ Imp ′. Then the following hold:

(1) Imp+ ⊆ Imp′
+.

(2)
⋃

OP∗(P, Imp) ⊆
⋃

OP∗(P, Imp ′) provided that OP is monotone.
(3) INTERImp(tu) ⊆ INTERImp′(tu) provided that C is monotone in addition.

Examples

If an operation on the powerset of a set X is the natural elementwise extension of
an operation on the underlying set X, then the extension is obviously monotone.
All operations considered for elementary net systems and binary relations are
of this kind. Moreover, all control conditions considered in the examples are
monotone because they control the composition of semantic entities independent
of their size such that the results get larger if the arguments are replaced by larger
sets.

3 Networks of transformation units with iterated

interlinking semantics

A transformation unit is a rule-based system with a generic import. An import
identifier represents a semantic entity, but it is not fixed how it is specified. A
simple way to specify the import is to assume that the identifiers name again
transformation units. In this case the import structure forms a directed graph
leading to the notion of a network of transformation units. If the network is finite
and acyclic or if the network has no infinite path, the interlinking semantics can
be defined for all transformation units in the network. If the network has a
cycle or an infinite path, one may start with the empty semantic entity for each
transformation unit and then iterate the interlinking semantics ad infinitum.

3.1 Networks of transformation units

A network of transformation units over a rule base with control conditions
DRC = (X,OP ;R, =⇒; ID , C,SEM), is a system N=(V, τ) where V is a set of
nodes and τ is a mapping assigning a transformation unit τ(v)=(P (v), U(v), C(v))
to each node v ∈ V with U(v) ⊆ V.

A network of transformation units can be seen as a directed graph where
the elements of V are the nodes and the ordered pairs of nodes (v, v′) with
v′ ∈ U(v) the edges. A network of transformation units is well-founded if it does
not contain an infinite path.

Note that a finite network is well-founded if and only if it is acyclic. In case
of a well-founded network, the set of nodes can be divided into pairwise disjoint
levels Vk for k ∈ N which are inductively defined by

(i) V0 containing all nodes with basic units and

(ii) Vk+1 containing all nodes u ∈ V \
k⋃

i=0

Vi with U(v) ⊆
k⋃

i=0

Vi.

3.2 Interlinking semantics of well-founded networks

The interlinking semantics of transformation units is easily extended to well-
founded networks because it can be defined inductively level by level.

Let N = (V, τ) be a well-founded network of transformation units. Then the
interlinking semantics INTER : V → 2X is inductively defined in the following
way:

(1) for v ∈ V0, we have U(v) = ∅ such that the empty mapping Empty is the
only choice for the semantics of the import part. Therefore, the interlinking
semantics of tu(v) with Empty is defined yielding

INTER(v) = INTEREmpty(tu(v)).

(2) Let us assume that INTER(v) is defined for all v′ ∈
k⋃

i=0

Vk for some k ∈ N.

(3) Consider v ∈ Vk+1. Then we have U(v) ⊆
k⋃

i=0

Vk such that Impk(v′) =

INTER(v′) is defined for all v′ ∈ U(v). Therefore, the interlinking semantics
of tu(v) with Impk is defined yielding

INTER(v) = INTERImp
k
(tu(v)).

Examples

The first examples of networks of transformation units are well-founded and have
all the same simple structure with n nodes v1, . . . , vn at level 0 and one node
v0 at level 1, i.e. there is a main unit importing the other units. The examples
differ only in the choices of transformation units for the nodes.

Elementary net systems. In 2.5, an elementary net system (N, Cin) with
N = (B, E, F) is transformed into the basic transformation unit tu(N, Cin).
But as each event gives rise to a basic transformation unit separately with the
event as the only rule, the elementary net system can be seen as a transformation
unit that imports its event units, i.e. τ(N, Cin)(v0) = (∅, {v1, . . . , vn}, Cin) and
τ(N, Cin)(vi) = tu(ei) = ({ei}, ∅, all) for i = 1, . . . , n and E = {e1, . . . , en}. The
control condition all is a void condition the semantics of which is always the set
of all processes so that the intersection with any other semantic entity has no
effect. Hence, the interlinking semantics of tu(ei) is the closure of the process
proc(ei) and the processes proc(c) for each c ∈ B under parallel and sequential
composition. Because the sequential composition with proc(C) for C ⊆ B has no
effect and the event ei is not enabled directly after its occurrence, the sequential
compositions can be ignored, and one gets as interlinking semantics of tu(ei) all
cases and all single occurrences of ei, i.e.

INTER(vi) = INTEREmpty(tu(ei)) = 2B ∪ {proc(ei) + C | C ⊆ B \ (•ei ∪ e•i)}.

This provides also the import mapping Imp0 for the interlinking semantics
of the level-1 node v0 consisting of all sequential and parallel compositions of
the imported processes that start with Cin yielding the process semantics of the
elementary net system (N, Cin), i.e.

INTER(v0) = INTERImp
0
(τ(N, Cin)(v0)) = PROC (N, Cin).

Binary relations. Grammar systems (see, e.g., [1]) are typical examples of the
same form. The system becomes the main unit, and its components are imported.
More formally, a cooperating distributed grammar system Γ=(N, T, S, P1, . . . , Pn)
consists of a set of nonterminals N , a set of terminals T , a start symbol S ∈ N,
and a collection of finite sets of rules P1, . . . , Pn with Pi ⊆ (N ∪ T)∗ × (N ∪ T)∗

for i = 1, . . . , n. Choosing a derivation mode f (according to examples in 2.3),
Γ generates the language Lf (Γ) which contains all terminal words w that are

derived from the start symbol S by a sequence of derivations in the mode f of
the form

S
f

−→
Pi1

w1
f

−→
Pi2

. . .
f

−→
Pim

wm = w

with m ≥ 1 and 1 ≤ ij ≤ n for j = 1, . . . , m. The corresponding transformation
units are defined by τ(Γ)(v0) = (∅, {v1, . . . , vn}, (S, T)) and τ(Γ)(vi) = (Pi, ∅, f)
for i = 1, . . . , n. The interlinking semantics of the latter units coincides obviously
with the derivation relations with respect to the derivation mode f. And the
interlinking semantics of τ(Γ)(v0) imports these, constructs the closure under
the operations including sequential composition, and intersects the result with
{S}×T ∗ due to the control condition. Consequently, a word w is in interlinking
relation to S if and only if w ∈ Lf (Γ).

Similarly, a T0L system G′′ = (A, P1. . . . , Pn, z) with an alphabet A, a start
word z ∈ A∗ and a collection of finite sets of context-free rules Pi ⊆ A×A∗ gives
rise to a network of transformation unit. The network structure is the same as
in the last two examples, and the transformation units of the nodes are defined
by τ(G′′)(v0) = (∅, {v1, . . . , vn}, (z, A)) and τ(G′′)(vi) = (Pi, ∅, mp(Pi, ∅)) for
i = 1, . . . , n. Accordingly, the language generated by G′′ corresponds to the
interlinking semantics of the root node v0.

3.3 Iterated interlinking semantics of arbitrary networks

The problem of networks which are not well-founded is that the semantics of the
import parts of some units at the network may not be known at the moment
when one wants to apply the interlinking semantics. But if one assumes to have
at least a preliminary semantics for all nodes, i.e. some semantic mapping Sem :
V → 2X , then the interleaving semantics is defined for the unit of each node wrt
to Sem restricted to the import part, i.e. Sem′(v) = INTERSem(U(v))(tu(v)) for
v ∈ V with Sem(U(v))(v′) = Sem(v′) for all v′ ∈ U(v).

The resulting semantic mapping Sem′ is denoted by INTER(Sem), and the
operator INTER, that yields semantic mappings from semantic mappings by
interlinking them with the semantic entities of the respective rules, is called
interlinking operator.

In this way, one gets another semantic mapping, which may be used as a
next preliminary semantics such that this process can be iterated ad infinitum
whenever one starts from some semantic mapping. An obvious candidate to
start is the mapping that assigns the empty set to each node of the network.
Therefore, the iterated interlinking semantics ITERATE : V → 2X of a network
of transformation units N = (V, τ) may be defined for all v ∈ V as follows:

ITERATE (v) =
⋃

i∈N

ITERATE i(v)

with ITERATE 0(v)=∅ and ITERATE i+1(v)=INTERITERATE i(U(v))(tu(v)).

Examples

The concept of networks of transformation units beyond the examples in 3.2
provide new possibilities of cooperation and distribution in the framework of
elementary net systems and of grammar systems. The examples of 3.2 may be
reconsidered. Instead of a main unit which imports all others, the main unit
imports only one of the other units which import each other. While the main
unit takes care of the global control condition only, the other units do the com-
putational work interactively.

Elementary net systems. Let (N, Cin) be an elementary net system, let E =
{e1, . . . , en} be its set of events, and let V = {v1, . . . , vn}. Then the second net-
work τ̂(N, Cin) associated to (N, Cin) is given by τ̂ (N, Cin)(v0) = (∅, {v1}, Cin)
and τ̂ (N, Cin)(vi) = ({ei}, V, all) for i = 1, . . . , n. Starting with the empty set of
processes at each node, the first application of the interlinking operator yields
the singleton set {Cin} as semantics of v0 and all cases and all single occurrences
of the event ei as semantics of vi for i = 1, . . . , n. As the import is empty at the
first step, the unit at vi behaves as tu(ei). The second application of the inter-
linking operator yields the set of all processes as semantics at vi for i = 1, . . . , n
as all single occurrences of all events are imported and closed under sequential
and parallel composition. The semantics at v0 contains, besides Cin, the sequen-
tial compositions of Cin with single occurrences of e1, i.e. the single occurrence
of e1 under Cin if •e1 ⊆ Cin. The third application of the interlinking operator
yields the processes of N that start in Cin at the node v0. The other semantic
entities are kept. Further iteration is not changing the semantics.

Binary relations. Analogously, grammar systems and T0L systems can be
reconstructed as networks of transformation units of the given form.

The same remains true if the subnetwork induced by v1, . . . , vn is not com-
plete, but there is a path from each node to v1. In this case, the interlinking
operator must be iterated m + 2 times if m is the length of the longest shortest
path of a node vi to v1 for i = 1, . . . , n.

3.4 Iterated interlinking semantics of well-founded networks

If one applies the iterated interlinking semantics to well-founded networks, the
result coincides with the ordinary interlinking semantics. This is a first indication
that the interlinking semantics is meaningful.

Observation 2 Let N = (V, τ) be a well-founded network of transformation
units. Then we have

INTER = ITERATE .

3.5 Monotony and continuity of the interlinking operator

Given a semantic entity for each node of a network of transformation units,
the interlinking semantics is defined for each node yielding another semantic
entity. This is the basic operator which is iterated in the iterated interlinking
semantics. This operator turns out to be monotone and even continuous if the
used operations and control conditions are monotone resp. continuous.

An operation op ∈ OPk for some k is continuous if

⋃

i∈N

op(t1, . . . , tj−1, tji
, tj+1, . . . , tk) = op(t1, . . . , tj−1,

⋃

i∈N

tji
, tj+1, . . . , tk).

for each j with 1 ≤ j ≤ k and each increasing chains of semantic entities tj0 ⊆
tj1 ⊆ . . . ⊆ tji

⊆ Accordingly, a set of operations is continuous if each of its
elements is continuous.

A control condition C is continuous if

⋃

i∈N

SEM (C, Envi) = SEM (C,
⋃

i∈N

Envi)

for each increasing chain of environments Env0 ⊆ Env1 ⊆ . . . ⊆ Envi ⊆ . . .
with Envi : ID → 2X for i ∈ N.

Examples

All operations in the examples of this paper are operations on semantic items,
which are extended elementwise to semantic entities. Such operations are obvi-
ously monotone and continuous. The same applies to the control conditions as
they restrict the application of semantic operators independent of the content of
the semantic entities.

Observation 3 Let DRC = (X,OP ;R, =⇒; ID , C,SEM) be a rule base with
control conditions and N = (V, τ) be a network of transformation units over
DRC such that OP and C(v) for all v ∈ V are continuous. Let INTER be the
corresponding interlinking operator. Then the following hold:

(1) The interlinking operator is monotone, i.e.

INTER(Sem) ⊆ INTER(Sem′)

for all semantic mappings Sem, Sem′ : V → 2X with Sem ⊆ Sem′.
(2) The interlinking operator is continuous, i.e.

⋃

i∈N

INTER(Semi) = INTER(
⋃

i∈N

Semi)

for all increasing chains of semantic mappings Sem0 ⊆ Sem1 ⊆ . . . ⊆
Semi ⊆

4 Fixed-point theorem

Let N = (V, τ), be a network of transformation units N = (V, τ), and INTER the
corresponding interlinking operator on the semantics mappings Sem : V → 2X

defined by

INTER(Sem)(v) = INTERSem(U(v))(tu(v))

for all v ∈ V. Because their domain is a power set, it is a well-known fact
that the set of semantic mappings is a complete partial order with respect to
the argumentwise inclusion where the union of every increasing chain is the
least upper bound. In Observation 3, the interlinking operator is shown to be
monotone and continuous with respect to this complete partial order such that
Kleene’s fixed-point theorem applies. This means that the iterated interlinking
semantics is the least fixed point of the interlinking operator.

Theorem 1. Let DRC = (X,OP ;R, =⇒; ID , C,SEM) be a rule base with con-
trol conditions, and let N = (V, τ) be a network of transformation units over
DRC such that each operation is continuous and C(v) as well for each v ∈ V .
Then the iterated interlinking semantics ITERATE : V → 2X is the least fixed
point of the interlinking operator INTER, i.e.

INTER(ITERATE) = ITERATE .

It should be noted that this result generalizes the fixed-point theorem in [7],
which deals with binary relations on some set of graphs as semantic entities
and with the sequential composition of binary relations as the only semantic
operator.

5 Conclusion

In this paper, we have introduced the notion of interlinking semantics of networks
of transition units generalizing the purely sequential interleaving semantics of
earlier work. We have demonstrated that the new concept covers parallelism and
concurrency of elementary net systems and various types of grammars. The main
result is a fixed-point theorem stating that the iterated interlinking semantics is
the smallest fixed-point of the interlinking operator.

Future work should shed some more light on the significance of this ap-
proach in two respects at least. On one hand, it should be investigated how
the fixed-point theorem can be used to analyze rule-based systems and to prove
their properties. On the other hand, further case studies would be helpful to fit
in further approaches to parallelism and concurrency into our new framework.
In particular, we would like to relate parallelism and concurrency in the area
of graph transformation, which have been intensively investigated by Hartmut
Ehrig and others in the last three decades (see, e.g., the Chapters 3 and 4 in [9]
and [2] for an overview), with interlinking semantics.

Acknowledgement

We would like to thank Peter Knirsch and Gabriele Taentzer for the helpful
comments on an earlier version of this paper.

References

1. Jürgen Dassow, Gheorghe Păun and Grzegorz Rozenberg. Grammar systems.
In G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, Vol.
2. pages 155–213, Springer, 1997.

2. Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari and Grzegorz Rozenberg,
editors. Handbook of Graph Grammars and Computing by Graph Transforma-
tion, Vol. 3. World Scientific, 1999.

3. Cesar Fernandez. Non-sequential processes. In W. Brauer, W. Reisig and G.
Rozenberg, editors. Petri nets: Central models and their properties, Advances in
Petri nets, Part I. Lecture Notes in Computer Science, vol. 254, pages 95–115,
Springer, 1986.

4. Hans-Jörg Kreowski and Sabine Kuske. On the interleaving semantics of trans-
formation units – A step into GRACE. In Janice E. Cuny, Hartmut Ehrig,
Gregor Engels and Grzegorz Rozenberg, editors. Proc. Graph Grammars and
Their Application to Computer Science. Lecture Notes in Computer Science,
vol. 1073, pages 89–108, Springer, 1996.

5. Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units with inter-
leaving semantics. Formal Aspects of Computing, vol. 11, no. 6, pages 690–723,
1999.

6. Hans-Jörg Kreowski and Sabine Kuske. Approach-independent structuring
concepts for rule-based systems. In Martin Wirsing, Dirk Pattison, Rolf Hen-
nicker, editors. Proc. 16th Int. Workshop on Algebraic Development Techniques
(WADT 2002). Lecture Notes in Computer Science, vol. 2755, pages 299–311,
Springer, 2003.

7. Hans-Jörg Kreowski, Sabine Kuske and Andy Schürr. Nested graph transfor-
mation units, International Journal on Software Engineering and Knowledge
Engineering, vol. 7, no. 4, pages 479–502, 1997.

8. Grzegorz Rozenberg. Behaviour of elementary net systems. In W. Brauer,
W. Reisig and G. Rozenberg, editors. Petri nets: Central models and their
properties, Advances in Petri nets, Part I. Lecture Notes in Computer Science,
vol. 254, pages 60–94, Springer, 1986.

9. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 1. World Scientific, 1997.

10. Grzegorz Rozenberg and Arto Salomaa, editors. The Book of L. Springer, 1986.
11. Grzegorz Rozenberg and Arto Salomaa, editors. Lindenmayer Systems.

Springer, 1992.
12. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Lan-

guages, Vol. 1–3. Springer, 1997.
13. R.S. Thiagarajan. Elementary net systems. In W. Brauer, W. Reisig and G.

Rozenberg, editors. Petri nets: Central models and their properties, Advances
in Petri nets, Part I. Lecture Notes in Computer Science, vol. 254, pages 26–59,
Springer, 1986.

